JPS61102517A - Oscillation controller - Google Patents

Oscillation controller

Info

Publication number
JPS61102517A
JPS61102517A JP59224758A JP22475884A JPS61102517A JP S61102517 A JPS61102517 A JP S61102517A JP 59224758 A JP59224758 A JP 59224758A JP 22475884 A JP22475884 A JP 22475884A JP S61102517 A JPS61102517 A JP S61102517A
Authority
JP
Japan
Prior art keywords
voltage
output
detector
multiplier
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59224758A
Other languages
Japanese (ja)
Inventor
Tsurashi Yamamoto
山本 貫志
Shinichi Kawada
河田 伸一
Yoji Okamura
岡村 洋二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Keiki Inc
Original Assignee
Tokyo Keiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Keiki Co Ltd filed Critical Tokyo Keiki Co Ltd
Priority to JP59224758A priority Critical patent/JPS61102517A/en
Publication of JPS61102517A publication Critical patent/JPS61102517A/en
Pending legal-status Critical Current

Links

Landscapes

  • Gyroscopes (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

PURPOSE:To oscillate a dynamical oscillation system like an oscillation gyroscope at its natural frequency and to hold its oscillations constant by varying the output of a controller which supplies its output to a driving circuit according to the difference between the output signal of a detector and a set voltage. CONSTITUTION:The output voltage VP of a displacement detector 11B is passed through a multiplier 1l2 and a controller 14 and added to an initial value voltage V0 by an adder AD1 and the sum voltage is applied to the oscillation gyroscope 10 through an amplifier 17 to constitute a control closed circuit. The input voltage VP is converted by an A/D conversion part 16 into a DC voltage, which is compared by the adder AD1 with the set voltage V1 obtained through a setting element 15, so that the deviation signal and the output VP of the detector 11B are supplied to a multiplier 12 through a deviation amplifier 18. When the input VP increases, the difference between the voltage V1 and the output voltage of the converter 16 decreases and the output voltage of the amplifier 18 also decreases. Consequently, the gain of the multiplier 12 becomes small according to an increase in the input VP because of the influence of the output decrease of the amplifier 18. Therefore, the one-round closed loop has an automatic control function which makes the signal amplitude constant and also has a function which holds its frequency at the resonance frequency of the dynamical oscillation system.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、振動系の力学的振動を安定に持続せしめるた
めの振動制御装置に関する。尚、ここで述べた力学的振
動とは、最近の例では、振動ジャイロとか、リングレー
ザジャイロのディザ−装置等の撮動系の振動を挙げるこ
とができよう。これらは、いずれも質量とバネとから成
るか、慣性能率と捩りバネとから成る力学的共振系であ
る。ここでは代表して振動ジャイロを例にとって説明す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a vibration control device for stably sustaining mechanical vibration of a vibration system. Incidentally, the mechanical vibrations mentioned here include, as recent examples, vibrations of imaging systems such as vibrating gyros and dither devices of ring laser gyros. Each of these is a mechanically resonant system consisting of a mass and a spring, or a coefficient of inertia and a torsion spring. Here, explanation will be given using a vibrating gyroscope as a representative example.

〔従来の技術〕[Conventional technology]

先ず、従来公知の振動ジャイロを第4図を参照して説明
する。同図の振動ジャイロに於ては、音叉(1)が撓み
軸(3)を介して、基台(2)上にささえられている。
First, a conventionally known vibrating gyroscope will be explained with reference to FIG. In the vibrating gyroscope shown in the figure, a tuning fork (1) is supported on a base (2) via a bending shaft (3).

撓み軸(3)の中心線は、図示のごとく、音叉(1)の
両脚(11) 、  (11八)の中心線と一致するよ
うになされているので、この中心線を、(Z−Z)軸と
称することにする。(41,(4A)は音叉(1)の両
脚(11) 、  (IIA)を振動させるための駆動
装置であり、電歪素子や、電磁フォーサ−など、色々な
ものが使用可能である。駆動装置(4)、  (4^)
へ、交流電源(5)より駆動用交流電圧を供給し、音叉
(1)を振動させると、音叉(1)の両脚(11) 、
  (11^)は、(Z −Z)軸に関して互いに対称
に振動する。
As shown in the figure, the center line of the bending shaft (3) is made to coincide with the center line of both legs (11) and (118) of the tuning fork (1), so this center line is defined as (Z-Z). ) axis. (41, (4A) is a drive device for vibrating the legs (11), (IIA) of the tuning fork (1), and various devices such as electrostrictive elements and electromagnetic forcers can be used. Drive Device (4), (4^)
When the driving AC voltage is supplied from the AC power supply (5) to vibrate the tuning fork (1), both legs (11) of the tuning fork (1),
(11^) vibrate symmetrically with respect to the (Z-Z) axis.

ある−瞬を考える。この時、第4図のごとく、音叉(1
)の両脚(11) 、  (IIA)の先端は、それぞ
れ速度■で、外方へ運動中であり、全装置が基台(2)
と共に、(Z −Z)軸のまわりに角速度Ωで一定回転
していたとすると、音叉(1)の−脚(11)には、コ
リオリの力FCが、他の一脚(IIA)には、前者と平
行で向きが反対のコリオリのカF’ciが生ずるので、
音叉(1)は基台(2)に対し、撓み軸(3)を捩る運
動をすることになる。これは、コリオリのカFCとFC
□のつくる偶力による作用である。音叉(1)は振動し
ているので、両脚(11) 、  (IIA)の動きが
反対に内側を向き、その速度が図のVと逆方向になると
、F C+ F C1もまた逆の方向を向くので、FC
とFCLのつくる偶力も逆向きになる。
Think about a moment. At this time, as shown in Figure 4, use a tuning fork (1
The tips of both legs (11) and (IIA) of ) are moving outward at speed ■, and the entire device is attached to base (2).
Assuming that the tuning fork (1) is rotating at a constant angular velocity Ω around the (Z - Z) axis, the Coriolis force FC is applied to the negative leg (11) of the tuning fork (1), and the Coriolis force FC is applied to the other leg (IIA). Since the Coriolis force F'ci which is parallel to the former and opposite in direction is generated,
The tuning fork (1) will perform a twisting motion on the bending shaft (3) with respect to the base (2). This is Coriolis Ka FC and FC
This is the effect of the couple created by □. Since the tuning fork (1) is vibrating, when the movements of both legs (11) and (IIA) turn inward in the opposite direction and their speed becomes opposite to V in the figure, F C+ F C1 also moves in the opposite direction. FC
And the couple created by FCL will also be in the opposite direction.

このため、一定角速度Ωが(Z−Z)軸まゎりに存在す
ると、音叉(11は基台(2)に対して、(Z−Z)軸
のまわりに捩り振動を生じ、その振幅はF C+F’a
tの作る偶力に比例するので、結局、角速度Ωに比例す
る。よって、音叉(1)の(Z−Z)軸まゎりの捩り振
動を検出する捩り検出器(8)を、図示のコトく、音叉
(1)の基部に設置し、その出方(7)を検慇すること
で、角速度Ωを知ることができ、第4図の装置は(Z 
−Z)軸のまわりの角速度Ωの検出器として、レートジ
ャイロと等価に使用することができる。
Therefore, when a constant angular velocity Ω exists around the (Z-Z) axis, torsional vibration occurs around the (Z-Z) axis with respect to the tuning fork (11 is the base (2), and the amplitude is F C+F'a
Since it is proportional to the couple created by t, it is ultimately proportional to the angular velocity Ω. Therefore, a torsion detector (8) for detecting torsional vibration around the (Z-Z) axis of the tuning fork (1) is installed at the base of the tuning fork (1) as shown in the figure, and its output (7) is The angular velocity Ω can be found by calculating the angular velocity Ω.
-Z) It can be used equivalently to a rate gyro as a detector of angular velocity Ω around the axis.

従来、もっとも一般的な音叉(11の励振方式は、その
駆動装置(4)、  (4A)に、一定周波数、一定電
圧の交流電圧を加えることである。音叉(11をその力
学的共振点で振動させなくてよいのであれば、これは簡
単にして要を得ているが、音叉(1)の共振点を用いな
いと、大きな振幅をとりにくく、また電力効率も良くな
い。このため、音叉(1)をその共振点で振動させて使
いたいと言う要求は多く、電源周波数を力学的共振点に
一致せしめ、必要な振幅を得られる電圧に、電源を関節
して使用する。
Conventionally, the most common excitation method for a tuning fork (11) is to apply an alternating current voltage of a constant frequency and constant voltage to its driving device (4), (4A). If there is no need to vibrate, this is simple and gets the point, but without using the resonance point of the tuning fork (1), it is difficult to obtain a large amplitude, and the power efficiency is not good. There are many requests to use (1) by making it vibrate at its resonance point, so the power supply frequency is made to match the mechanical resonance point, and the power supply is used by adjusting the voltage to obtain the required amplitude.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、従来の、この方法には重大な欠点がある
。すなわち、この種の力学系の共振点は、極めて鋭く、
その共振周波数は、温度に敏感に左右されるので、ある
時点でよい共振状態が得られていでも、力学的共振周波
数は周囲の温度変化等により、電気的一定周波数から徐
々にはずれてしまい、振幅が急激に減少し、振動ジャイ
ロとしての特性が忽ち劣化してしまう。よって、従来型
においては、その振動が周囲温度等の影響を受けやすく
、振幅変化が大で、感度が一定しないという欠点があっ
た。また、一定周波数、一定電圧の電源も決して安価な
ものではなく、精度を向上しようとすれば、高価な電源
を使用することとなり、その割に上記の欠点に左右され
て振動ジャイロとしての性能向上が得られないという別
の欠点をも有する。
However, this conventional method has significant drawbacks. In other words, the resonance point of this type of dynamical system is extremely sharp.
The resonant frequency is sensitively affected by temperature, so even if a good resonant state is obtained at a certain point, the mechanical resonant frequency will gradually deviate from the electrically constant frequency due to changes in the surrounding temperature, etc., and the amplitude decreases rapidly, and the characteristics as a vibrating gyro immediately deteriorate. Therefore, the conventional type has disadvantages in that its vibrations are easily affected by ambient temperature, etc., amplitude changes are large, and sensitivity is not constant. In addition, power supplies with constant frequency and constant voltage are not cheap, and if you want to improve accuracy, you will need to use an expensive power supply. It also has another drawback in that it cannot be obtained.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、固有振動数の共振点を有する振動系と、該振
動系に振動を生ぜしめるための駆動装置と、上記振動系
の振動を検出するための検出器とから成る振動系に於て
、上記検出器の出力を入力とし、上記駆動装置に出力を
供給する制御装置を設け、該制御装置は上記検出器の出
力信号の微分値に対応する信号を発生ずると共に、該微
分値に対応する信号が上記検出器の出力信号に対応する
信号と設定電圧との差に応じて変化させるように成し、
上記振動系に上記固有振動数で、振幅が一定に制御され
た振動を生せしめるように成した振動制御装置により、
上記従来の問題を解決するものである。
The present invention provides a vibration system comprising a vibration system having a resonance point of a natural frequency, a drive device for producing vibration in the vibration system, and a detector for detecting vibration of the vibration system. , a control device is provided which receives the output of the detector as an input and supplies the output to the drive device, and the control device generates a signal corresponding to the differential value of the output signal of the detector, and also generates a signal corresponding to the differential value of the output signal of the detector. the signal corresponding to the output signal of the detector is changed according to the difference between the signal corresponding to the output signal of the detector and the set voltage,
By means of a vibration control device configured to cause the vibration system to generate vibrations at the natural frequency and with a constant amplitude,
This solves the above conventional problems.

〔作用〕[Effect]

本発明の上述の構成によれば、力学的振動系を、温度変
化等の外乱に関係なく、その固有振動数且つ一定の振幅
で継続的に振動させ、上述した従来の諸問題を全べて解
決するものである。
According to the above-described configuration of the present invention, the mechanical vibration system is caused to vibrate continuously at its natural frequency and constant amplitude, regardless of disturbances such as temperature changes, and all of the above-mentioned conventional problems can be solved. It is something to be solved.

〔実施例〕〔Example〕

本発明の一実施例を第1図を参照して説明するも、その
前に、本発明が適用されている振動ジャイロの一例を、
第2図を参照して説明する。尚、第2図と第4図の主た
る相違点は、第2図に於ては、変位検出器(61,(6
A)を、音叉(1)の両脚(11) 。
An embodiment of the present invention will be described with reference to FIG.
This will be explained with reference to FIG. The main difference between FIG. 2 and FIG. 4 is that in FIG.
A) is both legs (11) of tuning fork (1).

(IIA)の遊端部近傍に、夫々互に対向して取り付け
た点であり、その他は、両者は実質的に同一であるので
、両者の対応部分には、同一符号を付し、それ等の詳細
説明は、簡単のためこれを省略する。
(IIA) are attached near the free ends, facing each other.Other than that, both are substantially the same, so corresponding parts of both are given the same reference numerals, and A detailed explanation will be omitted for brevity.

第2図の振動ジャイロに於ては、音叉(11の変位を変
位検出器+61 、  (6A)で検出し、この検出出
力を、出力端子(9)を介して後述の本発明の制御装置
に供給し、その出力を入力端子(5A)を介して駆動装
置(41,(4A)に印加することにより、1個の制御
閉ループを構成し、これにより、音叉(1)の安定した
所望の振動を持続させるものである。
In the vibrating gyroscope shown in Fig. 2, the displacement of the tuning fork (11) is detected by a displacement detector +61 (6A), and the detection output is sent to the control device of the present invention, which will be described later, via an output terminal (9). By applying the output to the drive device (41, (4A) through the input terminal (5A), one control closed loop is constructed, thereby achieving a stable desired vibration of the tuning fork (1). It is something that sustains.

第2図の振動ジャイロに於て、音叉(1)の両脚(11
) 、  (IIA)は当然のことながら対称である。
In the vibrating gyro shown in Figure 2, both legs (11
) and (IIA) are naturally symmetric.

ここで、その1脚、例えば脚(11)の撮動支点Qから
見た等価慣性能率をI、f1元バネ常数をkとするなら
ば、振動ジャイロの力学的運動方程式は各脚で次のとお
りとなる。ここでSはラプラスの演算子である。
Here, if the equivalent inertia rate of one leg, for example leg (11), viewed from the imaging fulcrum Q is I, and the f1 element spring constant is k, then the dynamic equation of motion of the vibrating gyro is as follows for each leg: As expected. Here, S is Laplace's operator.

(IS2+k)φ=KV       ・・・・(1)
ここで、φは音叉(1)の1脚の振れ角(偏角)で、■
は一対の駆動装置(4)、  に4A)  ((4A)
は見えず)に加える電圧を示し、Kは駆動装置!4)、
  (4A)のゲイン定数で、KVは駆動装置(41,
(4A)の発生トルクを示す。
(IS2+k)φ=KV...(1)
Here, φ is the deflection angle (declination angle) of one leg of the tuning fork (1), and ■
is a pair of drive devices (4), (4A) ((4A)
(not visible) indicates the voltage applied to the drive device! 4),
(4A) and KV is the drive device (41,
(4A) shows the generated torque.

(13式よりVとφの間の伝達関数は次のとおりとなる
(From Equation 13, the transfer function between V and φ is as follows.

V  S2+に/I 以上は、音叉(1)に対する空気の抵抗や、その脚肉で
の歪みによるエネルギー損失を全く無視して導いた式で
あり、第1近似としては、これでよいが、実際には、上
記のごときエネルギー損失があるので、これをほぼ振動
角速度に比例するダンピングトルクの存在で代表させる
ならば、(21式は、次の(3)式のとおりとなる。
V S2+ /I The above formula was derived completely ignoring the resistance of the air to the tuning fork (1) and the energy loss due to distortion in the leg meat.This is fine as a first approximation, but in reality Since there is an energy loss as described above, if this is represented by the presence of a damping torque that is approximately proportional to the vibration angular velocity, Equation (21) becomes as shown in Equation (3) below.

V  S2+C/I S+に/1 ここで、Cはダンピング項の係数である。V S2+C/I S+/1 Here, C is the coefficient of the damping term.

次に、例えば第2図に示す振動ジャイロ等に通用される
本発明の一実施例をその系統的ブロック線図である第1
図を参照して説明する。第1図に於て、αωは上記力学
系、すなわち制御対象(振動ジャイロ)を示し、ブロッ
ク内はその伝達関数を示す。(11B )は変位検出器
(61,(6^)全体を示し、G2はそのゲインである
。VPは上記の変位、検出器(6)、  (84)の出
力電圧であり、この電圧VPは、乗算器(12)を介し
て制御回路(14)に印加される。制御回路(14)は
、代表的には微分操作を行い、その微分係数をμとする
。制御回路(14)の出力は、初期値電圧VOに、加算
器(AD)で加算され、その出力を増幅器(17)で増
幅して、力学的振動系αωの駆動装置(4)、  (4
A)に加えられ、制御ループが閉じるように構成されて
いる。
Next, an embodiment of the present invention applicable to, for example, a vibrating gyroscope shown in FIG.
This will be explained with reference to the figures. In FIG. 1, αω indicates the above-mentioned dynamic system, that is, the controlled object (vibrating gyro), and the inside of the block indicates its transfer function. (11B) shows the entire displacement detector (61, (6^)), and G2 is its gain. VP is the output voltage of the above displacement detector (6), (84), and this voltage VP is , is applied to the control circuit (14) via the multiplier (12).The control circuit (14) typically performs a differential operation, and the differential coefficient is set to μ.The output of the control circuit (14) is added to the initial value voltage VO by an adder (AD), and its output is amplified by an amplifier (17) to create a driving device (4) for the mechanical vibration system αω, (4
A) and configured to close the control loop.

第1図に示す乗算器(12)は、2つの入力信号を有し
、これをそれぞれX、Yとし、乗算器(12ンの出力信
号をZとすると、入出力信号の関係は、(12)によっ
て決まる定数である。ここで、上式(6A)の出力電圧
VPを一方の入力信号Xとすると、乗算器(12)のV
pに対するゲインは、他方の入力信号Yの値に応じて変
化する。例えば他方の入力信号Yの値が乗算器(12)
の定数Vcと等しいと、乗算器(12)はゲイン1で、
VPを出力す−る。
The multiplier (12) shown in FIG. ).Here, if the output voltage VP of the above equation (6A) is one input signal
The gain for p changes depending on the value of the other input signal Y. For example, the value of the other input signal Y is input to the multiplier (12)
is equal to the constant Vc, the multiplier (12) has a gain of 1,
Outputs VP.

第1図で、乗算器(12)のゲイン=1の場合を先ず説
明する。この場合、VPはそのまま制御回路(14)に
供給されることになるので、第1図の例からVPを計算
すると、次式のとおりとなる。
In FIG. 1, the case where the gain of the multiplier (12) is 1 will be described first. In this case, VP will be supplied as is to the control circuit (14), so if VP is calculated from the example of FIG. 1, it will be as shown in the following equation.

・・・・(4) (4)式はvPがVoに対応した振幅をもつ振動解にな
ることを示しており、(4)式の右辺がC/l<GIG
2  (K/I)μであれば、振動は発敗し、C/ I
 >Gs G2  (K/ I )μであれば、j駆動
は集束し、C/ I = GI G2  (K/ I 
)μであれば、一定振幅となることを表わしている。
...(4) Equation (4) shows that vP becomes an oscillatory solution with an amplitude corresponding to Vo, and the right side of equation (4) is C/l<GIG.
2 If (K/I)μ, the vibration will fail and C/I
> Gs G2 (K/ I )μ, then the j drive is focused and C/ I = GI G2 (K/ I
) μ indicates that the amplitude is constant.

ここで、第1図に於て一点鎖線で示したループについて
説明する。電圧VpはAC−DC変換部(16)にも加
えられる。AC−4DC変換部(16)は、入力電圧V
Pを全波整流し、図示せずも適当な平滑回路によりVP
の振幅に対応した直流電圧を出力する。Vpの直流電圧
は、基準電圧を例えばポテンショメータのような設定素
子(15)を通して得られた設定電圧V、と、加算器(
ADI)で比較され、その偏差信号は、偏差増幅器(1
8)に加えられる。偏差増幅器(18)は、加えられた
偏差信号を増幅し、・その出力を乗算器(12)へ供給
する。
Here, the loop shown by the dashed line in FIG. 1 will be explained. Voltage Vp is also applied to the AC-DC converter (16). The AC-4DC converter (16) has an input voltage V
P is full-wave rectified, and VP is
Outputs a DC voltage corresponding to the amplitude of The DC voltage Vp is obtained by combining a reference voltage with a set voltage V obtained through a setting element (15) such as a potentiometer, and an adder (
ADI), and the deviation signal is sent to the deviation amplifier (1
8). The deviation amplifier (18) amplifies the applied deviation signal and supplies its output to the multiplier (12).

さて、このような第1図の装置を起動すると、はじめは
未だ発振していないので、出力Vpは零からスタートす
るから、AC−DC変換部(16)の出力は零である。
Now, when the device shown in FIG. 1 is started, the output Vp starts from zero since it is not oscillating yet, so the output of the AC-DC converter (16) is zero.

このため偏差増幅器(18)はG3 Vlなる出力電丘
を発生する。ここで偏差増幅器(18)のゲインG3を
適当に大きく選んでおくと、G3 Vl >VCとなり
、上記偏差増幅器(18)の出力電圧は乗算器(12)
の定数VCよりj     大となる。これにより、乗
算器(12)はゲイン1以上の状態からスタートするの
で、C/1<Gx02  (K/ I )μが成り立つ
ように制御回路(14)の微分係数μを選んでおくと、
第1図の一巡閉ループは発散振動する性質をもち、ω=
fこ7丁の角周波数で正弦波状の振動を生じ、その振幅
は次第に増大する。これは、ループ−巡の信号がそのよ
うに振動しつつ増大することをあられすので、音叉(1
)もまた、その周波数で力学的に振動しつつ、その振幅
を増大する。これにつれ、AC−DC変換部(16)の
入力Vpも増大するので、設定電圧■1とAC−DC変
換部(16)の出力電圧との差は次第に減少していき、
乗算器(12)に加わる偏差増幅器(18)の出力電圧
も減少する。このため、乗算器(12)のゲインは、V
pの増大と共に偏差増幅器(18)の出力電圧の減少の
影響でどんどん小さな値となって行く。従って、この乗
算器(12)のゲインと、制御回路(14)の微分係数
μとを乗じた等価なμをμ′であられすと、μ′は起動
待最大で、Vpが大きくなるにつれ、急速に小さくなっ
て行く。このため、μのかわりにμ′を用いたとき、C
/ I < Gx G2  (K/ I )μ′は、い
つまでも保たれず、右辺のμ′の低下にともない、やが
てC/I =GI G2  (K/I)μ′の条件が満
たされ、ここで、ループ−巡の信号も、音叉<1)の振
幅も一定となる。この点の周辺では、外乱により振幅が
増大すると、μ′は一層小さくなるので、C/I >G
t G2  (K/N μ′となって、振動は減衰振動
にかわり、元の一定振幅になるよう振幅が制御され、同
様に外乱により、一度据幅が小さくなり、VPが小とな
れば、μ′が大きくなるので、振動は増大し、やはり元
の一定振幅に向って振幅を制御する。どうして、第1図
の制御ループは、振幅を一定にするような自動制御機能
をもち、且つその周波数を正しく力学的振動系の共振周
波数に保つ機能をも、あわせ備えていることがわかる。
Therefore, the deviation amplifier (18) generates an output voltage G3 Vl. Here, if the gain G3 of the deviation amplifier (18) is selected to be appropriately large, G3 Vl > VC, and the output voltage of the deviation amplifier (18) is the same as that of the multiplier (12).
j is larger than the constant VC. As a result, the multiplier (12) starts from a state with a gain of 1 or more, so if the differential coefficient μ of the control circuit (14) is selected so that C/1<Gx02 (K/I)μ holds, then
The closed loop in Figure 1 has the property of divergent oscillation, and ω=
A sinusoidal vibration is generated at an angular frequency of 7, and its amplitude gradually increases. This is because the loop-circular signal increases while vibrating like that, so the tuning fork (1
) also increases its amplitude while vibrating mechanically at that frequency. Along with this, the input Vp of the AC-DC converter (16) also increases, so the difference between the set voltage 1 and the output voltage of the AC-DC converter (16) gradually decreases.
The output voltage of the deviation amplifier (18) applied to the multiplier (12) also decreases. Therefore, the gain of the multiplier (12) is V
As p increases, the value becomes smaller and smaller due to the effect of a decrease in the output voltage of the deviation amplifier (18). Therefore, if μ′ is the equivalent μ obtained by multiplying the gain of this multiplier (12) by the differential coefficient μ of the control circuit (14), μ′ is the maximum before startup, and as Vp increases, rapidly becoming smaller. Therefore, when μ′ is used instead of μ, C
/ I < Gx G2 (K/I) μ' is not maintained forever, and as μ' on the right side decreases, the condition of C/I = GI G2 (K/I) μ' is eventually satisfied, and here , the loop-circle signal and the amplitude of the tuning fork <1) are constant. Around this point, as the amplitude increases due to the disturbance, μ′ becomes smaller, so that C/I > G
t G2 (K/N μ', the vibration changes to damped vibration, and the amplitude is controlled to the original constant amplitude. Similarly, once the stability width becomes smaller due to disturbance and VP becomes smaller, As μ' increases, the vibration increases and the amplitude is still controlled toward the original constant amplitude.Why does the control loop in Figure 1 have an automatic control function that keeps the amplitude constant? It can be seen that it also has the function of keeping the frequency correctly at the resonant frequency of the mechanical vibration system.

一定となる振幅は、μを一度定めてしまえば、設定電圧
■!と偏差増幅器(18)のゲインG3とで定まるが、
偏差増幅器(18)の伝達関数に、周波数が低くなるに
従うてゲインが増加するような特性(例えば「比例士積
分」特性)を用いると、振幅の定常値は設定電圧■1の
みによって定まる。これより、設定素子(15)でVl
を変えることにより振幅を任意にきめることができる。
Once μ is determined, a constant amplitude can be achieved by changing the set voltage■! It is determined by the gain G3 of the deviation amplifier (18),
If a characteristic in which the gain increases as the frequency decreases (for example, a "proportionalist-integral" characteristic) is used for the transfer function of the deviation amplifier (18), the steady value of the amplitude is determined only by the set voltage (1). From this, Vl at the setting element (15)
The amplitude can be arbitrarily determined by changing .

かくして、第1図の実施例は、振動ジャイロのような力
学的振動系を、その固有振動数で振動せしめ、且つその
振幅を富に一定に保ち得るので、ここに従来の方法のも
つ一切の欠点を除去することができる。すなわち、温度
変化にともなう振幅不安定もなければ、簡単な全波整流
回路、乗算器の使用で高価な一定周波数、一定電圧の電
源の使用も回避し、安価で確実な振動ジャイロ等を得る
ことができる。
Thus, the embodiment of FIG. 1 can cause a mechanical vibration system, such as a vibrating gyro, to vibrate at its natural frequency and keep its amplitude fairly constant, thereby eliminating all the limitations of conventional methods. Defects can be removed. In other words, there is no amplitude instability due to temperature changes, and by using a simple full-wave rectifier circuit and multiplier, it is possible to avoid the use of an expensive constant frequency and constant voltage power supply, and to obtain an inexpensive and reliable vibrating gyroscope. I can do it.

第3図は本発明の制御装置を他のジャイロ装置に通用し
た例の斜視図である。
FIG. 3 is a perspective view of an example in which the control device of the present invention is applied to other gyro devices.

同図の例においては、平板状の基台(2)上に、その上
面と略々垂直となる如く、短冊状バイモルフから成る入
力角速度Ωを検出するための薄板状の検出用圧電素子(
30)を取付ける。尚、この際、必要に応じて、取付部
(30A)を用いてもよい。
In the example shown in the figure, a thin plate-shaped detection piezoelectric element (2) for detecting an input angular velocity Ω consisting of a rectangular bimorph is placed on a flat base (2) so as to be approximately perpendicular to its upper surface.
30) Install. Incidentally, at this time, a mounting portion (30A) may be used if necessary.

この本発明の例では、音叉(1)を、一対の大なる質量
を有する振動f縫部(1−1) 、  (1−1)と、
これ等の夫々に連結した撓み部(1−2) 、  (1
−2)と、両撓み部(1−2) 、  (1−2)の各
遊端を連結する基部(1−3)とより構成する。ここで
基部(1−3)の上面に、L字状取付部(1−4)の一
方の脚(1−4a)が略々垂直上方に伸びる如く固定し
、他方の脚(1−4b)が両撓み部(1−2) 、  
(1−,2)と略々平行に伸びる如くなすと共に、基部
(1−3)の下面にカウンターウェイト部(1−5)を
取り付ける。
In this example of the present invention, the tuning fork (1) is connected to a pair of vibrating f-sewn parts (1-1), (1-1) having a large mass;
Flexible parts (1-2) and (1
-2), and a base (1-3) that connects the free ends of both the flexible parts (1-2) and (1-2). Here, one leg (1-4a) of the L-shaped attachment part (1-4) is fixed to the upper surface of the base (1-3) so as to extend almost vertically upward, and the other leg (1-4b) is fixed to the upper surface of the base (1-3). are both flexible parts (1-2),
(1-, 2), and a counterweight part (1-5) is attached to the lower surface of the base part (1-3).

上述の如く構成した音叉(1)を、次の如く、薄板状の
振動検出用圧電素子(30)に固定する。即ち、音叉(
1)の両撓み部(1−2) 、  (1−2)間の隙間
(g)に、薄板状のバイモルフ型圧電素子(30)の幅
方向(B)が延在する如く、圧電素子(30)の上端に
、L字状取付部(1−4)の脚(1−4b)を固定する
。かくすれば、音叉(1)は、その振動面(音叉面)が
、第3図に示す如く、水平に配置された基台(2)の板
面と略々平行、即ち圧電素子(30)の長手方向<X−
X>と直交する如く、圧電素子(30)に取付けられる
。尚、この場合、両撓み部、(1−2) 、  (1−
2)間の隙間(g)は、圧電素子(30)が振動し、音
叉(1)の振動面が傾斜しても、圧電素子(30)と両
撓み部(1−2) 、  (1−2)とが接触しないよ
うな値に設定されていると共に、〜音叉(1)の振動質
量部(1−1) 、  (1−1”)及びカウンターウ
ェイト部(1−5)等が、基台(2)の上面に接触しな
いように、圧電素子(30)の基台(2)上の商さは設
定されている。
The tuning fork (1) configured as described above is fixed to a thin plate-shaped vibration detection piezoelectric element (30) as follows. In other words, a tuning fork (
The piezoelectric element ( 30), fix the legs (1-4b) of the L-shaped attachment part (1-4). In this way, the tuning fork (1) has a vibration surface (tuning fork surface) that is approximately parallel to the plate surface of the horizontally arranged base (2), as shown in FIG. Longitudinal direction <X-
It is attached to the piezoelectric element (30) so as to be perpendicular to X>. In this case, both bending parts, (1-2), (1-
2) The gap (g) between the piezoelectric element (30) and both bending parts (1-2) and (1- 2) is set to a value such that it does not come into contact with the The quotient of the piezoelectric element (30) on the base (2) is set so that it does not come into contact with the top surface of the base (2).

音叉(1)の変位検出器(6)、  (6^)の出力は
、第1図に示すAC−DC変換部(16) 、設定素子
(15)、加算器(ADI)、偏差増幅器(18)、乗
算器(12)、制御回路(14)、加算器(AD)及び
増幅器(17)より成る制御装置(35)に入力され、
その出力が、音叉(1)の2(11jの撓み部(1−2
)。
The output of the displacement detector (6), (6^) of the tuning fork (1) is transmitted through the AC-DC converter (16), setting element (15), adder (ADI), and deviation amplifier (18) shown in Figure 1. ), a multiplier (12), a control circuit (14), an adder (AD), and an amplifier (17).
The output is the bending part (1-2 of 2 (11j) of tuning fork (1)
).

(1−2)に取付けた例えば圧電素子部の駆動素子(4
1,(4A)  (一方は図示せず)に人力され、音叉
(1)の振動質量部(1−1) 、  (1=1 )の
振幅を一定に保持する。
For example, the driving element (4) of the piezoelectric element section is attached to (1-2).
1, (4A) (one not shown) is manually applied to keep the amplitude of the vibrating mass part (1-1), (1=1) of the tuning fork (1) constant.

携で、第1図の乗算器(12)は、偏差増幅器(18)
の出力電圧が乗算器(12)の定数VCと等しいとき、
ゲイン1であるとしたが、このゲインは1でなく適当な
大きさをもったものであれば良い。
The multiplier (12) in FIG. 1 is a deviation amplifier (18).
When the output voltage of is equal to the constant VC of the multiplier (12),
Although the gain is assumed to be 1, this gain may be any value other than 1 as long as it has an appropriate magnitude.

さらに、AC−DC変換部(16)は、全波整流回路を
用いた例で説明したが、これも、それに限定する必要は
全くなく、交流電圧VPに対応する直流電圧を作る回路
であれば、如何なるものでも使用可能である。
Furthermore, although the AC-DC converter (16) has been explained using an example using a full-wave rectifier circuit, there is no need to limit it to this at all, and any circuit that generates a DC voltage corresponding to the AC voltage VP can be used. , any one can be used.

また、制御回路(14)の伝達関数は、純粋微分である
必要はなく、適当なフィルターや、常数項があっても、
実用上さしつかえない。
Furthermore, the transfer function of the control circuit (14) does not need to be a pure differential; even if there is an appropriate filter or constant term,
This is not practical.

また、偏差増幅(18)の伝達関数に「比例+積分」特
性を用いた例で説明したが、これに限定する必要はなく
、適当な大きさのゲインをもった「比例」特性のみでも
、実用上はさしつかえない。
In addition, although the explanation has been given using an example in which "proportional + integral" characteristics are used for the transfer function of the deviation amplification (18), there is no need to limit it to this, and even if only "proportional" characteristics with an appropriate size of gain are used, There is no problem in practical terms.

さらには、第1図では一例として乗算器(12)を用い
たが、その代りに、実質的ゲインがVlとVpとの差に
応じて変化するような、いかなる回路を用いても、実用
上、同様の効果をあげうろことは明らかである。
Furthermore, although the multiplier (12) is used as an example in FIG. 1, any circuit whose actual gain changes according to the difference between Vl and Vp may be used instead. , it is clear that similar effects can be achieved.

、〔発明の効果〕 上述した如く、本発明によれば、振動ジャイロの如き力
学的振動系を、温度変化等の外乱に無関係に、その固有
振動数で継続的に振動させ、且つその振幅を當に一定に
保持し得る。
[Effects of the Invention] As described above, according to the present invention, a mechanical vibration system such as a vibrating gyroscope can be continuously vibrated at its natural frequency regardless of disturbances such as temperature changes, and its amplitude can be reduced. It can therefore be held constant.

更に、高価な一定周波数、一定電圧の電源が不要となり
、簡単な構成で安価な全波整流回路、乗算器等の使用に
より、安価で動作確実な振動ジャイロ等を提供するのに
役立つ。
Furthermore, an expensive constant frequency, constant voltage power source is not required, and by using a simple configuration and inexpensive full-wave rectifier circuit, multiplier, etc., it is useful to provide a vibrating gyroscope etc. that is inexpensive and operates reliably.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による振動制御装置の一例の系統的ブロ
ック図、第2図は本発明が通用される力学的振動系の一
例の斜視図、第3図は本発明を適用した他の力学的振動
系の斜視図、第4図は従来の振動ジャイロの一例の斜視
図である。 図に於て、(1)は音叉、f41.  (A)は駆動装
置、(5^)は入力端子、(61,(6A) 、  (
IIB)は変位検出器、(AD)、(ADI)は加算器
、αO)は振動ジャイロ、(12)は乗算器、(14)
は制御回路、(15)は設定素子、(16)はAC−D
C変換部、(17)は増幅器、(1日)は偏差増幅器を
夫々示す。
FIG. 1 is a systematic block diagram of an example of a vibration control device according to the present invention, FIG. 2 is a perspective view of an example of a mechanical vibration system to which the present invention is applicable, and FIG. 3 is a systematic block diagram of an example of a mechanical vibration system to which the present invention is applied. FIG. 4 is a perspective view of an example of a conventional vibrating gyroscope. In the figure, (1) is a tuning fork, f41. (A) is the drive device, (5^) is the input terminal, (61, (6A), (
IIB) is a displacement detector, (AD) and (ADI) are adders, αO) is a vibration gyro, (12) is a multiplier, (14)
is a control circuit, (15) is a setting element, (16) is an AC-D
C conversion section, (17) is an amplifier, and (1st) is a deviation amplifier, respectively.

Claims (1)

【特許請求の範囲】[Claims] 固有振動数の共振点を有する振動系と、該振動系に振動
を生ぜしめるための駆動装置と、上記振動系の振動を検
出するための検出器とから成る振動系に於て、上記検出
器の出力を入力とし上記駆動装置に出力を供給する制御
装置を設け、該制御装置は上記検出器の出力信号の微分
値に対応する信号を発生すると共に、該微分値に対応す
る信号が上記検出器の出力信号に対応する信号と設定電
圧との差に応じて変化させるように成し、上記振動系に
上記固有振動数で、振幅が一定に制御された振動を生ぜ
しめるように成したことを特徴とする振動制御装置。
In a vibration system comprising a vibration system having a resonance point of a natural frequency, a drive device for producing vibration in the vibration system, and a detector for detecting vibration of the vibration system, the detector A control device is provided which takes the output of the detector as an input and supplies an output to the drive device, and the control device generates a signal corresponding to a differential value of the output signal of the detector, and a signal corresponding to the differential value is generated by the detection device. The voltage is changed according to the difference between the signal corresponding to the output signal of the device and the set voltage, and the vibration system is configured to generate vibration with a controlled amplitude at the natural frequency in the vibration system. A vibration control device featuring:
JP59224758A 1984-10-25 1984-10-25 Oscillation controller Pending JPS61102517A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59224758A JPS61102517A (en) 1984-10-25 1984-10-25 Oscillation controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59224758A JPS61102517A (en) 1984-10-25 1984-10-25 Oscillation controller

Publications (1)

Publication Number Publication Date
JPS61102517A true JPS61102517A (en) 1986-05-21

Family

ID=16818766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59224758A Pending JPS61102517A (en) 1984-10-25 1984-10-25 Oscillation controller

Country Status (1)

Country Link
JP (1) JPS61102517A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5844359U (en) * 1981-08-18 1983-03-25 富士重工業株式会社 Automotive door latch device operating device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5844359U (en) * 1981-08-18 1983-03-25 富士重工業株式会社 Automotive door latch device operating device

Similar Documents

Publication Publication Date Title
US7451647B2 (en) MEMS sensor driving device, MEMS sensor driving method, and active sensor using MEMS
US5594169A (en) Optically sensed wire gyroscope apparatus and system, and methods for manufacture and cursor control
JPH01503089A (en) Servo loop control for Coriolis speed sensor dither drive
KR100392261B1 (en) Elliptical vibration device
JPS6293668A (en) Angular speed/acceleration detector
US4694696A (en) Vibration-type gyro apparatus
JPH10221083A (en) Vibration-type gyro apparatus
Pippard The parametrically maintained Foucault pendulum and its perturbations
JPH02129514A (en) Angular velocity sensor
JPS61102517A (en) Oscillation controller
JPS61102518A (en) Oscillation controller
JPH11183178A (en) Microoscillator
JPS5843422A (en) Linear guide for scanner
JPH036445B2 (en)
JPS61102516A (en) Controller
US4773266A (en) Stabilization and oscillation of an acoustically levitated object
JPS6338110A (en) Gyro device
US3538774A (en) Vibrating string reference apparatus
JP2548679B2 (en) Vibrating gyroscope
JP3752701B2 (en) Self-excited vibration type vibration control device
JPH07270165A (en) Vibration gyro
JPS6219713A (en) Gyro device
JP3890673B2 (en) Self-excited vibration type vibration device
JPS61102515A (en) Oscillation gyroscope device
JPS61102513A (en) Gyroscope device