JPH04267010A - Manufacture of copper-stabilized superconducting wire - Google Patents

Manufacture of copper-stabilized superconducting wire

Info

Publication number
JPH04267010A
JPH04267010A JP4894891A JP4894891A JPH04267010A JP H04267010 A JPH04267010 A JP H04267010A JP 4894891 A JP4894891 A JP 4894891A JP 4894891 A JP4894891 A JP 4894891A JP H04267010 A JPH04267010 A JP H04267010A
Authority
JP
Japan
Prior art keywords
copper
wire
superconducting wire
filament
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4894891A
Other languages
Japanese (ja)
Inventor
Kinya Ogawa
欽也 小川
Takeshi Endo
壮 遠藤
Kiyouta Suzai
京太 須齋
Minoru Ishikawa
実 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP4894891A priority Critical patent/JPH04267010A/en
Publication of JPH04267010A publication Critical patent/JPH04267010A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C1/00Manufacture of metal sheets, metal wire, metal rods, metal tubes by drawing
    • B21C1/006Manufacture of metal sheets, metal wire, metal rods, metal tubes by drawing using vibratory energy

Abstract

PURPOSE:To stably manufacture a lengthy Nb-Ti alloy superconducting wire having a high copper ratio or/and extra fine multiple cores as a satisfactory product with no breakage and no defect. CONSTITUTION:Multiple copper-clad Nb-Ti alloy strands are bundled, inserted and coupled into a copper pipe, hot extrusion and cold face reducing machining are applied to manufacture a copper-stabilized superconducting wire, and the cold face reducing machining is applied to draw the wire while ultrasonic waves are applied.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、銅安定化Nb−Ti合
金系超電導線の製造方法に係り、特に高銅比、或いは/
及び極細多芯のNb−Ti合金系超電導線を無断線、且
つ無欠陥の良品として長尺且つ安定して製造する方法を
提供するものである。
[Industrial Application Field] The present invention relates to a method for manufacturing a copper-stabilized Nb-Ti alloy superconducting wire, and particularly relates to a method for manufacturing a copper-stabilized Nb-Ti alloy superconducting wire.
The present invention also provides a method for stably producing a long and stable ultrafine multicore Nb-Ti alloy superconducting wire as a non-broken and defect-free good product.

【0002】0002

【従来の技術】超電導発電、MRI、粒子加速器等に用
いられる超電導線としては、従来から銅マトリックス中
にNb−Ti合金フィラメントを多数埋め込んだ銅安定
化Nb−Ti超電導線が多用されてきた。この超電導線
において、熱的、電気的および磁気的な安定性を保証す
る安定化銅の役割は重要であり、近年の超電導マグネッ
トの大型化、大電流化に伴って、安定化銅とNb−Ti
合金フィラメントの断面積比の大きい、即ち高銅比のN
b−Ti超電導線の需要が増加してきている。一方、超
電導マグネットの特性向上のために、Nb−Ti合金フ
ィラメントの細径多芯化が同時に進められており、例え
ばNb−Tiフィラメント径が30μmφ以下で200
0〜6000本埋め込まれた銅安定化Nb−Ti超電導
線もめずらしくなくなっている。また、超電導線の接続
部における永久電流の減衰を低減するためには、できる
かぎり超電導線は長尺であることが望ましく、極細多芯
の高銅比安定化Nb−Ti超電導線の長尺安定製造技術
の開発が強く希求されていた。
BACKGROUND OF THE INVENTION Copper-stabilized Nb-Ti superconducting wires, in which a large number of Nb-Ti alloy filaments are embedded in a copper matrix, have been widely used as superconducting wires for use in superconducting power generation, MRI, particle accelerators, and the like. In this superconducting wire, the role of stabilizing copper to ensure thermal, electrical, and magnetic stability is important, and as superconducting magnets have become larger and have larger currents in recent years, the role of stabilizing copper and Nb- Ti
N with a large cross-sectional area ratio of the alloy filament, that is, a high copper ratio
Demand for b-Ti superconducting wire is increasing. On the other hand, in order to improve the characteristics of superconducting magnets, Nb-Ti alloy filaments are being made thinner and multi-core. For example, Nb-Ti filaments with a diameter of 30 μm or less
0 to 6,000 embedded copper-stabilized Nb-Ti superconducting wires are no longer rare. In addition, in order to reduce the attenuation of persistent current at the joints of superconducting wires, it is desirable that the superconducting wires be as long as possible. There was a strong desire to develop manufacturing technology.

【0003】ところで、超電導線の製造方法としては、
通常、中空の銅ビレットの中にNb−Ti合金棒を挿入
し、これを熱間押出しした後冷間加工して製造した銅被
覆Nb−Ti合金線を整直、定尺切断し、これを多数本
束ねて中空の銅ビレットに挿入、稠密に充填し、この複
合ビレットを再び熱間押出ししたものを母線として、こ
れを冷間加工と中間熱処理を繰り返して所定のサイズに
仕上げるという方法が採られていた。この方法により製
造された銅安定化Nb−Ti超電導線は、その銅比が大
きくなるほど、或いは/及びNb−Tiフィラメントの
細径多芯化が進むほどNb−Tiフィラメントの断線が
多発するようになり、超電導特性(特に臨界電流値)が
劣化したり、最悪の場合にはNb−Tiフィラメント断
線部が起点となって超電導線自身の断線に至るという問
題があった。このようなNb−Tiフィラメントの断線
は、冷間減面加工時に長手方向に作用する引張応力成分
の影響により生ずるものであり、変形抵抗の大きく異な
る銅とNb−Ti合金との複合の下では、銅比や断面構
造、加工条件によってはNb−Tiフィラメントの長手
方向に大きな引張応力が作用する。このような引張応力
成分は銅比が大きいほど、線材の中心部ほど大きいとい
うことが各種の解析から明らかにされ、後者に於いては
、Nb−Tiフィラメントの断線は線材の中心部に多い
という観察結果とも一致するものである。また冷間加工
条件についても例えば1パス当たりの減面率が小さかっ
たり、ダイス半角が大きいなどの条件で伸線を行った場
合には線材中心部付近での径方向の圧縮応力成分の作用
が極めて小さくなって引張応力の集中を引き起こすよう
になり、Nb−Tiフィラメント断線の原因となる。 極細多芯型の銅安定化Nb−Ti超電導線にあっては、
Nb−Tiフィラメント1本1本が、発生する引張応力
に対する充分な強度(断面積)を持たない為、よりNb
−Tiフィラメントの断線が発生しやすくなる。以上の
ような塑性加工上の問題から、例えば、Nb−Tiフィ
ラメントと銅マトリックスとの間に、両者の中間の変形
抵抗を持つ材質(主に銅合金)から成る層を設け、この
中間層による応力緩和を図ったり、冷間加工条件として
減面率をある程度大きくし、ダイス半角を小さめにする
などの試みが為されてきた。
By the way, the method for manufacturing superconducting wire is as follows:
Usually, a Nb-Ti alloy rod is inserted into a hollow copper billet, hot extruded, and then cold worked to produce a copper-coated Nb-Ti alloy wire, which is then straightened and cut to a specified length. The method adopted is to bundle a large number of composite billets, insert them into a hollow copper billet, and fill them densely, then hot extrude this composite billet again, use it as a generatrix, and repeat cold working and intermediate heat treatment to finish it to the specified size. It was getting worse. In the copper-stabilized Nb-Ti superconducting wire manufactured by this method, as the copper ratio increases and/or as the Nb-Ti filament becomes smaller in diameter and multi-core, the Nb-Ti filament breaks more frequently. Therefore, there is a problem that the superconducting properties (particularly the critical current value) deteriorate, and in the worst case, the Nb-Ti filament disconnection becomes a starting point, leading to the disconnection of the superconducting wire itself. Such breakage of the Nb-Ti filament occurs due to the influence of the tensile stress component acting in the longitudinal direction during cold area reduction processing, and under the composite of copper and Nb-Ti alloy, which have significantly different deformation resistances. Depending on the copper ratio, cross-sectional structure, and processing conditions, a large tensile stress acts in the longitudinal direction of the Nb-Ti filament. Various analyzes have revealed that the larger the copper ratio is, the larger the tensile stress component is at the center of the wire, and in the latter case, it is said that Nb-Ti filament breakage is more likely to occur at the center of the wire. This is consistent with the observation results. Regarding cold working conditions, for example, if wire drawing is performed under conditions such as a small area reduction per pass or a large die half angle, the effect of the radial compressive stress component near the center of the wire will be reduced. This becomes extremely small and causes concentration of tensile stress, which causes the Nb-Ti filament to break. In the ultra-fine multicore copper-stabilized Nb-Ti superconducting wire,
Because each Nb-Ti filament does not have sufficient strength (cross-sectional area) to withstand the tensile stress that occurs,
-Ti filament breaks easily. To solve the above-mentioned problems in plastic working, for example, a layer made of a material (mainly copper alloy) with deformation resistance between the two is provided between the Nb-Ti filament and the copper matrix, and this intermediate layer Attempts have been made to alleviate stress, increase the area reduction rate to some extent as cold working conditions, and reduce the die half angle.

【0004】0004

【発明が解決しようとする課題】しかしながら、前者の
中間層を設ける方法に於いては、中間層と銅マトリック
ス、Nb−Tiフィラメント各々の接着面での応力緩和
は為されるが、同一の加工条件によって減面加工を重ね
ていくことで単独では塑性変形には寄与し得ない引張応
力が蓄積され、やがてNb−Tiフィラメントの断線に
至る。一方、冷間加工条件に於いては、1パス当たりの
減面率を高めることで線材中心部にも圧縮応力成分が作
用するようになり、ダイス半角を小さめにすることで線
材表面付近が優先的に加工硬化することなく、塑性加工
上は理想化されるが、反面、潤滑性が著しく劣化し、ダ
イス部で焼き付けが生じたり、引抜力が安定せず、突発
的に引抜力過大となって断線するなどの問題があった。
[Problems to be Solved by the Invention] However, in the former method of providing an intermediate layer, stress relaxation is achieved at the bonding surfaces of the intermediate layer, copper matrix, and Nb-Ti filament, but the same processing is required. By repeating area reduction processing depending on the conditions, tensile stress that cannot contribute to plastic deformation by itself accumulates, eventually leading to breakage of the Nb-Ti filament. On the other hand, under cold working conditions, by increasing the area reduction rate per pass, the compressive stress component also acts on the center of the wire, and by reducing the die half angle, priority is given to the area near the wire surface. It is ideal for plastic working without becoming work hardened, but on the other hand, the lubricity deteriorates significantly, causing seizure at the die part, unstable pulling force, and sudden excessive pulling force. There were problems such as wire breakage.

【0005】[0005]

【課題を解決する為の手段】本発明は上記の点に鑑み、
鋭意検討の結果為されたものであり、その目的とすると
ころは、高銅比、或いは/及び極細多芯の銅安定化Nb
−Ti合金系超電導線を、Nb−Ti合金系フィラメン
トの断線を防止して無断線・無欠陥化を図り、任意の銅
比、任意のフィラメント数(フィラメント径)の長尺線
材を安定して製造できる方法を提供するものである。
[Means for solving the problems] In view of the above points, the present invention
This was achieved as a result of intensive study, and its purpose is to achieve a high copper ratio and/or ultra-fine multi-core copper stabilized Nb.
-We aim to make Ti alloy superconducting wires break-free and defect-free by preventing Nb-Ti alloy filament breakage, and stably produce long wires with any copper ratio and any number of filaments (filament diameter). The present invention provides a manufacturing method.

【0006】即ち本発明は、銅を被覆したNb−Ti合
金系素線を複数本束ね、これを銅パイプ中に挿入・嵌合
した後、熱間押出しし、続いて冷間減面加工を施す銅安
定化超電導線の製造方法に於いて、冷間減面加工を超音
波を付加しながら伸線して行うことを特徴とする銅安定
化超電導線の製造方法であり、望ましくは該超音波を付
加するに際して、10〜30KHzの周波数で、2〜1
0kwの出力でダイスを振動させながら伸線するのが良
い。そして超音波を付加しながら伸線を行うに際し、1
パス当たりの減面率は15%以上30%以下とするのが
望ましく、用いるダイスの半角は2°以上8°以下とす
るのが望ましい。
That is, the present invention involves bundling a plurality of copper-coated Nb-Ti alloy strands, inserting and fitting them into a copper pipe, hot extruding, and then cold area reduction processing. The method for producing a copper-stabilized superconducting wire is characterized in that the cold area-reducing process is carried out by drawing the wire while applying ultrasonic waves. When adding sound waves, at a frequency of 10 to 30 KHz, 2 to 1
It is best to draw the wire while vibrating the die with an output of 0 kW. When drawing wire while applying ultrasonic waves, 1
The area reduction rate per pass is preferably 15% or more and 30% or less, and the half angle of the die used is preferably 2° or more and 8° or less.

【0007】[0007]

【作用】本発明に於いて、用いる超音波の周波数を10
〜30KHzが望ましいとしたのは、10KHz未満で
は潤滑性改善に効果が少なく、30KHzを超えると、
潤滑性が低下しはじめるからである。一方、出力を2k
w〜10kwとしたのは、2kw未満では、パワー不足
の為、潤滑性改善の効果が出ないためであり、10kw
を超えると線の共振、ダイスの芯ズレなどが起こり、断
線しやすくなるためである。また、超音波伸線するに際
し、1パス当たりの減面率を15%以上、30%以下と
したのは、15%未満では、線材中心部付近での径方向
の圧縮応力成分の作用が極めて小さくなり、長手方向の
引張応力の集中を引き起こし、Nb−Ti合金系フィラ
メントに過剰な引張応力が作用する為断線しやすくなる
からであり、30%を超える減面率では線材の機械的強
度に対し、引張応力が過大となって断線する為である。 更に該超音波伸線を行うに際し、半角が2°以上8°以
下のダイスを用いるとしたのは、半角が2°未満では超
音波付加してもダイス−線材間の摩擦仕事が激増したり
焼き付けが頻発する為実用的でなく、8°を超える場合
には、潤滑性が低下するとともに線材の表面付近が急激
に加工硬化する為早期に加工限界に達することが見込ま
れ実用的でない為である。
[Operation] In the present invention, the frequency of the ultrasonic waves used is 10
~30KHz is desirable because below 10KHz is less effective in improving lubricity, and above 30KHz,
This is because the lubricity begins to deteriorate. On the other hand, set the output to 2k
The reason for setting w to 10kw is because if it is less than 2kw, there is insufficient power and the effect of improving lubricity will not be produced.
This is because if the wire exceeds this value, resonance of the wire, misalignment of the die, etc. will occur, making the wire more likely to break. In addition, when performing ultrasonic wire drawing, the area reduction rate per pass was set to 15% or more and 30% or less.If it is less than 15%, the effect of the radial compressive stress component near the center of the wire is extremely severe. This is because the Nb-Ti alloy filament becomes smaller, causing concentration of tensile stress in the longitudinal direction, and excessive tensile stress acts on the Nb-Ti alloy filament, making it more likely to break. If the area reduction ratio exceeds 30%, the mechanical strength of the wire decreases. On the other hand, this is because the tensile stress becomes excessive and the wire breaks. Furthermore, when performing the ultrasonic wire drawing, a die with a half angle of 2° or more and 8° or less was used because if the half angle is less than 2°, the frictional work between the die and the wire will increase dramatically even when ultrasonic waves are applied. It is not practical because seizure occurs frequently, and if it exceeds 8°, the lubricity decreases and the area near the surface of the wire material rapidly hardens, so it is expected that the processing limit will be reached early, making it impractical. be.

【0008】本発明に於いては、塑性加工上の問題を解
決する(Nb−Ti合金系フィラメントに対する過大な
引張応力の負荷を避け、線材内部・表面付近ともに均一
に加工する)べく、1パス当たりの減面率を大きめにと
り、ダイス半角を小さめにすることにより、逆に潤滑性
が著しく劣化してしまう場合でも、超音波付加によって
強制的に潤滑を行わせる為、通常潤滑による伸線に比べ
ても比較的良好な潤滑性が得られ、焼き付きの発生や引
抜力の変動を防止でき、安定した伸線を行うことができ
る。尚、本発明に於ける1パス当たりの減面率、及びダ
イス半角、インレットチューブ内径等の各条件は減面加
工初期から最終までの工程内で一定でなくてもよく、各
条件の組合せは一連の工程内で選択自由であるが、塑性
加工上、1パス当たりの減面率は大きめ、ダイス半角は
小さめであることが望ましい。また超音波伸線は熱間押
出直後からでも、また場合によっては冷間減面加工の途
中から行ってもよい。
In the present invention, in order to solve the problem of plastic working (avoiding the loading of excessive tensile stress on the Nb-Ti alloy filament and processing uniformly both inside and near the surface of the wire), one pass Even if the lubricity deteriorates significantly by setting a larger area reduction rate and a smaller die half-angle, the lubrication is forcibly performed by applying ultrasonic waves, so wire drawing with normal lubrication is not possible. Comparatively, relatively good lubricity can be obtained, the occurrence of seizure and fluctuations in drawing force can be prevented, and stable wire drawing can be performed. In addition, in the present invention, each condition such as the area reduction rate per pass, die half angle, and inlet tube inner diameter does not have to be constant during the process from the initial stage to the final area reduction process, and the combination of each condition is Although it can be selected freely within a series of steps, it is desirable for the area reduction rate per pass to be large and the die half angle to be small from the viewpoint of plastic working. Further, the ultrasonic wire drawing may be carried out immediately after hot extrusion, or in some cases, during cold area reduction processing.

【0009】[0009]

【実施例】次に本発明を実施例により更に詳細に説明す
る。 〔実施例1〕Nb−Ti合金棒にNb箔を巻き付けたも
のに純Cuを被覆して複合材を形成し、これを900℃
で熱間押出した後伸線して整直・切断したものを素線と
し、これを2220本束ねて純Cu管中に整然と挿入し
、空隙部を細い純Cu棒で充填した後、管内を真空びき
して管両端部を純Cuフタで密封し、接合部を電子ビー
ム溶接して100mmφ×500mml、銅比2.0の
ケーブルビレットを作製した。これを熱間で鍛造し、押
出温度500℃で15mmφに熱間押出した後、総加工
率約50%ごとに時効熱処理380℃×24hを加えな
がら5.3mmφまで超音波付加伸線を行い、その後は
無焼鈍で同様の超音波付加伸線を行った。超音波付加伸
線は以下の条件であった。   以上により0.5mmφ(フィラメント径約7.5
μm)まで縮径加工したところ、約5000mを無断線
で加工することができた。この材料を500mごとに約
1mサンプリングし、全数をHNO3 に浸漬してCu
を溶解除去してNb−Tiフィラメントを調べたところ
、フィラメント断線は全くなく、また表面の局部を拡大
観察したところフィラメントにくびれ等の異常も全くな
く、健全に加工されていることがわかった。次に本発明
の比較例を示す。上記と同様のケーブルビレットを上記
と同一の条件にて15mmφに熱間押出した後、今度は
超音波を用いずに、通常の潤滑方式による伸線を上記と
同一の伸線条件で行い、0.5mmφまで縮径加工を行
ったところ加工途中でダイスの焼付が多く発生し最終加
工径に近いところでは数回の断線が発生した。断線形態
はカッピング状が殆どであるが、一部過張力によると思
われる絞り断線が見られた。更に、0.5mmφまで加
工した線材の一部をHNO3 に浸漬してCuを溶解除
去し、Nb−Tiフィラメントを調べたところ、局部的
に断線していた。この断線部分を走査電子顕微鏡(SE
M)により調べたところ、全数が絞り形状、或いはすべ
り形状を示しており、異常張力が作用していたことが予
想され、健全な加工は行われていないことがわかった。
EXAMPLES Next, the present invention will be explained in more detail with reference to examples. [Example 1] A Nb-Ti alloy rod wrapped with Nb foil was coated with pure Cu to form a composite material, and this was heated at 900°C.
After hot extrusion in The tube was evacuated, both ends of the tube were sealed with pure Cu caps, and the joints were electron beam welded to produce a cable billet with a diameter of 100 mm×500 mm and a copper ratio of 2.0. This was hot forged and hot extruded to 15 mmφ at an extrusion temperature of 500°C, and then subjected to ultrasonic additional wire drawing to 5.3mmφ while applying aging heat treatment at 380°C x 24 hours at approximately 50% total processing rate. After that, the same ultrasonic additional wire drawing was performed without annealing. The ultrasonic wire drawing was performed under the following conditions. As a result of the above, the diameter of the filament is approximately 7.5mm.
When the diameter was reduced to .mu.m), it was possible to process approximately 5000 m without cutting. Approximately 1m of this material was sampled every 500m, and all samples were immersed in HNO3.
When the Nb-Ti filament was examined by dissolving and removing it, there was no filament breakage at all, and when the local part of the surface was observed under magnification, there was no abnormality such as constriction in the filament, and it was found that the filament was processed soundly. Next, a comparative example of the present invention will be shown. After hot extruding a cable billet similar to the above to a diameter of 15 mm under the same conditions as above, wire drawing was performed using the normal lubrication method without using ultrasonic waves under the same wire drawing conditions as above. When the diameter was reduced to .5 mmφ, a lot of die seizure occurred during the process, and several wire breaks occurred near the final process diameter. Most of the wire breaks were cupping, but some drawing wire breakages were observed, which were thought to be caused by excessive tension. Further, a part of the wire processed to a diameter of 0.5 mm was immersed in HNO3 to dissolve and remove the Cu, and when the Nb-Ti filament was examined, it was found that the wire was locally broken. This broken part was examined using a scanning electron microscope (SE).
When inspected by M), all of the specimens showed a drawn shape or a sliding shape, indicating that abnormal tension was acting on them, and that sound machining had not been performed.

【0010】〔実施例2〕上記と同一構成(Nb−Ti
フィラメント数2200本、銅比2.0)にて、200
mmφ×800mmlの大型ビレットを作製した。これ
を熱間で鍛造し、押出温度500℃で45mmφに熱間
押出した後、総加工率約50%ごとに時効熱処理380
℃×24hを加えながら11.2mmφまでドローベン
チにより通常の潤滑方式による伸線を行った。その後、
更に総加工率約50%ごとに時効熱処理(380℃×2
4h)を加えながら5.6mmφまで、今度は超音波付
加方式により伸線を行い、その後は無焼鈍で超音波伸線
を行った。超音波付加伸線は以下の条件で行った。 比較の為、超音波を用いない通常の潤滑方式の伸線を、
同一の加工条件で行った。両者とも、最終加工径0.5
mmφ(フィラメント径約7.5μm)まで縮径加工を
行った。その結果、超音波付加伸線を行った場合には、
0.5mmφで約6500m無断線で異常なく加工でき
たが、通常の潤滑方式による伸線の場合には、最終加工
径に至る以前に焼付けや断線が発生し、断線が発生しな
かった部分でも、線材表面にくびれが多く見られた。
[Example 2] Same configuration as above (Nb-Ti
2200 filaments, copper ratio 2.0), 200
A large billet of mmφ×800 mml was produced. After hot forging this and hot extruding it to a diameter of 45 mm at an extrusion temperature of 500°C, it is subjected to an aging heat treatment of 380 mm at every 50% of the total working rate.
C. for 24 hours, wire drawing was carried out using a draw bench to a diameter of 11.2 mm by the usual lubrication method. after that,
Furthermore, aging heat treatment (380℃ x 2
This time, wire drawing was performed using an ultrasonic addition method to a diameter of 5.6 mm while adding 4 h), and then ultrasonic wire drawing was performed without annealing. Ultrasonic wire drawing was performed under the following conditions. For comparison, wire drawing using a normal lubrication method that does not use ultrasonic waves,
The processing was carried out under the same processing conditions. Both have a final machining diameter of 0.5
The diameter was reduced to mmφ (filament diameter approximately 7.5 μm). As a result, when performing ultrasonic additional wire drawing,
With a diameter of 0.5 mm, we were able to process approximately 6,500 m of wire without any breakage without any abnormalities, but in the case of wire drawing using the normal lubrication method, seizure or wire breakage occurred before the final processing diameter was reached, and even in areas where wire breakage did not occur, , many constrictions were observed on the wire surface.

【0011】[0011]

【発明の効果】以上述べたように本発明によれば、熱間
押出後の冷間減面加工方法として超音波を付加した伸線
を行う為、潤滑性が向上して引抜力が安定し焼付の問題
も解消するので1パス当たりの減面率が15%以上、3
0%以下、ダイス半角が2°以上8°以下といった厳し
い条件でも問題なく安定して減面加工できるようになり
、加工条件を塑性加工上理想化できる為、Nb−Ti合
金系フィラメントの断線もなく高品質な長尺の銅安定化
超電導線が得られという優れた効果がある。
[Effects of the Invention] As described above, according to the present invention, since wire drawing with the addition of ultrasonic waves is performed as a cold area reduction processing method after hot extrusion, lubricity is improved and drawing force is stabilized. It also solves the problem of burning, so the area reduction rate per pass is 15% or more, 3
0% or less, and the die half angle is 2° or more and 8° or less, it is now possible to stably reduce the area without any problems, and since the processing conditions can be idealized for plastic working, there is no disconnection of Nb-Ti alloy filaments. This has the excellent effect of making it possible to obtain long, high-quality copper-stabilized superconducting wires.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明製造方法に用いる装置の概略図。FIG. 1 is a schematic diagram of an apparatus used in the manufacturing method of the present invention.

【符号の説明】[Explanation of symbols]

1  ダイス 2  ダイスホルダー 3  振動子 4  ダイスホルダー支持台 5  ダイスボックス 6  超電導線材 7  潤滑油 8  オイルシール 1 Dice 2 Dice holder 3. Oscillator 4 Dice holder support stand 5 Dice box 6 Superconducting wire 7 Lubricating oil 8 Oil seal

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】  銅を被覆したNb−Ti合金系素線を
複数本束ね、これを銅パイプ中に挿入・嵌合した後、熱
間押出しし、続いて冷間減面加工を施す銅安定化超電導
線の製造方法に於いて、冷間減面加工を超音波を付加し
ながら伸線して行うことを特徴とする銅安定化超電導線
の製造方法。
Claim 1: Copper stabilization method in which a plurality of Nb-Ti alloy wires coated with copper are bundled, inserted into a copper pipe, fitted, hot extruded, and then subjected to cold area reduction processing. A method for producing a copper-stabilized superconducting wire, characterized in that cold area reduction processing is performed by drawing the wire while applying ultrasonic waves.
【請求項2】  該超音波を付加するに際して、10〜
30KHzの周波数で2〜10kwの出力でダイスを振
動させながら伸線することを特徴とする請求項1記載の
銅安定化超電導線の製造方法。
[Claim 2] When applying the ultrasonic wave, 10 to
2. The method for producing a copper-stabilized superconducting wire according to claim 1, wherein the wire is drawn while vibrating a die at a frequency of 30 KHz and an output of 2 to 10 kW.
【請求項3】  該超音波付加伸線を行うに際し、1パ
ス当たりの減面率が15%以上、30%以下であること
を特徴とする請求項1記載の銅安定化超電導線の製造方
法。
3. The method for producing a copper-stabilized superconducting wire according to claim 1, wherein the area reduction rate per pass is 15% or more and 30% or less when performing the ultrasonic additional wire drawing. .
【請求項4】  該超音波付加伸線を行うに際し、半角
で2°以上、8°以下のダイスを用いることを特徴とす
る請求項1記載の銅安定化超電導線の製造方法。
4. The method for producing a copper-stabilized superconducting wire according to claim 1, wherein a die having a half-angle of 2° or more and 8° or less is used when performing the ultrasonic additional wire drawing.
JP4894891A 1991-02-21 1991-02-21 Manufacture of copper-stabilized superconducting wire Pending JPH04267010A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4894891A JPH04267010A (en) 1991-02-21 1991-02-21 Manufacture of copper-stabilized superconducting wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4894891A JPH04267010A (en) 1991-02-21 1991-02-21 Manufacture of copper-stabilized superconducting wire

Publications (1)

Publication Number Publication Date
JPH04267010A true JPH04267010A (en) 1992-09-22

Family

ID=12817503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4894891A Pending JPH04267010A (en) 1991-02-21 1991-02-21 Manufacture of copper-stabilized superconducting wire

Country Status (1)

Country Link
JP (1) JPH04267010A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH091226A (en) * 1995-06-22 1997-01-07 Sakurai Denshi Kogyo Kk Production of optical fiber protective pipe formed by using titanium and apparatus therefor
CN109961899A (en) * 2017-12-25 2019-07-02 西部超导材料科技股份有限公司 A kind of online hot-drawn prepares Properlies of Bronze Route Nb3The method of Sn superconducting wire
CN110227728A (en) * 2019-06-14 2019-09-13 北京航空航天大学 A kind of tubular property regulation device of ultrasonic vibration assisted with high-temperature alloy thin-wall capillary

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH091226A (en) * 1995-06-22 1997-01-07 Sakurai Denshi Kogyo Kk Production of optical fiber protective pipe formed by using titanium and apparatus therefor
CN109961899A (en) * 2017-12-25 2019-07-02 西部超导材料科技股份有限公司 A kind of online hot-drawn prepares Properlies of Bronze Route Nb3The method of Sn superconducting wire
CN109961899B (en) * 2017-12-25 2020-12-01 西部超导材料科技股份有限公司 Online hot-drawing method Nb for preparing bronze3Method for Sn superconducting wire
CN110227728A (en) * 2019-06-14 2019-09-13 北京航空航天大学 A kind of tubular property regulation device of ultrasonic vibration assisted with high-temperature alloy thin-wall capillary

Similar Documents

Publication Publication Date Title
JP5195019B2 (en) Cu-Ag alloy wire, winding, and coil
JP2007214002A (en) Method of manufacturing nb3sn superconductive wire rod and precursor for it
Kikuchi et al. Ultra-fine Nb 3 Al mono-core wires and cables
JPH04267010A (en) Manufacture of copper-stabilized superconducting wire
JP5598825B2 (en) Nb3Al superconducting wire manufacturing method
JPH03241619A (en) Manufacture of copper-stabilized superconducting wire
JP4742843B2 (en) Core wire for Nb3Sn superconducting wire, Nb3Sn superconducting wire, and manufacturing method thereof
US6289576B1 (en) Method for drawing elongated superconductive wires
JP2846434B2 (en) Method for producing Nb-Ti alloy for superconducting wire
JP2007141682A (en) Nb3Sn SUPERCONDUCTING WIRE AND PRECURSOR FOR THE SAME
JPS61101913A (en) Manufacture of nbti very fine multicore superconducting wire
JPS6333534A (en) Superconducting nb-ti alloy and its production
JPH05307917A (en) Manufacture of superconducting wire
JP2931020B2 (en) Cu or Al stabilized superconducting wire and method for producing the same
JPH0896633A (en) Manufacture of nb3sn superconducting wire
JP2005349467A (en) Extra-fine plated wire manufacturing method
JP2006100063A (en) MANUFACTURING METHOD OF Nb3X COMPOUND BASED SUPERCONDUCTING WIRE MATERIAL
JP2851143B2 (en) Method for producing Nb-Ti alloy for superconducting wire
JP2011258314A (en) Method of manufacturing tape-like oxide superconductive wire
JP2009295296A (en) Method for manufacturing triniobium-aluminum system compound superconductive precursor wire rod, and method for manufacturing triniobium-aluminum system compound superconductive multi-wire rod
JP3212596B2 (en) Cu or Al stabilized superconducting wire and method for producing the same
JPH03280307A (en) Manufacture of multicore superconductive wire
JPH03101013A (en) Manufacture of copper stabilizing nb-ti superconducting wire
JP3061208B2 (en) Method for producing copper-stabilized multi-core Nb-Ti superconducting wire
JPH03145015A (en) Manufacture of copper-stabilized nb-ti superconductive wire