JPS61102515A - Oscillation gyroscope device - Google Patents

Oscillation gyroscope device

Info

Publication number
JPS61102515A
JPS61102515A JP59224756A JP22475684A JPS61102515A JP S61102515 A JPS61102515 A JP S61102515A JP 59224756 A JP59224756 A JP 59224756A JP 22475684 A JP22475684 A JP 22475684A JP S61102515 A JPS61102515 A JP S61102515A
Authority
JP
Japan
Prior art keywords
piezoelectric element
tuning fork
preamplifier
output
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59224756A
Other languages
Japanese (ja)
Other versions
JPH036444B2 (en
Inventor
Takeshi Hojo
武 北條
Masahiko Saito
雅彦 斉藤
Kazuteru Sato
一輝 佐藤
Yoji Okamura
岡村 洋二
Fuyuki Hane
冬希 羽根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Keiki Inc
Original Assignee
Tokyo Keiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Keiki Co Ltd filed Critical Tokyo Keiki Co Ltd
Priority to JP59224756A priority Critical patent/JPS61102515A/en
Priority to US06/790,527 priority patent/US4694696A/en
Publication of JPS61102515A publication Critical patent/JPS61102515A/en
Publication of JPH036444B2 publication Critical patent/JPH036444B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Gyroscopes (AREA)

Abstract

PURPOSE:To improve temperature sensitivity characteristics by setting the input resistance of a preamplifier which receives the output of a piezoelectric element almost to 1/Comega (where C is the electrostatic capacity of the piezoelectric element and omega is the oscillation angular speed of a tuning fork mass part). CONSTITUTION:The angular of deviation of a tuning fork system around an input axis is converted by the piezoelectric element 30 into an electrical signal, which is amplified by a preamplifier 35; and its amplification output and the signal of an AC signal source are inputted to a demodulator. Then, the output of the preamplifier 35 is rectified synchronously to obtain a voltage proportional to an angular speed. Then, the resistance value R of the input resistance 35-1 of the preamplifier 35 is set to R 1/Comega to remove errors due to the electrostatic capacity C of the piezoelectric element 30 and temperature characteristics of a coefficient of electromechanical coupling, improving temperature sensitivity characteristics.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ジャイロ装置、特に振動している質量部を用
いたジャイロ装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a gyro device, and particularly to a gyro device using a vibrating mass part.

〔従来の技術〕[Conventional technology]

本願出願人が先に提案した特願昭58−45234号の
ジャイロ装置の概略を、第3図及び第4図を参照して説
明する。このジャイロ装置は、その斜視図である第3図
に示す如く、平板状の基台(2)上に、その上面と略々
垂直となる如く、短冊状バイモルフから成る入力角速度
Ωを検出するための薄板状の検出用圧電素子(30)を
取付ける。尚、この際、必要に応じて、取付部(30A
)を用いてもよい。
The outline of the gyro device of Japanese Patent Application No. 58-45234, which was previously proposed by the applicant of the present application, will be explained with reference to FIGS. 3 and 4. As shown in FIG. 3, which is a perspective view of the gyro device, this gyro device consists of a strip-shaped bimorph mounted on a flat base (2), approximately perpendicular to its top surface, in order to detect the input angular velocity Ω. A thin plate-shaped detection piezoelectric element (30) is attached. In addition, at this time, if necessary, attach the mounting part (30A
) may be used.

音叉(1)を、一対の大なる質量を有する振動質量m;
(1−1) 、  (1−1)と、これ等の夫々に連結
した撓み部(1−2) 、  (1−2)と、両撓み部
(1−2)。
A tuning fork (1) is a vibrating mass m having a pair of large masses;
(1-1), (1-1), flexure parts (1-2), (1-2) connected to these, and both flexure parts (1-2).

(1−2)の各遊端を連結する基部(1−3)とより構
成する。ここで基部(1−3)の上面に、L字状取付部
(1−4>を、その一方の脚(1−4a)が略々垂直上
方に伸びる如く固定し、他方の脚(1−4b)が両撓み
部(1−2) 、  (1−2)と略々平行に伸びる如
(なすと共に、基部(1−3)の下面にカウンターウェ
イト部(1−5)を取り付ける。
(1-2) and a base (1-3) connecting each free end. Here, the L-shaped attachment part (1-4> is fixed to the upper surface of the base part (1-3) so that one leg (1-4a) thereof extends approximately vertically upward, and the other leg (1-4a) is fixed to the upper surface of the base part (1-3). 4b) extends substantially parallel to both the flexible portions (1-2) and (1-2), and a counterweight portion (1-5) is attached to the lower surface of the base portion (1-3).

上述の如く構成した音叉(1)を、次の如く、薄板状の
振動検出用圧電素子(30)に固定する。即ち、音叉(
1)の両撓み部(1−2) 、  (1−2)間の隙間
(ff+に、薄板状の圧電素子(30)の幅方向(B)
が延在する如く、圧電素子(30)の上端に、L字状取
付部(1−4)の脚(1−4b)を固定する。かくすれ
ば、第3図の側面図である第4図に示す如く、音叉(1
)は、その振動面(音叉面)が、水平に配置された基台
(2)の板面と略々平行、即ち圧電素子(30)の長手
方向の中心軸(X−X ’)と直交する如く、圧電素子
(30)に取付けられる。尚、この場合、両撓み部(1
−2) 、  (1−2)間の隙間(e)は、圧電素子
(30)が振動し、音叉(1)の振動面が傾斜しても、
圧電素子(30)と両撓み部(1−2) 、  (1−
2)が接触しないような寸法及び形状に設定されている
と共に、音叉(1)の振動質量部(1−1)、  (1
−1)及びカウンターウェイト部(1−5)等が、基台
(2)の上面に接触しないように、圧電素子(30)の
基台(2)の上の高さは設定されている。
The tuning fork (1) configured as described above is fixed to a thin plate-shaped vibration detection piezoelectric element (30) as follows. In other words, a tuning fork (
In the width direction (B) of the thin plate-like piezoelectric element (30), there is a gap (ff+) between both the flexible parts (1-2) and (1-2) of 1).
The legs (1-4b) of the L-shaped attachment part (1-4) are fixed to the upper end of the piezoelectric element (30) so that the legs extend. In this way, as shown in FIG. 4, which is a side view of FIG. 3, the tuning fork (1
), its vibration surface (tuning fork surface) is approximately parallel to the plate surface of the horizontally arranged base (2), that is, perpendicular to the longitudinal central axis (X-X') of the piezoelectric element (30). It is attached to the piezoelectric element (30) as shown in FIG. In this case, both bending parts (1
-2), the gap (e) between (1-2) is such that even if the piezoelectric element (30) vibrates and the vibration surface of the tuning fork (1) is tilted,
Piezoelectric element (30) and both flexible parts (1-2), (1-
The dimensions and shape are set so that the vibration mass parts (1-1) and (1) of the tuning fork (1) do not come into contact with each other.
The height of the piezoelectric element (30) above the base (2) is set so that the piezoelectric element (30) and the counterweight part (1-5) do not come into contact with the upper surface of the base (2).

尚、第3図に於て、(4)、+41は、両撓み部(1−
2)。
In addition, in Fig. 3, (4) and +41 are both flexible parts (1-
2).

(1−2)に夫々取付けた例えば駆動用圧電素子で、こ
れ等は、例えば交流信号源(5)よりの信号により駆動
され、音叉(1)の振動質量部(1−1) 、  (1
−1)に、速度Vなる交番振動を励起させる。
For example, driving piezoelectric elements are attached to the vibrating mass parts (1-1) and (1) of the tuning fork (1), and are driven by a signal from, for example, an AC signal source (5).
-1), excite an alternating vibration with a velocity V.

この状態で第3図に於て(Z−Z )で示す音叉軸のま
わりにΩで示す角速度が入力されると、2個の振動質量
部(1−1) 、  (1−1)には、速度Vと再速度
Ωの積に比例したコリオリの力Fcが発生し、音叉(1
)を上記音叉軸(Z−Z)のまわりに音叉(1)と同一
の振動数で交番振動させる。この交番振動の変角は、バ
イモルフ型の検出用圧電素子(30)によって、電気信
号に変換され、電圧出力となる。
In this state, when an angular velocity indicated by Ω is input around the tuning fork axis indicated by (Z-Z) in Fig. 3, the two vibrating mass parts (1-1) and (1-1) , a Coriolis force Fc proportional to the product of velocity V and revelocity Ω is generated, and the tuning fork (1
) is alternately vibrated around the tuning fork axis (Z-Z) at the same frequency as the tuning fork (1). The angle of change of this alternating vibration is converted into an electrical signal by a bimorph-type detection piezoelectric element (30), resulting in a voltage output.

この場合、上記検出用圧電素子(30)の出力電圧を、
基準電圧として交流信号源(5)よりの信号と共に、デ
モシュレータ(7)に入力し、同期整流することにより
、(X−X)軸と直交する音叉(1)の音叉軸(Z−Z
)まわりに入力される角速度Ωに比例した電圧が、この
デモシュレータ(7)より出力され、ジャイロ装置が構
成される。
In this case, the output voltage of the detection piezoelectric element (30) is
The tuning fork axis (Z-Z
) A voltage proportional to the angular velocity Ω input around the demodulator (7) is outputted from this demosulator (7), thereby forming a gyro device.

第2図は第3及び第4図に示すジャイロ装置のブロック
図である。音叉(1)の両振動質量部(1−1)の質量
、該振動質量部(1−1)の振動振幅及び振動周波数等
の積を比例定数に丁で表わすものとする。音叉軸(Z−
Z )まわりの角速度Ωと比例定数KTとを乗じたコリ
オリの力FCによる交番トルクΩKtsinωtは、音
叉(1)全体を音叉軸(Z−Z)のまわりに交番角振動
させる。同図(31)は音叉(1)を含む<2−2軸)
まわりの機械系で、ブロック内はその伝達関数である。
FIG. 2 is a block diagram of the gyro device shown in FIGS. 3 and 4. FIG. The product of the mass of both vibrating mass parts (1-1) of the tuning fork (1), the vibration amplitude, the vibration frequency, etc. of the vibrating mass part (1-1) shall be expressed as a proportionality constant. Tuning fork shaft (Z-
The alternating torque ΩKtsinωt due to the Coriolis force FC multiplied by the angular velocity Ω around Z) and the proportionality constant KT causes the entire tuning fork (1) to vibrate in alternating angles around the tuning fork axis (Z-Z). The figure (31) includes the tuning fork (1) <2-2 axis)
In the surrounding mechanical system, what is inside the block is its transfer function.

交番角振動の偏角θは圧電素子(30)によって電気信
号に変換され、プリアンプ(35)において交流増幅し
た後、デモシュレータ(7)において、交流信号源(5
)からの信号と同期整流され、フィルタ(36)を通し
て角速度ωに比例した電圧Yが出力できることになる。
The deflection angle θ of the alternating angular vibration is converted into an electric signal by a piezoelectric element (30), and after AC amplification in a preamplifier (35), an AC signal source (5
), and a voltage Y proportional to the angular velocity ω can be outputted through the filter (36).

尚、Kvは圧電素子(30)の偏角−電圧変換定数、K
1はプリアンプ(35)のゲインである。ブロック(3
1)内の伝達関数内に於ける、■は音叉軸(Z−Z)ま
わりの音叉系の慣性能率、C1は音叉系の等酒精性抵抗
係数、Kは圧電素子(30)の音叉軸(Z−Z)まわり
のトルクバネ定数、又、Sはラプラス演算子を夫々示す
In addition, Kv is the deflection angle-voltage conversion constant of the piezoelectric element (30), K
1 is the gain of the preamplifier (35). Block (3
In the transfer function in 1), ■ is the inertia coefficient of the tuning fork system around the tuning fork axis (Z-Z), C1 is the isostatic resistance coefficient of the tuning fork system, and K is the tuning fork axis ( The torque spring constant around Z-Z) and S represent the Laplace operator, respectively.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、このような従来のジャイロ装置にあって
は、音叉(1)の振動振幅を圧電素子(30)によって
検出する構造となっていたため、周囲温度等が変化する
と、上記圧電素子(30)の温度感度が大きいためその
出力電圧が変化し、結果として温度感度の大きな(悪い
)ジャイロ装置となるという問題点があった。
However, in such conventional gyro devices, the vibration amplitude of the tuning fork (1) is detected by the piezoelectric element (30), so when the ambient temperature etc. changes, the piezoelectric element (30) changes. Because of the high temperature sensitivity, the output voltage changes, resulting in a gyro device with high (poor) temperature sensitivity.

〔問題点を解決するための手段〕 本発明は、振動する質量部、振動変位を検出するための
圧電素子、入力抵抗Rを有し上記圧電素子の出力が人力
されるプリアンプとを有するジャ(但し、Cは上記圧電
素子の静電容量、ωは質量部の振動角速度)で表わされ
る値に選定したことを特徴とする振動ジャイロ装置を提
供したものである。
[Means for Solving the Problems] The present invention provides a jar ( However, the present invention provides a vibrating gyro device characterized in that C is the capacitance of the piezoelectric element, and ω is the vibration angular velocity of the mass part.

〔作用〕[Effect]

音叉系の入力軸(Z−Z )まわりの偏角θを圧電素子
(30)を用いて電気信号に変換し、その電気信号をプ
リアンプ(35)で増幅し、その出力と交流信号源(5
)よりの信号とをデモシュレータ(7)に入力し、プリ
アンプ(35)の出力を同期整流して角速度Ωに比例し
た電圧Yを得る場合、プリアンプ定しく但し、Cは圧電
素子(30)の静電容量、ωは音叉系の質量部の振動角
速度)ジャイロ装置の温度感度特性を向上させる。
The deflection angle θ around the input axis (Z-Z) of the tuning fork system is converted into an electrical signal using a piezoelectric element (30), the electrical signal is amplified by a preamplifier (35), and its output is connected to an AC signal source (5).
) is input to the demosimulator (7) and the output of the preamplifier (35) is synchronously rectified to obtain a voltage Y proportional to the angular velocity Ω. The capacitance (ω is the vibration angular velocity of the mass part of the tuning fork system) improves the temperature sensitivity characteristics of the gyro device.

〔実施例〕〔Example〕

以下、本発明を図面に基づいて説明する。第1図は、本
発明の一実施例の要部を示す結線図である。
Hereinafter, the present invention will be explained based on the drawings. FIG. 1 is a wiring diagram showing essential parts of an embodiment of the present invention.

即ち、第1図は、第2図のプリアンプ(35)と圧電素
子(30)との部分を示す結線図である。尚、本発明の
その他の部分は、第2図の例と略々同一なので、それ等
の図示及び説明を省略する。
That is, FIG. 1 is a wiring diagram showing the portion between the preamplifier (35) and the piezoelectric element (30) in FIG. 2. Note that other parts of the present invention are substantially the same as the example shown in FIG. 2, so illustration and description thereof will be omitted.

圧電素子(30)は、本発明のジャイロ装置に用いた場
合には、自己共振周波数に比して十分低い周波数におい
て動作しているため、偏角θに比例した電圧V6 =K
vθの電源(3O−1)と静電容量Cとで近似的に構成
されている。一方、プリアンプ(35)は入力抵抗Rの
抵抗器(35−1) 、演算増幅器(35−2) 、抵
抗R1,R2のフィードバック抵抗器(35−3) 、
  (35−4)より構成される。演算増幅器(35−
2)の入力電圧Vtと、圧電素子(30)の出力電圧V
θとの間には、次式(1)の関係がある。
When the piezoelectric element (30) is used in the gyro device of the present invention, it operates at a frequency sufficiently lower than the self-resonance frequency, so that a voltage V6 = K proportional to the declination angle θ is generated.
It is approximately constituted by a power supply (3O-1) of vθ and a capacitance C. On the other hand, the preamplifier (35) includes a resistor (35-1) with input resistance R, an operational amplifier (35-2), a feedback resistor (35-3) with resistors R1 and R2,
(35-4). Operational amplifier (35-
2) input voltage Vt and output voltage V of the piezoelectric element (30)
There is a relationship between θ and θ as shown in the following equation (1).

Vi =RC3/ (RC3+1)Ve  ”fl)こ
こで Vs =Kvθsin ωt      ・・”(21
(但しθ;振動振幅、ω:音叉の角周波数)なる(2)
式を(1)式に代入すれば、次式(3)が得られる。
Vi = RC3/ (RC3+1)Ve ``fl) Here, Vs = Kvθsin ωt...'' (21
(where θ: vibration amplitude, ω: angular frequency of tuning fork) (2)
By substituting the equation into equation (1), the following equation (3) is obtained.

・・・・(3) ここで、ψはR,C等で決まる位相角である。...(3) Here, ψ is a phase angle determined by R, C, etc.

入力電圧Viの振幅と振動振幅の比(ゲイン)をSとす
れば、 一方、圧電素子(30)のKvは次式(5)で表わされ
る。
If the ratio (gain) between the amplitude of the input voltage Vi and the vibration amplitude is S, then Kv of the piezoelectric element (30) is expressed by the following equation (5).

ハ 但し、Kは圧電素子(30)の寸法で決まる定数、kは
圧電素子(30)の電気機械結合係数を表わす。
(c) However, K is a constant determined by the dimensions of the piezoelectric element (30), and k represents the electromechanical coupling coefficient of the piezoelectric element (30).

(5)式を(4)式に代入すれと次式(6)が得られる
By substituting equation (5) into equation (4), the following equation (6) is obtained.

今、(6)式に於て、静電容量C1電気機械結合係数k
が、他の定数に比して温度感度が大なるため、これ等に
ついてのゲインSの温度特性式をつくれば、次式となる
Now, in equation (6), capacitance C1 electromechanical coupling coefficient k
However, since the temperature sensitivity is greater than other constants, if a temperature characteristic equation for the gain S is created for these constants, the following equation is obtained.

ここで、 を表わすものとすれば、(7)式は次式(8)となる。here, If it represents the following equation (7), then the equation (7) becomes the following equation (8).

(8)式をゼロと置いて、温度感度がない条件を求める
と、その時の入力抵抗Rは、次式(9)の如く表わせる
If we set the equation (8) to zero and find a condition with no temperature sensitivity, the input resistance R at that time can be expressed as in the following equation (9).

一般に、BAAなる故、(9)式は近似的にRζl/C
ω          ・・・・aoとなる。
In general, since it is BAA, equation (9) is approximately Rζl/C
ω ... becomes ao.

〔発明の効果〕〔Effect of the invention〕

圧電素子(30)の静電容量Cの温度特性Bは、一般に
、10″3/℃のオーダーであり、温度変化を100℃
と仮定すれば、10%以上のゲイン変動となり、ジャイ
ロ装置としての性能に大きな制約をうける。
The temperature characteristic B of the capacitance C of the piezoelectric element (30) is generally on the order of 10"3/°C, and the temperature change is 100°C.
If this is assumed, the gain will fluctuate by 10% or more, and the performance of the gyro device will be severely restricted.

本発明によれば、圧電素子(30)の出力を受けるプリ
アンプ(35)の入力抵抗Rを、(9)式又は00式で
示す値に選定することにより、圧電素子(30)の静電
容量Cや電気機械結合係数にの温度特性に起因する誤差
の全くない高精度のジャイロ装置を得ることが出来る。
According to the present invention, the capacitance of the piezoelectric element (30) is A highly accurate gyro device having no errors caused by temperature characteristics in C or electromechanical coupling coefficient can be obtained.

 − 面、本発明の説明に当っては、第3図に示した構造のジ
ャイロ装置に通用した場合を示したが、一般の音叉を用
いる構造は熱論のこと、棒や坂の振動を利用する構造の
ものでも良く、要は圧電素子(30)を振動のピックア
ップとして用いる所で温度特悸が問題となるケースには
全て適用可能である。
- In explaining the present invention, we have shown a case where it is applicable to a gyro device with the structure shown in Figure 3, but a general structure using a tuning fork is based on thermal theory and uses vibrations of a rod or slope. It may be of any structure, and in short, it can be applied to all cases where temperature fluctuations are a problem when the piezoelectric element (30) is used as a vibration pickup.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の主要部の結線図、第2図は従来のジャ
イロ装置のブロック図、第3図は先願のジャイロ装置の
斜視図、第4図はその側面図である。 図に於て、(11は音叉、(1−1)はその振動質量部
、(5)は交流信号源、(7)はデモシュレータ、(3
0)は圧電素子、(C)は静電容量、(35)はプリア
ンプ、(35−1)はその入力抵抗器である。
FIG. 1 is a wiring diagram of the main parts of the present invention, FIG. 2 is a block diagram of a conventional gyro device, FIG. 3 is a perspective view of the gyro device of the prior application, and FIG. 4 is a side view thereof. In the figure, (11 is a tuning fork, (1-1) is its vibrating mass part, (5) is an AC signal source, (7) is a demosulator, and (3) is a tuning fork.
0) is a piezoelectric element, (C) is a capacitance, (35) is a preamplifier, and (35-1) is its input resistor.

Claims (1)

【特許請求の範囲】[Claims] 振動する質量部、振動変位を検出するための圧電素子、
入力抵抗Rを有し上記圧電素子の出力が入力されるプリ
アンプとを有するジャイロ装置において、上記入力抵抗
Rを略々R≒(1/Cω)(但し、Cは上記圧電素子の
静電容量、ωは質量部の振動角速度)で表わされる値に
選定したことを特徴とする振動ジャイロ装置。
A vibrating mass part, a piezoelectric element for detecting vibration displacement,
In a gyro device having an input resistance R and a preamplifier to which the output of the piezoelectric element is input, the input resistance R is approximately R≒(1/Cω) (where C is the capacitance of the piezoelectric element, 1. A vibrating gyro device characterized in that ω is a value expressed by the vibration angular velocity of a mass part.
JP59224756A 1984-10-25 1984-10-25 Oscillation gyroscope device Granted JPS61102515A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP59224756A JPS61102515A (en) 1984-10-25 1984-10-25 Oscillation gyroscope device
US06/790,527 US4694696A (en) 1984-10-25 1985-10-23 Vibration-type gyro apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59224756A JPS61102515A (en) 1984-10-25 1984-10-25 Oscillation gyroscope device

Publications (2)

Publication Number Publication Date
JPS61102515A true JPS61102515A (en) 1986-05-21
JPH036444B2 JPH036444B2 (en) 1991-01-30

Family

ID=16818741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59224756A Granted JPS61102515A (en) 1984-10-25 1984-10-25 Oscillation gyroscope device

Country Status (1)

Country Link
JP (1) JPS61102515A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06153202A (en) * 1992-10-29 1994-05-31 F M T:Kk Abnormality monitoring device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06153202A (en) * 1992-10-29 1994-05-31 F M T:Kk Abnormality monitoring device

Also Published As

Publication number Publication date
JPH036444B2 (en) 1991-01-30

Similar Documents

Publication Publication Date Title
US3520195A (en) Solid state angular velocity sensing device
US6598476B2 (en) Angular velocity sensor
GB2158579A (en) Angular rate sensor system
US4694696A (en) Vibration-type gyro apparatus
JPH10221083A (en) Vibration-type gyro apparatus
US6308568B1 (en) Angular velocity sensor
JPH0752105B2 (en) Angular velocity sensor
JP2000205861A (en) Vibration gyro
JPS61102515A (en) Oscillation gyroscope device
JP3218702B2 (en) Vibrating gyro
US4653325A (en) Gyro apparatus
JPS6338110A (en) Gyro device
JPH04297874A (en) Angular velocity sensor driver
JPH08233582A (en) Vibration gyro
JPH036445B2 (en)
JPS6219714A (en) Gyro device
JPH06249874A (en) Acceleration sensor
JP2001241952A (en) Angular velocity sensor
JPS6219713A (en) Gyro device
JP4345130B2 (en) Vibrating gyro
JP3958741B2 (en) Piezoelectric vibrator gyro vibrator
JPH09113279A (en) Vibrational gyro
JP2583117B2 (en) Gyro device
JPH04372814A (en) Angular velocity sensor
JPS61102518A (en) Oscillation controller

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term