JPS61100411A - Method of evaluating ceramic powder-resin kneading property - Google Patents

Method of evaluating ceramic powder-resin kneading property

Info

Publication number
JPS61100411A
JPS61100411A JP22176784A JP22176784A JPS61100411A JP S61100411 A JPS61100411 A JP S61100411A JP 22176784 A JP22176784 A JP 22176784A JP 22176784 A JP22176784 A JP 22176784A JP S61100411 A JPS61100411 A JP S61100411A
Authority
JP
Japan
Prior art keywords
ceramic powder
resin
time
kneading
stabilization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22176784A
Other languages
Japanese (ja)
Inventor
武信 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP22176784A priority Critical patent/JPS61100411A/en
Publication of JPS61100411A publication Critical patent/JPS61100411A/en
Pending legal-status Critical Current

Links

Landscapes

  • Producing Shaped Articles From Materials (AREA)
  • Preparation Of Clay, And Manufacture Of Mixtures Containing Clay Or Cement (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 この発明、はセラミック粉末と樹脂とを混練して混線物
となし射出成形によって所要の成形品を得る場合に、セ
ラミック粉末と樹脂とを混練するに先立って、その混練
性を推定評価する方法に関するものである。
[Detailed Description of the Invention] Industrial Field of Application This invention is directed to kneading ceramic powder and resin to form a mixed material and obtaining a desired molded product by injection molding. First, it relates to a method for estimating and evaluating its kneading properties.

従来技術 近年、非酸化物系の窒化珪素や炭化珪素等のセラミック
を構造用材料として適用することが研究されている。実
際にそれ等のセラミックを用いて所要の形状の製品を得
るには、それ等のセラミック粉末を樹脂と共に混練し、
流動性のある混線物°となして射出成形する場合が多い
。そのように”セラミック粉末と樹脂とを混練し射出成
形する場合には、混練物の粘度、換言すれば成形流動圧
が射出成形の作業性や成形品の機械的特性等に大きく影
響することから、その混線物の成形流動圧を適切に調整
する必要がある。
BACKGROUND OF THE INVENTION In recent years, research has been conducted on the use of non-oxide ceramics such as silicon nitride and silicon carbide as structural materials. In order to actually obtain a product in the desired shape using such ceramics, the ceramic powder is kneaded with resin.
It is often injection molded as a fluid mixture. In this way, when kneading ceramic powder and resin and injection molding, the viscosity of the kneaded material, in other words, the molding flow pressure, greatly affects the workability of injection molding and the mechanical properties of the molded product. , it is necessary to appropriately adjust the molding flow pressure of the mixed material.

ところで、セラミック粉末と樹脂とを混練して得られる
混線物の成形流動圧にはセラミック粉末の特性が大きく
影響する。すなわち、セラミック粉末と樹脂とを混線す
ると、ミクロには個々のセラミック粉末粒子の外表面に
樹脂が付着し、そのように個々のセラミック粉末粒子の
外表面に樹脂が付着する度合によって、混線物の流動性
が変化する。具体的には、個々のセラミック粉末粒子の
外表面に樹脂が付着する度合が大きい場合には混練物の
流動性が小さくなり、付着する度合が小さい場合には混
線物の流動性が大きくなる。そしてさらに、そのセラミ
ック粉末粒子の外表面に樹脂が付着する度合は、個々の
セラミック粉末粒子の粒径および樹脂に対する濡れ性に
よって左右される。すなわち、個々の粒子の粒径が小さ
い程セラミック粉末全体としては樹脂が付着する度合が
大きく、また、個々の粒子の樹脂に対する濡れ性が大き
い程やはり樹脂が付着する度合が大きい。
By the way, the properties of the ceramic powder greatly influence the molding flow pressure of the mixed material obtained by kneading the ceramic powder and the resin. In other words, when ceramic powder and resin are mixed, the resin adheres to the outer surface of each ceramic powder particle, and depending on the degree to which the resin adheres to the outer surface of each ceramic powder particle, the degree of crosstalk is determined. Liquidity changes. Specifically, when the degree of resin adhesion to the outer surface of each ceramic powder particle is large, the fluidity of the kneaded material becomes low, and when the degree of adhesion is small, the fluidity of the mixed material becomes high. Furthermore, the degree to which resin adheres to the outer surface of the ceramic powder particles depends on the particle size and resin wettability of the individual ceramic powder particles. That is, the smaller the particle size of each individual particle, the greater the degree to which the resin adheres to the ceramic powder as a whole, and the greater the wettability of each individual particle to the resin, the greater the degree to which the resin adheres.

以上のように、セラミック粉末と樹脂との混線物の成形
流動圧はセラミック粉末の特性、具体的には粒径および
樹脂に対する濡れ性によって影響される。
As described above, the molding flow pressure of a hybrid material of ceramic powder and resin is influenced by the characteristics of the ceramic powder, specifically, the particle size and wettability with respect to the resin.

一般に、セラミック粉末は、塊状のセラミックを粉砕機
によって粉砕して製造され、得られる粉末粒子の粒径は
均一ではない。また、粉砕直後の粒子の表面は非常に活
性で樹脂に対する濡れ性が大きいが、粉砕後時日の経過
にしたがい徐々に活性は低下していく。その結果、セラ
ミック粉末と樹脂との混線物を射出成形して所要の製品
を得る場合に原料として用意されるセラミック粉末の粒
径および樹脂に対する濡れ性は一様ではない。そのため
、射出成形にあたって、型への混練物の流入不足をなく
し、かつ得られる製品の品質を良好に保つためには、用
意されたセラミック粉末と樹脂との混線物の成形流動圧
を所要の程度にする様常時管理することが不可欠となる
Generally, ceramic powder is manufactured by crushing a lump of ceramic using a crusher, and the particle size of the resulting powder particles is not uniform. Furthermore, the surface of the particles immediately after pulverization is very active and highly wettable with resin, but the activity gradually decreases as time passes after pulverization. As a result, when a desired product is obtained by injection molding a mixture of ceramic powder and resin, the particle size and wettability of the ceramic powder prepared as a raw material with respect to the resin are not uniform. Therefore, during injection molding, in order to eliminate insufficient flow of the kneaded material into the mold and maintain good quality of the obtained product, it is necessary to control the molding fluid pressure of the prepared mixture of ceramic powder and resin to the required level. It is essential to constantly manage the situation to ensure that it is maintained.

発明が解決しようとする問題点 従来、以上のセラミック粉末と樹脂との混練性の管理は
実際にセラミック粉末と樹脂とを混練してその成形流動
圧を直接測定した結果に基づき行なわれていた。しかし
、そのような従来の方法では、セラミック粉末混線の前
の時点で得られる混線物の成形流動圧を評価して管理す
ることはできなかった。
Problems to be Solved by the Invention Conventionally, the above-mentioned kneading properties of ceramic powder and resin have been controlled based on the results of actually kneading the ceramic powder and resin and directly measuring the molding flow pressure. However, with such conventional methods, it has not been possible to evaluate and control the molding flow pressure of the mixed material obtained at a point before ceramic powder mixing.

発明の目的 この発明は以上の従来の事情に鑑みてなされたも、ので
あり°て、セラミック粉末と樹脂との混練性を、混線前
に正確に評価し、混線物の成形流動圧の管理を正確に行
なうことができるようにしたセラミック粉末・樹脂混練
性評価方法を提供することを目的とするものである。
Purpose of the Invention The present invention has been made in view of the above-mentioned conventional circumstances, and is aimed at accurately evaluating the kneading properties of ceramic powder and resin before mixing, and controlling the molding flow pressure of the mixed material. The purpose of this invention is to provide a method for evaluating ceramic powder/resin kneading properties that can be performed accurately.

問題点を解決するための手段 すなわちこの発明のセラミック粉末・樹脂混練性評価方
法は、セラミック粉末と樹脂とを混線して射出成形によ
り所要の成形品を製造するに先立ち、樹脂と用いるべき
セラミック粉末とを各々所定量計量して、所定の濃度に
保った回転粘度計に投入し、所定の回転数で混練し、混
練開始から回転トルク値の変動巾が安定するまでの所要
時間、すなわち安定化時間を測定し、以上の安定化時間
の測定により得られる数値によって射出成形に用いられ
るセラミック粉末と樹脂との混練性を評価することを特
徴とするものである。
A means for solving the problem, that is, the ceramic powder/resin kneadability evaluation method of the present invention, is to mix the ceramic powder and the resin to produce a desired molded product by injection molding. Weigh out a predetermined amount of each, add them to a rotational viscometer that maintains a predetermined concentration, knead them at a predetermined rotational speed, and measure the time required from the start of kneading until the fluctuation range of the rotational torque value becomes stable, that is, stabilization. The method is characterized in that the time is measured, and the kneadability of the ceramic powder and resin used in injection molding is evaluated based on the numerical value obtained by measuring the stabilization time.

発明の詳細な説明 以下にこの発明のセラミック粉末・樹脂混練性評価方法
をさらに具体的に説明する。
DETAILED DESCRIPTION OF THE INVENTION The ceramic powder/resin kneadability evaluation method of the present invention will be explained in more detail below.

この発明では、セラミック粉末と樹脂とを混線して射出
成形により所要の成形品を製造するに先立ち、樹脂と用
いるべきセラミック粉末とを各々所定量計量して、所定
の温度に保った回転粘度計に投入し、所定の回転数で混
線する。
In this invention, prior to mixing ceramic powder and resin to produce a desired molded product by injection molding, the resin and the ceramic powder to be used are each weighed in predetermined amounts using a rotational viscometer kept at a predetermined temperature. and cross-wire at a predetermined rotation speed.

ここで、セラミック粉末と樹脂とを計量する分量を所定
量とし、回転粘度計の温度・回転数を「所定」とするの
は次の理由による。
Here, the reason why the measured amounts of ceramic powder and resin are set as predetermined amounts, and the temperature and rotational speed of the rotational viscometer are set as "predetermined" is as follows.

この発明では前述したように安定化トルクと安定化時間
とを測定し、その安定化時間と安定化トルクとの比によ
って用いられるセラミック粉末と樹脂との8!練性を評
価する。その評価にあたっては、後述するように各種の
粒径のセラミック粉末の安定化時間と安定化トルクとの
比と、粒径との相関を予め調査して′Rnを作成してお
き、その資料を用いて評価を行なう。したがって、実際
にこの発明を実施するにあたり、実際に用いられるセラ
ミック粉末についてその混練性を評価する際には、資料
作成時と同一条件で安定化時間と安定化トルクとを測定
する必要がある。すなわち、回転粘度計に投入するセラ
ミック粉末と樹脂との分量、回転粘度計の温度および回
転数は資料作成時に予め定められた数値と同一である必
要がある。しかし、それ等の数値は資料作成時と同一で
あれば足り、実施の状況例えば用いられる回転粘度計の
種別に応じて、資料作成時に種々設定し得るものである
。したがって、この発明においては、回転粘度計に投入
するセラミック粉末と樹脂の分邑1回転粘度計の温度お
よび回転数は具体的には特定されず、事前に行なわれる
資料作成時と同一にするという意味において、セラミッ
ク粉末と樹脂の分量については所定の分量、回転粘度計
の温度については所定の温度、その回転数については所
定の回転数とされる。尚、実際の工程で使用される樹゛
 脂と、資料作成時に用いられる樹脂とは必ずしも一致
する必要はない。
In this invention, as described above, the stabilization torque and stabilization time are measured, and the ratio of the stabilization time and stabilization torque is determined to determine the difference between the ceramic powder and the resin used. Evaluate training ability. For this evaluation, as will be described later, the ratio of the stabilization time and stabilization torque of ceramic powders of various particle sizes and the correlation with the particle size are investigated in advance to create 'Rn, and the data is used. Evaluate using Therefore, when actually implementing the present invention and evaluating the kneadability of the ceramic powder actually used, it is necessary to measure the stabilization time and stabilization torque under the same conditions as when preparing the data. That is, the amounts of ceramic powder and resin to be introduced into the rotational viscometer, the temperature and rotational speed of the rotational viscometer need to be the same as the values predetermined at the time of preparing the data. However, it is sufficient that these values are the same as those at the time of creating the data, and various settings can be made at the time of creating the data depending on the implementation situation, for example, the type of rotational viscometer used. Therefore, in this invention, the temperature and rotational speed of the rotational viscometer for each batch of ceramic powder and resin to be fed into the rotational viscometer are not specifically specified, but are set to be the same as those used when preparing the data in advance. In this sense, the amounts of ceramic powder and resin are predetermined, the temperature of the rotational viscometer is a predetermined temperature, and the number of revolutions thereof is a predetermined number of rotations. Note that the resin used in the actual process and the resin used when creating the materials do not necessarily have to match.

次にこの発明では、以上のように混線する過程で安定化
時間を測定する。安定化時間の測定は、第1図に示すよ
うに時間変化に伴なうトルク値の変化を記録したトルク
チャートを作成することによって行なうことができる。
Next, in the present invention, stabilization time is measured during the process of crosstalk as described above. The stabilization time can be measured by creating a torque chart that records changes in torque values over time, as shown in FIG.

第1図に示すトルクチャートの波形に注目すると、混線
の初期からトルクのフレ幅が比較的太きい領域が存在す
る。これは、混練の初期においては、混線物中に固形物
、液状物、空気が混在しており、空気相は回転粘度計の
ブレード回転に対して抵抗が小さく、液相・固相は抵抗
が大きいため、ブレード回転に対する抵抗の変化が大き
いからである。このようにトルクのフレ幅が大きい領域
をフ?ニキュラーと通称する。次に、そのファニキュラ
ーからトルクフレ幅が比較的小さい領域に移行する。こ
れは、混線物中の固形物(セラミック粉末)のまわりが
液状物(樹脂)によって被覆され、ブレード回転に対す
る抵抗が小さくなると共に、混線物中から外部に空気が
飛散消失して、ブレード回転に対する抵抗の変化が小さ
くなるからである。このようにトルクのフレ幅が小さい
領域をキャピラリーと通称する。
If we pay attention to the waveform of the torque chart shown in FIG. 1, there is a region where the torque fluctuation width is relatively large from the beginning of crosstalk. This is because in the early stage of kneading, solids, liquids, and air are mixed in the mixture, and the air phase has little resistance to the rotation of the rotational viscometer blade, while the liquid and solid phases have little resistance. This is because since the blade is large, the change in resistance to blade rotation is large. In this way, is the area where the torque fluctuation width is large? Commonly known as Nicular. Next, the torque fluctuation width shifts from that funicular to a region where the width is relatively small. This is because the solid material (ceramic powder) in the mixer is coated with a liquid material (resin), which reduces the resistance to the blade rotation, and at the same time, the air from the mixer scatters to the outside and disappears, which resists the blade rotation. This is because the change in resistance becomes smaller. The region where the torque fluctuation width is small in this way is commonly called a capillary.

さて、上述のトルクチャートではフ7ニキュラ    
 1−からキャピラリーへ移る明確な遷移点がみられ、
そのような遷移点は可塑限界(P、L、’)と通称され
、大きな混合エネルギーを必要とするものと考えられて
いる。そこで、その遷移点に至るまでの混11開始から
の所要時間を安定化時間として読み取ることができる。
Now, in the torque chart above, F7Nicula
A clear transition point from 1- to capillary can be seen,
Such a transition point is commonly referred to as the plastic limit (P, L,') and is thought to require large mixing energy. Therefore, the time required from the start of chaos 11 to reach the transition point can be read as the stabilization time.

次にこの発明では、以上のようにして得られる安定化時
間にょ1て射出成形に用いられるセラミック粉末と樹脂
との混練性を評価する。
Next, in this invention, the kneading properties of ceramic powder and resin used for injection molding are evaluated based on the stabilization time obtained as described above.

以下に、その評価の態様を具体的に説明する。Below, the aspect of the evaluation will be specifically explained.

(1) 安定化時間の異なる各種のセラミック粉末につ
いて、実際に81111によって一定時間混線し、得ら
れる混練物の射出成形時の成形流動圧を測定し、安定化
時間と成形流動圧との相関図を作成し、検量線とする。
(1) Various ceramic powders with different stabilization times were actually mixed with 81111 for a certain period of time, the molding fluid pressure during injection molding of the resulting kneaded product was measured, and a correlation diagram between stabilization time and molding fluid pressure was obtained. Create a calibration curve.

実際の操業時には、用いられるセラミック粉末の安定化
時間から前述の検量線を用いて、所定の混amによって
一定時III混練して得られる混線物の成形流動圧を推
定評価する。
During actual operation, the above-mentioned calibration curve is used to estimate and evaluate the molding flow pressure of the mixed material obtained by III-kneading at a predetermined mixing time for a certain period of time based on the stabilization time of the ceramic powder used.

(2) 安定化時間の異なる各種のセラミック粉末につ
いて、I!棟時間を種々設定して混線様によって混練し
、得られる混S物の成形流動圧を測定する。それによっ
て混線時開と成形流動圧との相関を示す検1mを、種々
の安定化時間を有するセラミック粉末について作成する
。実際のantiには用いられるセラミック粉末の安定
化時間から、前述の検1111を用いて、fi逍成形流
動圧を得るための最適混線時間を決定する。
(2) Regarding various ceramic powders with different stabilization times, I! The mixture is kneaded in a mixed manner with various milling times set, and the molding flow pressure of the resulting mixed S product is measured. Thereby, a test 1m showing the correlation between the cross-wire opening and the molding flow pressure is created for ceramic powders having various stabilization times. Based on the stabilization time of the ceramic powder used for the actual anti, the optimum crosstalk time to obtain the fi molding flow pressure is determined using the test 1111 described above.

実施例 以下にこの発明の実施例を示す。Example Examples of this invention are shown below.

塊状の窒化けい素をアルミナボールミルによって粉砕し
、粒度をDso−1,03711に調整し、その粉末を
18隨いた(サンプル1)。そのサンプル1について内
容WA100曽lのラボ・プラストミルで安定化時間を
測定した。また、上記粉末を1力月放置した(サンプル
2)。そのサンプル2について、サンプル1に用いたの
と同じラボ・プラストミルで安定化時間を測定した。ざ
らに、その粉末に微粉末(050−0,51M)をM1
1比で10%添加し、V型混合機で乾式混合したくサン
プル3)。
A lump of silicon nitride was ground using an alumina ball mill, the particle size was adjusted to Dso-1,03711, and 18 pieces of powder were obtained (Sample 1). The stabilization time of Sample 1 was measured using a Labo Plastomill with a content of WA 100. Further, the above powder was left for one month (Sample 2). The stabilization time for Sample 2 was measured using the same Lab Plastomill used for Sample 1. Roughly add fine powder (050-0,51M) to the powder.
Sample 3).

そのサンプル3について、他のサンプルと同様にして安
定化時間を測定した。
Regarding Sample 3, the stabilization time was measured in the same manner as the other samples.

以上においてサンプル1は表1it15性が高く、樹脂
との濡れ性が大きいサンプルであり、それに対しサンプ
ル2は表面活性が低く、樹脂との濡れ性が小さいサンプ
ルである。また、サンプル3は他のサンプルとは粒度の
異なるサンプルである。
In the above, Sample 1 has high surface activity and high wettability with resin, whereas Sample 2 has low surface activity and low wettability with resin. Further, sample 3 has a different particle size from the other samples.

以上の3種のサンプルについての安定化時間の測定は、
各々2〜4回反復して行なった。また測定は、ラボ・プ
ラストミルを190℃に保持し、回転ブレードを15 
r、p、mで回転させ、先ず、ワックス系を420投入
し、ざらにセラミック粉末168gを徐々に投入し、セ
ラミック粉末の全量を投入した後、測定温度がピークに
なった時を混線スタート時として行なった。
Measurement of stabilization time for the above three types of samples is as follows:
Each experiment was repeated 2 to 4 times. In addition, the measurement was carried out by holding the Labo Plastomill at 190°C and rotating the rotating blade at 15°C.
Rotate at r, p, m, first add 420 g of wax system, then gradually add 168 g of ceramic powder to the colander. After adding the entire amount of ceramic powder, the time when the measured temperature reaches the peak is the time to start cross-talk. It was carried out as

実施例 1 上述の各サンプルを大型ニーダ−で100分間混練し、
得られた混線物の成形流動圧を測定した。
Example 1 Each of the above samples was kneaded in a large kneader for 100 minutes,
The molding flow pressure of the obtained mixed wire product was measured.

その成形流動圧と各サンプルの安定化時間との関係を第
2図に示す。図に示すように成形流動圧と安定化時間と
は極めて良好な相関を示す。
FIG. 2 shows the relationship between the molding fluid pressure and the stabilization time of each sample. As shown in the figure, there is an extremely good correlation between molding flow pressure and stabilization time.

この第2図から、例えば最適成形流動圧が200〜30
0kO/cdである場合に、そのような成形流動圧の混
線物を得るには、安定化時間が16〜31分のセラミッ
ク粉末を用いなければならないことがわかる。したがっ
て、実際の操業時には、用いるべきセラミック粉末の安
定化時間を調べ、その安定化時間が16〜31分の範囲
に入るか否かによって、使用に供するべきか否かを評価
できる。
From this figure 2, for example, the optimum molding flow pressure is 200 to 30
It can be seen that in order to obtain such a molding flow pressure contaminant at 0 kO/cd, a ceramic powder with a stabilization time of 16 to 31 minutes must be used. Therefore, during actual operation, the stabilization time of the ceramic powder to be used is checked, and depending on whether the stabilization time falls within the range of 16 to 31 minutes, it can be evaluated whether or not it should be used.

実施例 2 上述の各サンプルについて、大型ニーダ−による混線時
間と成形流動圧との関係を調べた。その結果を第3図に
示す。
Example 2 For each of the above-mentioned samples, the relationship between crosstalk time using a large kneader and molding flow pressure was investigated. The results are shown in FIG.

第3゛図から、例えば安定化時間が16分の粉末(サン
プル1)では、成形流動圧が200〜300ka/dに
なる様な混線物を得るには大型ニーダ−で75〜105
分混練すれば良いことがわかる。
From Figure 3, it can be seen that for example, for powder with a stabilization time of 16 minutes (sample 1), in order to obtain a mixed material with a molding flow pressure of 200 to 300 ka/d, a large kneader is required to
It turns out that all you need to do is knead the mixture in minutes.

したがって、実際の操業時には、用いるべきセラミック
粉末の安定化*iを調べ、その安定化時間が例えば16
分である場合、大型ニーダ−での混   1練時間を7
5〜105分にするというようにして、混・練物の管理
を行なうことができる。
Therefore, during actual operation, the stabilization*i of the ceramic powder to be used is checked, and the stabilization time is, for example, 16
If the kneading time is 7 minutes, one kneading time in a large kneader is 7 minutes.
The kneading/kneading material can be controlled by keeping it for 5 to 105 minutes.

発明の効果 以上のようにこの発明のセラミック粉末・樹脂混練性評
価方法では、セラミック粉末と樹脂とを回転粘度計で混
線する際の、安定化時間を測定し、その安定化時間によ
って、射出成形に用いられるセラミック粉末とw4II
lとの混練性を事前に評価するようにしたこによって、
製造メーカー、製造ロフト、グレード等の異なるセラミ
ック原料粉末のIls性を使用前に正確に評価できる。
Effects of the Invention As described above, in the ceramic powder/resin kneadability evaluation method of the present invention, the stabilization time is measured when ceramic powder and resin are mixed with a rotational viscometer, and the stabilization time is used to determine whether the injection molding Ceramic powder and w4II used in
By evaluating the kneading properties with l in advance,
It is possible to accurately evaluate the ILS properties of ceramic raw material powders of different manufacturers, manufacturing lofts, grades, etc. before use.

その結果、セラミック原料粉末の決定、樹脂量の決定、
混線条件の決定を精度良く行なうことができ、最適なm
練物を得ることができる。
As a result, we determined the ceramic raw material powder, the amount of resin,
The crosstalk conditions can be determined with high accuracy, and the optimum m
You can get training items.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、セラミック粉末と樹脂とを回転粘度計で混線
する際の、時間経過に伴なうトルク値の変化を示す図、
第2図はこの発明の一実施例の説明図であり、セラミッ
ク粉末の安定化時間と成形流動圧との関係を示す図であ
る。第3図はこの発明の他の実施例の説明図であり、種
々の安定化時間を有するセラミック粉末について大型ニ
ーダ−による混練時間と成形流動圧との関係を測定した
結果を示す図である。 出願人  トヨタ自動車株式会社 代理人  弁理士 豊 1)武 久 (ほか1名) 第1図 第2図 ヤ(化−関 4分) 第3図 畏綽吟間 (分ン 〒
FIG. 1 is a diagram showing the change in torque value over time when ceramic powder and resin are mixed with a rotational viscometer,
FIG. 2 is an explanatory diagram of one embodiment of the present invention, and is a diagram showing the relationship between the stabilization time of ceramic powder and the molding flow pressure. FIG. 3 is an explanatory diagram of another embodiment of the present invention, and is a diagram showing the results of measuring the relationship between kneading time using a large kneader and molding flow pressure for ceramic powders having various stabilization times. Applicant Toyota Motor Corporation Representative Patent Attorney Yutaka 1) Hisashi Take (and 1 other person) Figure 1 Figure 2 Ya (Ka-Seki 4 minutes) Figure 3 Ekeginma

Claims (1)

【特許請求の範囲】[Claims] セラミック粉末と樹脂とを混練して射出成形により所要
の成形品を製造するに先立ち、樹脂と用いるべきセラミ
ック粉末とを各々所定量計量して、所定の温度に保った
回転粘度計に投入し、所定の回転数で混練し、混練開始
から回転トルク値の変動巾が安定するまでの所要時間、
すなわち安定化時間を測定し、以上の安定化時間の測定
により得られる数値によって射出成形に用いられるセラ
ミック粉末と樹脂との混練性を評価することを特徴とす
るセラミック粉末・樹脂混練性評価方法。
Before kneading ceramic powder and resin to produce a desired molded product by injection molding, predetermined amounts of the resin and ceramic powder to be used are each weighed and placed into a rotational viscometer maintained at a predetermined temperature. The time required from the start of kneading until the fluctuation range of the rotational torque value becomes stable after kneading at the specified rotation speed,
That is, a method for evaluating the kneadability of ceramic powder and resin, which comprises measuring the stabilization time, and evaluating the kneadability of the ceramic powder and resin used in injection molding based on the value obtained by measuring the stabilization time.
JP22176784A 1984-10-22 1984-10-22 Method of evaluating ceramic powder-resin kneading property Pending JPS61100411A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22176784A JPS61100411A (en) 1984-10-22 1984-10-22 Method of evaluating ceramic powder-resin kneading property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22176784A JPS61100411A (en) 1984-10-22 1984-10-22 Method of evaluating ceramic powder-resin kneading property

Publications (1)

Publication Number Publication Date
JPS61100411A true JPS61100411A (en) 1986-05-19

Family

ID=16771879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22176784A Pending JPS61100411A (en) 1984-10-22 1984-10-22 Method of evaluating ceramic powder-resin kneading property

Country Status (1)

Country Link
JP (1) JPS61100411A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5658507A (en) * 1994-09-08 1997-08-19 Japan As Represented By Director General Of Agency Of Industrial Science And Technology Method for the pre-estimation of extruding pressure and extruding velocity in the extrusion molding of particle-reinforced composites

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5658507A (en) * 1994-09-08 1997-08-19 Japan As Represented By Director General Of Agency Of Industrial Science And Technology Method for the pre-estimation of extruding pressure and extruding velocity in the extrusion molding of particle-reinforced composites

Similar Documents

Publication Publication Date Title
EP1550535B1 (en) Method and apparatus for manufacturing concrete mass
Bousmina et al. Determination of shear rate and viscosity from batch mixer data
German Homogeneity effects on feedstock viscosity in powder injection molding
US4321174A (en) Production of aqueous dispersion of aromatic polyethersulphone
US3727894A (en) Apparatus for moistening mixable materials
US6365269B1 (en) Plastic compositions for sheathing a metal or semiconductor body
JPS61100411A (en) Method of evaluating ceramic powder-resin kneading property
GB1584587A (en) Method of controlling the properties of a mixer
JPH0339576B2 (en)
JPS6177740A (en) Evaluating method of kneading property of ceramic powder and resin
JPS6179138A (en) Evaluating method of kneadability of ceramic powder and resin
CN109283096A (en) A kind of detection method of Iron Ore Powder index of cementation
EP1207384A2 (en) Method and device for determination of the water content in a granular material
JPS60179631A (en) Method for evaluating viscosity of kneaded material of ceramic powder and resin
Banfill Applications of rheology in mortar production
Tscheuschner et al. Instrumental texture studies on chocolate III. Processing conditioned factors influencing the texture
JP4102262B2 (en) Method for evaluating the fluidity of irregular refractories in a mixer
EP1550868B1 (en) Method and apparatus for defining air content of concrete mass
CN108776083A (en) A kind of magnetorheological fluid redispersibility quantitative measuring method
JPS613031A (en) Method for measuring flowability of highly viscous substance
JPH0480639A (en) Measuring method for particle size of powder
Kadri et al. Effect of recycled aggregate on fresh concrete properties
JPS6322608A (en) Method of adjusting viscosity of slurry as casting material
JPH0726043B2 (en) Method for manufacturing magnetic paint
Hornung 24 THE USE OF THE BRABENDER VISCOCORDER TO STUDY THE CONSISTENCY OF FRESH MORTAR BY TWO-POINT TESTS