JPS60179631A - Method for evaluating viscosity of kneaded material of ceramic powder and resin - Google Patents

Method for evaluating viscosity of kneaded material of ceramic powder and resin

Info

Publication number
JPS60179631A
JPS60179631A JP3742884A JP3742884A JPS60179631A JP S60179631 A JPS60179631 A JP S60179631A JP 3742884 A JP3742884 A JP 3742884A JP 3742884 A JP3742884 A JP 3742884A JP S60179631 A JPS60179631 A JP S60179631A
Authority
JP
Japan
Prior art keywords
viscosity
resin
ceramic powder
slurry
flow time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3742884A
Other languages
Japanese (ja)
Inventor
Takenobu Sakai
武信 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP3742884A priority Critical patent/JPS60179631A/en
Publication of JPS60179631A publication Critical patent/JPS60179631A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N11/00Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties
    • G01N11/02Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by measuring flow of the material
    • G01N11/04Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by measuring flow of the material through a restricted passage, e.g. tube, aperture

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Preparation Of Clay, And Manufacture Of Mixtures Containing Clay Or Cement (AREA)

Abstract

PURPOSE:To evaluate accurately a viscosity prior to the kneading by suspending the ceramic powder to be used into a prescribed testing solvent by a prescribed ratio to obtain the slurry, and measuring the flowing down time thereof by using a testing funnel. CONSTITUTION:The testing funnel consists of a slurry storage part 1 capable of storing a fixed quantity of the slurry, and a narrow under hole 2 for slurry drainage. The ceramic powders of different lapses of days after the pulverization and different grain sizes are used, these various powders are suspended into the testing solvent to obtain the testing slurry, and the flowing down time thereof is measured by using said testing funnel. By such a method, the viscosity of the kneaded material can be evaluated almost accurately.

Description

【発明の詳細な説明】 技術分野 この発明はセラミック粉末と樹脂とを混練して混練物と
なし射出成形によって所要の成形品を得る場合に、セラ
ミック粉末と樹脂とを混練するに先立って、その混線物
の粘度を推定評価する方法に関するものである。
[Detailed Description of the Invention] Technical Field This invention relates to a process in which ceramic powder and resin are kneaded to form a kneaded product, and when a desired molded product is obtained by injection molding, the The present invention relates to a method for estimating and evaluating the viscosity of a contaminant.

従来技術 近年、非酸化物系の窒化珪素や炭化珪素等のセラミック
を構造用材料として適用することが研究されている。実
際にそれ等のセラミックを用いて所要の形状の製品を得
るには、それ等のセラミック粉末を樹脂と共に混練し、
流動性のある混練物となして射出成形する場合が多い。
BACKGROUND OF THE INVENTION In recent years, research has been conducted on the use of non-oxide ceramics such as silicon nitride and silicon carbide as structural materials. In order to actually obtain a product in the desired shape using such ceramics, the ceramic powder is kneaded with resin.
It is often injection molded as a fluid kneaded product.

そのようにセラミック粉末と樹脂とを混線し射出成形す
る場合には、混練物の粘度が射出成形の作業性や成形品
の機械的特性等に大きく影響することから、その混線物
の粘度を適切に調整する必要がある。
When injection molding is performed by mixing ceramic powder and resin in this way, the viscosity of the mixed material greatly affects the workability of injection molding and the mechanical properties of the molded product, so the viscosity of the mixed material must be adjusted appropriately. need to be adjusted.

ところで、セラミック粉末と樹脂とを混練して得られる
混線物の粘度にはセラミック粉末の特性が大きり影響す
る。すなわち、セラミック粉末と樹脂とを混練すると、
ミクロには個々のセラミック粉末粒子の外表面に樹脂が
付着し、そのように個々のセラミック粉末粒子の外表面
に樹脂が付着する度合によって、混線物の流動性が変化
する。
Incidentally, the viscosity of the mixed material obtained by kneading ceramic powder and resin is greatly influenced by the characteristics of the ceramic powder. That is, when ceramic powder and resin are kneaded,
In the microscopic system, resin adheres to the outer surface of each ceramic powder particle, and the fluidity of the mixed material changes depending on the degree to which the resin adheres to the outer surface of each ceramic powder particle.

具体的には、個々のセラミック粉末粒子の外表面に樹脂
が”付着する度合が大きい場合には混線物の流動性が小
さくなり、付着する度合いが小さい場合には混線物の流
動性が大きくなる。そしてさらに、そのセラミック粉末
粒子の外表面に樹脂が付着する度合いは、個々のセラミ
ック粉末粒子の粒径および樹脂に対する濶れ性によって
左右される。
Specifically, when the degree of resin adhesion to the outer surface of individual ceramic powder particles is large, the fluidity of the cross-contaminant decreases, and when the degree of resin adhesion is small, the fluidity of the cross-conductor increases. Furthermore, the degree to which the resin adheres to the outer surface of the ceramic powder particles depends on the particle size of the individual ceramic powder particles and the wetting property with respect to the resin.

すなわち、個々の粒子の粒径が小さい程セラミック粉末
全体としては樹脂が付着する度合いが大きく、また、個
々の粒子の樹脂に対する濡れ性が大きい程やはり樹脂が
付着する度合が大きい。
That is, the smaller the particle size of the individual particles, the greater the degree to which the resin adheres to the ceramic powder as a whole, and the greater the wettability of the individual particles to the resin, the greater the degree to which the resin adheres.

以上のように、セラミック粉末と樹脂との混線物の粘度
はセラミック粉末の特性、具体的には粒径および樹脂に
対する濡れ性によって影響される。
As described above, the viscosity of the mixture of ceramic powder and resin is influenced by the characteristics of the ceramic powder, specifically the particle size and wettability with respect to the resin.

一般に、セラミック粉末は、塊状のセラミックを粉砕機
によって粉砕して製造され、得られる粉末粒子の粒径は
均一ではない。また、粉砕直後の粒子の表面は非常に活
性で樹脂に対する濡れ性が大きいが、粉砕後時日の経過
にしたがい除々に活性は低下していく。その結果、セラ
ミック粉末と樹脂との混線物を射出成形して所要の製品
を得る場合に原料として用意されるセラミック粉末の粒
径および樹脂に対する濡れ性は一様ではない。そのため
、射出成形にあたって、型への混練物の流入不足をなく
し、かつ得られる製品の品質を良好に保つためには、用
意されたセラミック粉末と樹脂との混線物の粘度を所要
の程度にする様常時管理することが不可欠となる。
Generally, ceramic powder is manufactured by crushing a lump of ceramic using a crusher, and the particle size of the resulting powder particles is not uniform. Further, the surface of the particles immediately after pulverization is very active and highly wettable with resin, but the activity gradually decreases as time passes after pulverization. As a result, when a desired product is obtained by injection molding a mixture of ceramic powder and resin, the particle size and wettability of the ceramic powder prepared as a raw material with respect to the resin are not uniform. Therefore, during injection molding, in order to eliminate insufficient flow of the kneaded material into the mold and maintain good quality of the resulting product, the viscosity of the prepared mixture of ceramic powder and resin must be adjusted to the required level. It is essential to constantly manage the situation.

従来、以上のセラミック粉末と樹脂との混線物の粘度の
管理は実際にセラミック粉末と樹脂とを一混線してその
粘度を直接測定した結果に基ずき行なわれていた。しか
し、そのような従来の方法では、混線の前の時点で得ら
れる混線物の粘度を評価して管理することはできず、ま
た粘度の測定自体が容易ではないという問題があった。
Conventionally, the viscosity of the mixture of ceramic powder and resin has been controlled based on the results of actually mixing the ceramic powder and resin and directly measuring the viscosity. However, such conventional methods have problems in that it is not possible to evaluate and manage the viscosity of the crosstalk obtained before the crosstalk occurs, and the viscosity itself is not easy to measure.

発明の目的 この発明は以上の従来の事情に鑑みてなされたものであ
って、セラミック粉末と樹脂との混線物の粘度を、混線
前に正確に評価し、混線物の粘度の管理を簡易・迅速に
行なうことができるようにしたセラミック粉末・樹脂混
線物の粘度評価方法を提供することを目的とするもので
ある。
Purpose of the Invention The present invention has been made in view of the above-mentioned conventional circumstances, and it is possible to accurately evaluate the viscosity of a mixed material of ceramic powder and resin before mixing, and to easily and easily manage the viscosity of the mixed material. The purpose of this invention is to provide a method for evaluating the viscosity of a ceramic powder/resin mixture that can be performed quickly.

発明の構成 すなわちこの発明のセラミック粉末・樹脂混線物の粘度
評価方法は、セラミック粉末と樹脂とを混線してq1出
成形により所要の製品を製造するに先立ち、用いるべき
セラミック粉末を所定の試験用溶媒に所定の比率でmM
させてスラリーとなし、所定の試験用ロートを用いて上
記スラリーの流下時間を測定し、その流下時間によって
セラミック粉末と樹脂との混線物の粘度を評価すること
を特徴とするものである。
The structure of the invention, that is, the method for evaluating the viscosity of a ceramic powder/resin mixture according to the present invention is that, before mixing ceramic powder and resin and manufacturing a desired product by q1 extrusion molding, the ceramic powder to be used is subjected to a predetermined test. mM in the given ratio to the solvent
The slurry is made into a slurry, the flow time of the slurry is measured using a predetermined test funnel, and the viscosity of the mixture of ceramic powder and resin is evaluated based on the flow time.

以下にこの発明をさらに具体的に説明する。This invention will be explained in more detail below.

この発明では、セラミック粉末と樹脂とを混[して射出
成形により所要の成形品を製造するに先立ち、その前に
先ず用いるべきセラミック粉末を所定の試験用溶媒に所
定の比率で溶かしてスラリーとなす。
In this invention, before mixing ceramic powder and resin to produce a desired molded product by injection molding, the ceramic powder to be used is first dissolved in a predetermined test solvent at a predetermined ratio to form a slurry. Eggplant.

試験用溶媒としてはエタノール等の低級アルコールを用
いるのが好ましい。
It is preferable to use a lower alcohol such as ethanol as the test solvent.

次にこの発明では、以上で得られたスラリーについて、
所定の試験用ロートを用いて流下時間を測定する。
Next, in this invention, regarding the slurry obtained above,
Measure the flow time using a designated test funnel.

試験用ロートとしては第1図に示すように、一定量のス
ラリーを貯溜できるスラリー貯溜部1を有し、下方に狭
小なスラリー流出口2を有するも)等を用いることがで
きる。流下時間の測定はスラリーの単位最について行な
い、その測定された流下時間に基ずき、試験の対象とな
ったセラミック粉末と樹脂とを混練した場合の粘度を評
価する。
As the test funnel, as shown in FIG. 1, a funnel having a slurry storage part 1 capable of storing a certain amount of slurry and a narrow slurry outlet 2 at the bottom can be used. The flow time is measured for each unit of slurry, and based on the measured flow time, the viscosity of the ceramic powder and resin to be tested is evaluated.

評価にあたっては予め次のようにして作成された資料を
用いるのが軽便である。
For evaluation, it is convenient to use materials prepared in advance as follows.

粉砕後の経過日数および粒度が種々異なるセラミック粉
末を用い、先ずそ九等の各種粉末を各々試験用溶媒に溶
かして試験用スラリーとなし、その各試験用スラリーに
ついて第1図に示す試験用ロートを用いて流下時間を測
定する。次に射出成形による成形品製造時にセラミック
粉末と共に混練される樹脂と上記各種粉末とを混練して
得られる各混線物の粘度を測定する。以上の流下時間測
定結果と粘度測定結果とを用いて試験用スラリー流下時
間と混練物の粘度との関係を示す資料を作成する。
Using ceramic powders that differ in the number of days since pulverization and the particle size, first dissolve each of the various powders, such as No. Measure the flow time using Next, the viscosity of each mixed material obtained by kneading the above-mentioned various powders with the resin that is kneaded together with the ceramic powder during the production of the molded product by injection molding is measured. Using the above flow time measurement results and viscosity measurement results, materials showing the relationship between the test slurry flow time and the viscosity of the kneaded product are created.

セラミック粉末と樹脂とを混線して射出成形によって所
要の成形品を実際に製造するにあたっては、事前に用い
るべきセラミック粉末を資料作成時に用いた試験用溶媒
に同一の比率で溶かしてスラリーとなし、そのスラリー
について資料作成時に用いた第1図に示す試験用ロート
を用いて流下時間を測定Vる。その測定結果を前記資料
と対照すれば、対匁となったセラミック粉末と樹脂とを
混線した場合の粘度がほぼ正確に評価できる。
When actually manufacturing the desired molded product by injection molding by mixing ceramic powder and resin, the ceramic powder to be used must be dissolved in advance in the same ratio in the test solvent used when creating the materials to form a slurry. The flow time of the slurry was measured using the test funnel shown in FIG. 1 that was used when preparing the data. By comparing the measurement results with the above-mentioned data, it is possible to almost accurately evaluate the viscosity when the ceramic powder and resin are mixed together.

実施例 以下にこの発明の実施例を記す。Example Examples of this invention are described below.

塊状の窒化珪素をアルミナボールミルによって粉砕し、
粒度を0−5J”11.JJm、2.0坤に調整したも
のを、粉砕径大気中で1力月放置した。それ等の各原料
についてロート流下時間とな1脂との混線粘度とを測定
した。
The bulk silicon nitride is crushed by an alumina ball mill,
The particles whose particle size was adjusted to 0-5J" 11.JJm and 2.0K were left in the atmosphere for one month. For each of these raw materials, the flow time through the funnel and the crosstalk viscosity with 1 fat were calculated. It was measured.

試験用ロー1−は第1図に示すロー1−を用い、ロー1
へ流下時間を測定する試験用スラリーは、1βのポリエ
チレン容器に外径15mmのナイロンボールを400a
 、上記各原料から採取した試料粉末を300g、エタ
ノールを400+n4投入し、そのポリエチレン容器を
回転装置にて64 r、p、m、の速さで30分間回転
させ、内容物を混合して作成した。
For the test row 1-, use the row 1- shown in Figure 1.
The test slurry for which the flow time is to be measured was made by placing 400 mm of nylon balls with an outer diameter of 15 mm in a 1β polyethylene container.
, 300g of sample powder collected from each of the above raw materials and 400+n4 ethanol were added, and the polyethylene container was rotated at a speed of 64 r, p, m for 30 minutes using a rotating device to mix the contents. .

以上の各試験用スラリーを100+’!ずつロートから
流下させて流下時間を測定した。流下時間の測定は各試
験用スラリーについて6度ずつ行ない、その平均をとっ
て各試験用スラリーの流下時間とした。
100+' for each of the above test slurries! Each sample was allowed to flow down from the funnel and the flow time was measured. The flow time was measured six times for each test slurry, and the average was taken as the flow time for each test slurry.

樹脂との混線粘度の測定は、前述した各原料を各々5k
g用い、それ等の各々とE、v、A、(エチレン酢酸ビ
ニール共重合体)1k(lとを2軸押出機に入れた時の
混練品の粘度を、温度1.30℃において混練治具の回
転数が50 r、p8m、であるときの流動圧(面圧)
として測定した。
To measure crosstalk viscosity with resin, each of the above-mentioned raw materials was tested at 5k each.
The viscosity of the kneaded product when E, v, A, and 1k (l of ethylene vinyl acetate copolymer) were put into a twin-screw extruder was determined by kneading and curing at a temperature of 1.30°C. Flow pressure (surface pressure) when the rotation speed of the tool is 50 r, p8m
It was measured as

以上の各測定結果−を、原料粉末粒子の粒径と試験用ス
ラリーの流下時間、原料粉末粒子の粒径と混線粘度との
関係として第2図に示す。
The above measurement results are shown in FIG. 2 as the relationship between the particle size of the raw powder particles, the flow time of the test slurry, and the particle size of the raw powder particles and crosstalk viscosity.

次に、塊状の窒化珪素をアルミナボールミルによって粉
砕し、粒度をIJJIIG−調整した原料粉末を用い、
粉砕直後のものおよび粉砕径大気中で1日、3日、5日
放置したものについて、前述したものと同仔に試験用ス
ラリーのロート流下時間と樹脂との混線粘度とを測定し
た。各測定結果を原料粉末の粉砕後経過日数と試験用ス
ラリーの流下時間、原料粉末の粉砕後経過日数と混線粘
度との関係として第3図に示す。
Next, bulk silicon nitride was ground with an alumina ball mill, and the particle size was adjusted to IJJIIG, using raw material powder.
The funnel flow time of the test slurry and the crosstalk viscosity with the resin were measured for those immediately after pulverization and those that had been left in the atmosphere for 1, 3, and 5 days in the same manner as those described above. The measurement results are shown in FIG. 3 as the relationship between the number of days that have passed since the raw material powder was pulverized, the flow time of the test slurry, and the number of days that have passed since the raw material powder was pulverized and the crosstalk viscosity.

第2図に示すように、原料粉末の平均粒径が大きくなる
と流下時間および混線粘度が小さくなり、平均粒径の変
化に対応する流下時間および混線粘度の変化はほぼ一致
する。
As shown in FIG. 2, as the average particle size of the raw material powder increases, the flow time and crosstalk viscosity decrease, and the changes in flow time and crosstalk viscosity that correspond to changes in the average particle size almost match.

また第3図に示すように、原わ[粉末の粉砕後の経過日
数が長くなると流下ej間および混線粘度は小さくなり
、原料粉末の粉砕後の経過日数の変化に対応する流下時
間および混線粘度の変化はほぼ一致する。
In addition, as shown in Fig. 3, as the number of days elapsed after the raw powder was crushed, the flow time and crosstalk viscosity decreased; The changes are almost the same.

さらに、以上の各測定結果から、第4図に示すように試
験用スラリーのロート流下時間と樹脂との混練粘度との
関係を示す検量線を作成した。こ度が不明の窒化珪素粉
末について、試験用スラリーを作成しロート流下時間を
測定し、樹脂との混練粘度を事前に評価した。また、評
価した各混合粉末について実際に樹脂との混線粘度を確
認した。
Furthermore, from the above measurement results, a calibration curve was created showing the relationship between the funnel flow time of the test slurry and the kneading viscosity of the resin, as shown in FIG. A test slurry was prepared for a silicon nitride powder whose hardness was unknown, the funnel flow time was measured, and the kneading viscosity with the resin was evaluated in advance. Furthermore, the crosstalk viscosity with the resin was actually confirmed for each of the evaluated mixed powders.

その結果を第1表に示す。The results are shown in Table 1.

□ ]− − − 第1表から、試験用スラリーの流下時間から第4図を用
いて混線粘度を評価した値が、実際の混練粘度と良く一
致することがわかる。
□] - - - From Table 1, it can be seen that the value of cross-mixing viscosity evaluated from the flow time of the test slurry using FIG. 4 agrees well with the actual kneading viscosity.

発明の効果 以上のようにこの発明によれば、セラミック粉末を所定
の試験用溶媒に所定の比率でR濁させてスラリーとなし
、その試験用スラリーの流下時間を測定してセラミック
粉末と樹脂との混練物の粘り粉末と樹脂とを混練して射
出成形により所要の製品を製造するにあたり、セラミッ
ク粉末と樹脂とを混練する前に、混練して得られる混線
物の粘度をほぼ正確に評価することができ、射出成形す
る混線物の粘度の管理を簡易迅速に行なうことができる
Effects of the Invention As described above, according to the present invention, ceramic powder is mixed with a predetermined ratio of R in a predetermined test solvent to form a slurry, and the flow time of the test slurry is measured to determine the relationship between the ceramic powder and the resin. Before kneading ceramic powder and resin to manufacture a desired product by injection molding, the viscosity of the mixed product obtained by kneading is almost accurately evaluated. This makes it possible to easily and quickly manage the viscosity of the mixed material to be injection molded.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は試験用ロートの断面図、第2図はこの発明を実
施するにあたって、活性度が同程度で粒径が異なる窒化
珪素粉末によって形成したスラリーの流下時間を測定し
、またそれ等の窒化珪素粉末と樹脂との混線粘度を測定
し、その流下時間測定結果と粒度および混練粘度測定結
果と粒度との関係を示した図である。第3図は粒度が同
程度で活性度が種々異なる窒化珪素粉末を用い、スラリ
ー流下時間と活性度(粉砕後経過回数)および樹脂との
混合粘度と活性度との関係を示した図である。第4図は
、窒化珪素粉末を用いた場合の試験用スラリーの流下時
間と樹脂との混合粘度との関係を示した図である。 第1図 第2図 第3図 豪灸匹日数(日) 第4図 す。 〃 (b ″、I九下時下時間ブ)
Fig. 1 is a cross-sectional view of a test funnel, and Fig. 2 is a cross-sectional view of a test funnel. FIG. 3 is a diagram showing the relationship between the cross-wire viscosity of silicon nitride powder and resin, and the relationship between the flow time measurement result and particle size, and the kneading viscosity measurement result and particle size. Figure 3 is a diagram showing the relationship between slurry flow time and activity (number of times elapsed after crushing), and mixing viscosity with resin and activity using silicon nitride powders with similar particle sizes and different degrees of activity. . FIG. 4 is a diagram showing the relationship between the flow time of the test slurry and the mixing viscosity with the resin when silicon nitride powder is used. Figure 1 Figure 2 Figure 3 Number of days of moxibustion (days) Figure 4. 〃 (b ″, I9 lower hours)

Claims (1)

【特許請求の範囲】[Claims] セラミック粉末と樹脂とを混練して射出成形により所要
の成形品を製造するに先立ち、用いるべきセラミック粉
末を所定の試験用溶媒に所定の比率で感温させてスラリ
ーとなし、所定の試験用ロートを用いて上記スラリーの
流下時間を測定し、その流下時間によってセラミック粉
末と樹脂との混線物の粘度を評価することを特徴とする
セラミック粉末・樹脂混線物の粘度評価方法。
Before kneading ceramic powder and resin to produce a desired molded product by injection molding, the ceramic powder to be used is heated at a predetermined ratio in a predetermined test solvent to form a slurry, and then poured into a predetermined test funnel. A method for evaluating the viscosity of a ceramic powder/resin mixture, characterized in that the flow time of the slurry is measured using a method, and the viscosity of the ceramic powder/resin mixture is evaluated based on the flow time.
JP3742884A 1984-02-28 1984-02-28 Method for evaluating viscosity of kneaded material of ceramic powder and resin Pending JPS60179631A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3742884A JPS60179631A (en) 1984-02-28 1984-02-28 Method for evaluating viscosity of kneaded material of ceramic powder and resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3742884A JPS60179631A (en) 1984-02-28 1984-02-28 Method for evaluating viscosity of kneaded material of ceramic powder and resin

Publications (1)

Publication Number Publication Date
JPS60179631A true JPS60179631A (en) 1985-09-13

Family

ID=12497238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3742884A Pending JPS60179631A (en) 1984-02-28 1984-02-28 Method for evaluating viscosity of kneaded material of ceramic powder and resin

Country Status (1)

Country Link
JP (1) JPS60179631A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6279794B1 (en) 1998-01-07 2001-08-28 Vijay Co., Ltd. Packaging bottle with carrying handle
CN102331386A (en) * 2011-06-17 2012-01-25 常州天合光能有限公司 Method for testing EVA (ethylene-vinyl acetate) viscosity temperature variation curve

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6279794B1 (en) 1998-01-07 2001-08-28 Vijay Co., Ltd. Packaging bottle with carrying handle
CN102331386A (en) * 2011-06-17 2012-01-25 常州天合光能有限公司 Method for testing EVA (ethylene-vinyl acetate) viscosity temperature variation curve

Similar Documents

Publication Publication Date Title
US20150103614A1 (en) Apparatus and method for a concrete plant
CN108409330A (en) A kind of method that 3D moldings prepare compact silicon carbide ceramic
Williams et al. The direct measurement of the failure function of a cohesive powder
JPS60179631A (en) Method for evaluating viscosity of kneaded material of ceramic powder and resin
CN100575427C (en) Finely divided solids composition in thermoplastic material to be added with high talc content
Goodhart et al. Design and use of a laboratory extruder for pharmaceutical granulations
CN105965716A (en) Continuous production process and device for rubber compound
CN103604678A (en) Sample preparation method for uniformly distributing trace components in solid block matrix
JP6304641B1 (en) Batch mixing method and batch mixing device
HU182932B (en) Method and apparatus for controlling the calibration of mixture components at concrete production
CN112268764A (en) Segregation-free uniform distribution method for powdery sample
TW479003B (en) Granule for forming ferrite body, ferrite sintered product and production method thereof
JPS61100411A (en) Method of evaluating ceramic powder-resin kneading property
JPS6177740A (en) Evaluating method of kneading property of ceramic powder and resin
JPS6179138A (en) Evaluating method of kneadability of ceramic powder and resin
JP3191227B2 (en) Preparation method of non-separable mixture using powder and liquid
JPH08108426A (en) Method for quality control of high-fluidity concrete
CN118130311A (en) Method for detecting wax content in granulated cobalt powder
Kadri et al. Effect of recycled aggregate on fresh concrete properties
JP2024021943A (en) Manufacturing method of concrete
Brunquet et al. In-situ on-line control of SCC production regularity
JP3684896B2 (en) Method of blending fine aggregate and water for mixing and method of continuous kneading of concrete
Maynard Blender selection and avoidance of post-blender segregation
JPH01291905A (en) Raw material blending system
JPS60151277A (en) Manufacture of silicon nitride sintered body