JPS61101913A - Manufacture of nbti very fine multicore superconducting wire - Google Patents

Manufacture of nbti very fine multicore superconducting wire

Info

Publication number
JPS61101913A
JPS61101913A JP59223277A JP22327784A JPS61101913A JP S61101913 A JPS61101913 A JP S61101913A JP 59223277 A JP59223277 A JP 59223277A JP 22327784 A JP22327784 A JP 22327784A JP S61101913 A JPS61101913 A JP S61101913A
Authority
JP
Japan
Prior art keywords
nbti
superconducting wire
diameter
less
multicore superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59223277A
Other languages
Japanese (ja)
Inventor
一也 大松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP59223277A priority Critical patent/JPS61101913A/en
Publication of JPS61101913A publication Critical patent/JPS61101913A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Metal Extraction Processes (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〈産業子の利用分野〉 この発明は陽T、極細多芯超電導線の製造法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION <Field of Application of Industrial Wire> The present invention relates to a method for producing a positive T, ultrafine multicore superconducting wire.

〈従来の技術〉 従来、隆T1合金素線を用いた極細多芯超電導線の製造
法としては、熱間押出法や静水圧押出法などがよく知ら
れている。
<Prior Art> Conventionally, hot extrusion methods, hydrostatic extrusion methods, and the like are well known as methods for producing ultrafine multifilamentary superconducting wires using ridged T1 alloy wires.

また、近年交流用超電導導体に用いる索線としてフィラ
メント径が数ミクロンの線材の開発が行なわれている。
Furthermore, in recent years, wire rods with filament diameters of several microns have been developed as cable wires for use in AC superconducting conductors.

〈発明が解決しようとする問題点〕、・しかしながら、
これらの方法は何れし下記のような問題点を有している
。即ち、熱間押出法は600℃前後に昇温してから押出
すために、界温中や加工中の発熱により14TLと銅の
界面に金属間化合物が形成され、それが原因となってフ
ィラメントの均一加工を妨げるため、本質的に数ミクロ
ンの細フィラメント化は不可能である。
〈Problem that the invention seeks to solve〕・However,
All of these methods have the following problems. That is, in the hot extrusion method, the temperature is raised to around 600°C before extrusion, so intermetallic compounds are formed at the interface between 14TL and copper due to the heat generated at ambient temperature or during processing, which causes the filament to deteriorate. It is essentially impossible to make filaments as thin as several microns because this prevents uniform processing.

また静水圧押出法においては、伸出温度は室温であるが
、加工発熱により200℃から高い場合で400℃前後
となるため、α−TLの4i出が起こり、加工性が著し
く悪化するのである。また結晶粒は押出前と比較してそ
の形状が変わり、例えば押出時の流れの場所的な不均一
、あるいは一つの結晶粒の変形が起こるため、押出後の
組織は押出前と比較して不均質なものとなり、数ミクロ
ンもの細い加工に耐えることは不可能である。
In addition, in the isostatic extrusion method, the elongation temperature is room temperature, but due to the heat generated during processing, the temperature ranges from 200°C to around 400°C, which causes 4i extrusion of α-TL and significantly deteriorates processability. . In addition, the shape of the crystal grains changes compared to before extrusion, for example, the flow during extrusion becomes uneven locally, or one crystal grain deforms, so the structure after extrusion becomes uneven compared to before extrusion. It becomes homogeneous and cannot withstand processing as thin as several microns.

く問題点を解決するための手段フ・ この発明は上記した従来のNbTi極細多芯超電導線の
製造法における問題点を解決すべく検討の結果なされた
ものであり、冷間嵌合法における隨TLの調質の特徴に
着目して細フィラメント化に適する条件を見出したもの
である。
Means for Solving the Problems This invention was made as a result of studies to solve the problems in the above-mentioned conventional method for manufacturing NbTi ultrafine multicore superconducting wires. By focusing on the characteristics of heat treatment, conditions suitable for forming fine filaments were found.

即ち、この発明はNb Ti結晶粒の大きさが20μm
以下で、かつその結晶粒の80%以上が長さ方向に11
0面を有する隆T1合金棒を、銅または銅合金で被覆し
たのち、冷間で嵌合、伸線して縮径することにより、1
μm以下の14Tjフイラメント径を有でる隆TL極細
多芯超電導線の製造法に至ったものである。
That is, in this invention, the size of Nb Ti crystal grains is 20 μm.
or less, and 80% or more of the grains are 11 in the length direction
After coating a T1 alloy rod with a 0-sided surface with copper or a copper alloy, the rod is cold-fitted and wire-drawn to reduce the diameter.
This has led to a method for producing a TL ultrafine multicore superconducting wire having a 14Tj filament diameter of 14 Tj or less.

〈作  用〉 この発明に使用する隔TLは真空アーク溶解あるいは電
子ビーム溶解後の熱間鍛造によって作られたものである
<Function> The gap TL used in this invention is made by vacuum arc melting or hot forging after electron beam melting.

この14Tj合金棒の径は300 mmφから200 
mmφでこれを数lT1mφまで縮径する過程において
、熱処理、減面加工などの処理をF2数回繰返すことに
より結晶粒が20μm以下で、その110面か80%以
1.長さ方向に揃ったNbTi合金棒を得ることができ
るのである。
The diameter of this 14Tj alloy rod is from 300 mmφ to 200 mmφ
In the process of reducing the diameter to several lT1 mφ, heat treatment, surface reduction processing, etc. are repeated several times to reduce the crystal grain size to 20 μm or less and 80% or more of its 110 faces. This makes it possible to obtain NbTi alloy rods that are aligned in the length direction.

その後、無酸素銅やQ、NLなどの銅または銅合金を被
覆する。次いで時効サイズの線径まで冷間で嵌合、伸線
して縮径を行なうのであるが、この過程を冷間で行なう
ことによって、粒径サイズが均一に減少し、また110
面の方向も変らないので1111工性に富み、1μm以
下の縮径が可能となるのである。
Thereafter, it is coated with copper or copper alloy such as oxygen-free copper, Q, and NL. Next, the diameter is reduced by cold fitting and drawing to the wire diameter of the aging size. By performing this process cold, the grain size decreases uniformly, and
Since the direction of the surface does not change, it is highly workable, and diameter reduction of 1 μm or less is possible.

このようにこの発明は隨TL結晶粒の大きさが20μm
以下で、その80%以上が長さ方向に110面を有する
NbTj合金棒を銅または銅合金で被覆したのち、冷間
で嵌合、伸線して縮径させることを特徴とするNb T
L極細多芯超電導線の製法である。
In this way, in this invention, the size of the TL crystal grains is 20 μm.
In the following, a NbTj alloy rod, of which 80% or more has 110 planes in the longitudinal direction, is coated with copper or a copper alloy, and then cold fitted and wire drawn to reduce the diameter.
This is a method for manufacturing L ultrafine multicore superconducting wire.

そしてこの方法を用いることによって、■ l”b T
iの結晶粒が20μm以下、長さ方向に 110面に揃
っているため、フィラメント径171 m以下まで均一
に加工できること。
And by using this method, ■ l”b T
Since the crystal grains of i are 20 μm or less and aligned in 110 planes in the length direction, it is possible to uniformly process the filament to a diameter of 171 m or less.

■ さらにフィラメント径が1μm以下であるので交流
10失が少なく、フィラメント断線も少ないなどの超電
導特性にすぐれていること。
■ Furthermore, since the filament diameter is 1 μm or less, it has excellent superconducting properties such as less AC power loss and less filament breakage.

■ 加工性にすぐれているため、材料の不均質性による
断線がないので長尺化が可能であること。
■ It has excellent workability, so it can be made into long lengths without breakage due to non-uniformity of the material.

■ r TL棒の調質をあらかじめ調整しているので特
性が後の工程に依存することがないため製造工程が容易
であること。
■ r Since the tempering of the TL rod is adjusted in advance, its properties do not depend on subsequent processes, making the manufacturing process easy.

などの利点を有しているのである。It has the following advantages.

なお、この発明の方法で得られたff1Ti極細多芯超
電尋線を利用できる用途としては、 m  N MR−CT用超超電導 線2)交流用超電31jl(商用周波数で用いられるも
の) (3)超電導発電機用超電導線材 (4)パルス磁界発生用超電導線 などがある。
The applications in which the ff1Ti ultrafine multicore superconducting wire obtained by the method of the present invention can be used include: m N superconducting wire for MR-CT 2) AC superconducting wire 31jl (used at commercial frequencies) ( 3) Superconducting wire for superconducting generators (4) Superconducting wire for generating pulsed magnetic fields, etc.

〈実 施 例〉 以下、実施例によりこの発明を説明する。<Example> The present invention will be explained below with reference to Examples.

直径10mmφの状態で下記第1表に示す粒径と配向性
の(A>(B)の2種のNb Ti棒を冷間嵌合により
縮径して隆T、超電導線を11また。
Two types of Nb Ti rods with a diameter of 10 mmφ and grain sizes and orientations (A>(B) shown in Table 1 below were reduced in diameter by cold fitting to form a ridge T and 11 superconducting wires.

第  1  表 得られた超電導線についてフィラメント断線率、臨界電
流密度などを調べたところ第1図および第2表に示す結
果が得られた。なお第2表は14Tjフイラメント径゛
が1μmの場合を示した。
Table 1 When the filament breakage rate, critical current density, etc. of the obtained superconducting wire were investigated, the results shown in FIG. 1 and Table 2 were obtained. Note that Table 2 shows the case where the 14Tj filament diameter was 1 μm.

第  2  表 上記の如く、本発明の方法による精品粒径が20μm以
下であって、配向性のあるAの超電導線tiLフィラメ
ント断線が少いうえに臨界電流密1αの劣化も少なく、
すぐれていた。
Table 2 As shown above, the refined product obtained by the method of the present invention has a grain size of 20 μm or less, has less oriented A superconducting wire tiL filament breakage, and has less deterioration in critical current density 1α.
It was excellent.

【図面の簡単な説明】[Brief explanation of drawings]

図面はNbT*極細多芯超電導線のフィラメント径とフ
ィラメント断線率の関係を示すグラフである。 特許出願人  住友電気工業株式会社 代  理  人   弁理士  和  1)  昭−λ
うAシト径(hω九)
The drawing is a graph showing the relationship between the filament diameter and filament breakage rate of NbT* ultrafine multicore superconducting wire. Patent applicant Sumitomo Electric Industries Co., Ltd. Agent Patent attorney Kazu 1) Sho-λ
A seat diameter (hω9)

Claims (2)

【特許請求の範囲】[Claims] (1)NbTi結晶粒径の大きさが20μm以下で、か
つ該結晶粒の80%以上が長さ方向に110面を有する
NbTi合金棒を、銅または銅合金で被覆したのち、冷
間で嵌合、伸線して縮径することを特徴とするNbTi
極細多芯超電導線の製造法。
(1) A NbTi alloy rod with a NbTi crystal grain size of 20 μm or less and 80% or more of the crystal grains having 110 planes in the length direction is coated with copper or copper alloy and then cold fitted. NbTi characterized by wire drawing to reduce the diameter when
Manufacturing method of ultrafine multicore superconducting wire.
(2)NbTi合金棒を構成するNbTiフィラメント
はその径が1μm以下であることを特徴とする特許請求
の範囲第1項記載のNbTi極細多芯超電導線の製造法
(2) The method for producing an NbTi ultrafine multicore superconducting wire according to claim 1, wherein the NbTi filaments constituting the NbTi alloy rod have a diameter of 1 μm or less.
JP59223277A 1984-10-23 1984-10-23 Manufacture of nbti very fine multicore superconducting wire Pending JPS61101913A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59223277A JPS61101913A (en) 1984-10-23 1984-10-23 Manufacture of nbti very fine multicore superconducting wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59223277A JPS61101913A (en) 1984-10-23 1984-10-23 Manufacture of nbti very fine multicore superconducting wire

Publications (1)

Publication Number Publication Date
JPS61101913A true JPS61101913A (en) 1986-05-20

Family

ID=16795603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59223277A Pending JPS61101913A (en) 1984-10-23 1984-10-23 Manufacture of nbti very fine multicore superconducting wire

Country Status (1)

Country Link
JP (1) JPS61101913A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014035860A (en) * 2012-08-08 2014-02-24 Kobe Steel Ltd NbTi-BASED SUPERCONDUCTING WIRE
US9299514B2 (en) 2009-07-15 2016-03-29 Huf Hulsbeck & Furst Gmbh & Co. Kg Electrical switch
JP2019113544A (en) * 2017-12-21 2019-07-11 ニヴァロックス−ファー ソシエテ アノニム Balance spring for timepiece movements and method for manufacturing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5755010A (en) * 1980-08-04 1982-04-01 Airco Inc Multifilament superconductor and method of producing same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5755010A (en) * 1980-08-04 1982-04-01 Airco Inc Multifilament superconductor and method of producing same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9299514B2 (en) 2009-07-15 2016-03-29 Huf Hulsbeck & Furst Gmbh & Co. Kg Electrical switch
JP2014035860A (en) * 2012-08-08 2014-02-24 Kobe Steel Ltd NbTi-BASED SUPERCONDUCTING WIRE
JP2019113544A (en) * 2017-12-21 2019-07-11 ニヴァロックス−ファー ソシエテ アノニム Balance spring for timepiece movements and method for manufacturing the same

Similar Documents

Publication Publication Date Title
US3778894A (en) PROCESS FOR MAKING A V{11 Ga SUPERCONDUCTIVE COMPOSITE STRUCTURE
JPS61101913A (en) Manufacture of nbti very fine multicore superconducting wire
JPS63216212A (en) Nb3sn-based superconductive wire and production of it
JPS62110207A (en) Niobium titunite fine multi-core superconductor
JP3212596B2 (en) Cu or Al stabilized superconducting wire and method for producing the same
JPS60170111A (en) Copper coated nbti superconductive lead
JP3489313B2 (en) Method for producing Nb3Al-based superconducting wire
JPS63102115A (en) Manufacture of superconductive alloy wire material
JP2931020B2 (en) Cu or Al stabilized superconducting wire and method for producing the same
JPH063690B2 (en) Copper-coated ΝbTi superconducting wire
JPH04267010A (en) Manufacture of copper-stabilized superconducting wire
JPH01140521A (en) Manufacture of nb3al compound superconductive wire rod
JPH0799649B2 (en) Nb-Ti alloy superconducting wire
JPS6251112A (en) Al stabilized nb-ti superconductor
JPH063693B2 (en) NbTi Extra-fine multi-core superconducting wire manufacturing method
JPH02192618A (en) Manufacture of superconductive alloy wire rod
JPH0664942B2 (en) Copper clad NbTi superconducting wire with NbTi barrier
JPH0642335B2 (en) NbTi Extra-fine multi-core superconducting wire manufacturing method
JPS60250512A (en) Method of producing nb3sn composite superconductive wire
JPS60170112A (en) Copper coated nbti superconductive lead and method of producing same
JPS5838405A (en) Superconductive composite wire
JPS6353814A (en) Manufacture of superconductive alloy wire
JPS6147019A (en) Nbti extrafine multicore superconductive wire
JPS61201765A (en) Manufacture of copper-stabilized superconducting wire
JPS6362111A (en) Manufacture of nbti based compound superconductive alloy wire