JPS6092479A - Grain oriented silicon steel sheet having low iron loss without deterioration of characteristic by stress relief annealing and its production - Google Patents

Grain oriented silicon steel sheet having low iron loss without deterioration of characteristic by stress relief annealing and its production

Info

Publication number
JPS6092479A
JPS6092479A JP58201279A JP20127983A JPS6092479A JP S6092479 A JPS6092479 A JP S6092479A JP 58201279 A JP58201279 A JP 58201279A JP 20127983 A JP20127983 A JP 20127983A JP S6092479 A JPS6092479 A JP S6092479A
Authority
JP
Japan
Prior art keywords
annealing
steel sheet
steel
region
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58201279A
Other languages
Japanese (ja)
Other versions
JPH028027B2 (en
Inventor
Ujihiro Nishiike
西池 氏裕
Michiro Komatsubara
道郎 小松原
Yoshiaki Iida
飯田 嘉明
Isao Matoba
的場 伊三夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP58201279A priority Critical patent/JPS6092479A/en
Priority to US06/663,385 priority patent/US4655854A/en
Priority to EP84307320A priority patent/EP0143548B1/en
Priority to DE8484307320T priority patent/DE3473679D1/en
Publication of JPS6092479A publication Critical patent/JPS6092479A/en
Priority to US07/120,203 priority patent/US4952253A/en
Priority to US07/448,059 priority patent/US5173129A/en
Publication of JPH028027B2 publication Critical patent/JPH028027B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1294Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a localized treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets
    • H01F1/14783Fe-Si based alloys in the form of sheets with insulating coating

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To provide a grain oriented silicon steel sheet having an excellent iron loss characteristic with which a plastic strain area is not observed in the surface layer part of the base iron and which is not deteriorated in characteristic even if the sheet is subjected to stress relief annealing by forming a different thickness region to the forsterite film in the surface layer part of the base iron. CONSTITUTION:A hot rolled steel sheet consisting of a silicic steel contg. about 2.0-4.0% Si is subjected to one pass or two passes of cold rolling including intermediate annealing to a final thickness. A separating agent for annealing consisting essentially of MgO is locally coated (so as to form the uncoated region of the separating agent) on the surface of the steel sheet having the final thickness. The steel sheet treated in such a way is subjected to secondary recrystallization and the high temp. purification annealing (final finish annealing) in succession thereto to form an ordinary forsterite film on the surface coated with the separating agent for annealing. More specifically, a reduced thickness region is formed between said film and the part where said agent is not coated. As a result, the grain oriented silicon steel sheet which is so formed that the actual record in segmentation of the magnetic domain width of the product is assured without deteriorating the characteristic even after stress relief annealing at a high temp. is obtd.

Description

【発明の詳細な説明】 技術分野 鉄損の低い方向性番プい素鋼板とその製造方法に関して
、この明細書に述べる技術内容は、とくに鋼板表面の被
膜に不均一性をイリりしc核表面に異 −張力の働く領
域を区画形成させることにより、鉄損を向上させること
に関連している。
[Detailed Description of the Invention] Technical field The technical content described in this specification regarding grain-oriented steel sheets with low iron loss and their manufacturing methods is particularly focused on preventing unevenness in the coating on the surface of the steel sheets and c-nucleation. It is related to improving iron loss by forming areas on the surface where different tensions act.

背景技術 方向性けい素鋼板は主として変圧器その他の電気機器の
鉄心として利用され、その磁化特性が優れでいること、
とくに鉄損(W17150で代表される)が低いことが
要求されている。
BACKGROUND TECHNOLOGY Grain-oriented silicon steel sheets are mainly used as iron cores for transformers and other electrical equipment, and their magnetization properties are excellent.
In particular, low iron loss (represented by W17150) is required.

このためには、第一に鋼板中の2次再結晶粒の(001
)粒方イずlを圧延方向に高度に揃えることが必要であ
り、第二には、最終製品の鋼中に存在Jる不純物や析出
物をできるだけ減少させる必要がある。かかる配瞳の下
に製造される方向性()い素鋼板は、今日まで多くの改
善努力によって、その鉄損値も41を追って改善され、
最近では板厚0.30IIIllの製品でW17150
の値が1.05 W/kgの低鉄損のものが1!ノられ
ている。
For this purpose, firstly, the secondary recrystallized grains in the steel sheet (001
) It is necessary to highly align the grain orientation in the rolling direction, and secondly, it is necessary to reduce as much as possible the impurities and precipitates present in the final product steel. Through many improvement efforts to date, the iron loss value of the grain-oriented steel sheets manufactured under this pupil has been improved by 41.
Recently, W17150 is a product with a plate thickness of 0.30IIIll.
The one with low iron loss with a value of 1.05 W/kg is 1! Being beaten.

しかし、数年1)bの1″ネ、ルギー危機を境にして、
電力損失のJ、り少41い電気機器をめる傾向が一段と
強まり、それらの鉄芯材料として、ざらに鉄損の低い一
方向1j口ノい素鋼板が要語されるようになっている。
However, a few years ago, after the Rugi crisis,
There is a growing trend to install electrical equipment with low power loss, and unidirectional steel sheets with low iron loss are becoming popular as core materials for these devices. .

従来技術ど−その問題点 ところで、方向性りい素鋼板の鉄損を下げる手法として
は、3i含イ、JLVlを畠める、製品板厚を薄くする
、2次再結晶粒を細かくする、不純物含有m ヲ(a 
M t ル、ソシC(110) (001) 方4ft
(1)2次再結晶粒をにり畠1.CJ、に揃えるなど、
主に冶金学的方法が一般に知られているが、これらの手
法は、現行の生産手段の、lからはしは曽限界に達して
いて、これ以上の改jへは1〜めU fil L、 <
、たとえ多少の改善が認められIことしCも、その努力
の割には鉄損改善の実効は僅かとなるに至っている。
Conventional technology - Problems By the way, methods to reduce the iron loss of grain-oriented silicon steel sheets include increasing 3i content, increasing JLVl, reducing the thickness of the product sheet, and making secondary recrystallized grains finer. Contains impurities m wo (a
Mt Le, Soshi C (110) (001) 4ft
(1) Secondary recrystallized grains by Nirihata1. CJ, etc.,
Mainly metallurgical methods are generally known, but these methods have reached the limit of the current production means, and further changes cannot be achieved until 1~U fil L. , <
However, even though some improvement was recognized in IC this year, the effectiveness of iron loss improvement was small compared to the efforts made.

これらの方法とは別に、特公昭54−23647号公報
に開示きれ−(いるように、鋼板表面に2数百結晶阻止
V1域を形成さけることにより、2次再結晶粒を細粒化
させる方法が提案されている。
Apart from these methods, as disclosed in Japanese Patent Publication No. 54-23647, there is a method of making secondary recrystallized grains finer by avoiding the formation of a few hundred crystal blocking V1 regions on the surface of a steel sheet. is proposed.

しかしながらこの方法は、2次再結晶粒径の制御が安定
していないため、実用的どは云いがたい。
However, it is difficult to say that this method is practical because control of the secondary recrystallized grain size is not stable.

その他特公昭58−5968号公報には、2次再結晶後
の鋼板の表面にボールペン状小球により、微小歪を鋼板
表層に導入することにより、磁区の幅を微細化し、鉄損
を低減する技術が、また、特公昭57−2252号公報
には、最終製品板表面に、圧延方向にほぼ直角にレーザ
ービームを数■間隔に照射し、鋼板表層に高転位密度領
域を導入でることにより、磁区の幅を微細化し、鉄損を
低減する技術が提案されている。さらに、特開昭57−
188810号公報には、放電加工により鋼板表層に微
小歪を導入し、磁区幅を微細化し、鉄損を低減Jる同様
の技術が提案されている。これら3種類の方法は、いず
れも2次再結晶後の鋼板の地鉄表層に微小な塑性歪を導
入リ−ることにより磁区幅を微細化し鉄損の低減を図る
もの′であって、均しく実用的であり、かつ鉄損低減効
果も優れているが、鋼板の打抜き加工、せん断加工、巻
き加工などの襖の歪取り焼鈍亡、E −−Jインクの焼
イ1け処理の如ぎ熱処理によって、塑性歪導入による効
果が減殺される欠点を伴う。な(13コーテイング処理
後に微小な塑性歪の導入を行う場合は、絶縁性を111
 J:j−Jるために絶縁コーディングの再塗布を行わ
ねばなぎうEl″計(・l”J工程、再塗布■稈と、工
程の大幅増加になり、1ストノアツブをもたらり。
In addition, Japanese Patent Publication No. 58-5968 discloses that micro-strain is introduced into the surface layer of the steel plate after secondary recrystallization using ballpoint pen-shaped small balls to refine the width of the magnetic domain and reduce iron loss. The technology is also disclosed in Japanese Patent Publication No. 57-2252, by irradiating the surface of the final product sheet with a laser beam at intervals of several inches approximately perpendicular to the rolling direction to introduce high dislocation density regions into the surface layer of the steel sheet. Techniques have been proposed to reduce iron loss by reducing the width of magnetic domains. Furthermore, JP-A-57-
A similar technique is proposed in Japanese Patent No. 188810, in which minute strain is introduced into the surface layer of a steel plate by electrical discharge machining, the magnetic domain width is made finer, and iron loss is reduced. These three methods all introduce minute plastic strain into the surface layer of the base metal of the steel sheet after secondary recrystallization, thereby refining the magnetic domain width and reducing iron loss. Although it is very practical and has an excellent iron loss reduction effect, it is similar to annealing to remove strain from sliding doors during punching, shearing, and winding of steel plates, and one-time annealing treatment of E--J ink. Heat treatment has the disadvantage that the effect of introducing plastic strain is reduced. (If introducing minute plastic strain after 13 coating treatment, increase the insulation property to 111)
J: In order to reapply the insulating coating, it is necessary to reapply the insulation coating.

発明の目的 この発明は、]記した先行技術とは発想を異にした磁区
幅の細分化り段を5って、高温における歪取り焼鈍の後
にJ3いでも特性劣化を伴わずに、製品の磁区幅細分化
の実効を確保し得るようにした方向性りいメ・9鋼板を
jノえることを「目的とでる。
Purpose of the Invention The present invention has a method of refining the magnetic domain width, which is different from the prior art mentioned above, to improve the quality of the product without deteriorating its characteristics even after strain relief annealing at high temperature. The objective is to produce a 9-dimensional steel plate with a directionality that ensures the effectiveness of magnetic domain width refinement.

メを明のナミ:;眉; このブで明は、/J M ’l’、l: IJい桑鋼板
の表面被膜を構成JるフΔルスアライト被fluにd3
いて厚みの異なる領域づなわち51イ凡J領域の存在が
、製品の磁区幅の細分化に極めて右利に寄与Jることの
新規知見に立脚りる。
The brightness of the eye is:; the eyebrows; the brightness in this block is /J M 'l', l: The surface coating of the IJ mulberry steel plate is d3 to the full-alite coated flu.
This is based on the new knowledge that the existence of regions with different thicknesses, that is, 51 regions, greatly contributes to the subdivision of the magnetic domain width of products.

解決手段の解明経緯 方向性けい素鋼板の製造工程において、最終板厚に冷間
圧延された鋼板は有害な炭素を取除くため通常脱炭焼鈍
が施される。かかる焼鈍によって鋼板は、内部に微細な
分散第2相からなる抑制剤を含有した1次再結晶集合組
織となるが、同時に鋼板表面層は微細なSi 02粒ゴ
が地畝内に分散したザブスケール構造となる。このl>
J炭・1次再結晶板には、その表面にM(toを主成分
とする焼鈍分離剤を塗布したのち、2次再結晶焼鈍つい
で・でれに引き続き1200℃前後での高温純化焼鈍が
施される。この2次再結晶焼鈍によって鋼板の結晶粒は
、(1HI) (001)方位の粗大な粒になる。
Elucidation of the solution In the manufacturing process of grain- and grain-oriented silicon steel sheets, the steel sheets that have been cold-rolled to the final thickness are usually subjected to decarburization annealing to remove harmful carbon. Through such annealing, the steel sheet becomes a primary recrystallized texture containing an inhibitor consisting of a finely dispersed second phase, but at the same time, the surface layer of the steel sheet becomes a subscale structure in which fine Si02 grains are dispersed in the ground ridges. It becomes a structure. This l>
After applying an annealing separator containing M(to as the main component) to the surface of the J coal/first recrystallization plate, secondary recrystallization annealing and subsequent high temperature purification annealing at around 1200°C are performed. Through this secondary recrystallization annealing, the crystal grains of the steel sheet become coarse grains with (1HI) (001) orientation.

また高ぺii II!’化焼鈍にJ、って鋼板内部に存
在していた抑制剤の1部であるSやSeヤ)N等は鋼板
地鉄外に除去される。
Takapeii II! During annealing, S, Se, N, etc., which are part of the inhibitors present inside the steel sheet, are removed to the outside of the steel sheet.

さらに、この純化焼鈍において、鋼板表層のりブスケー
ル中のSi 02と表面に塗イ[]された焼鈍分離剤中
のMgOが、次式、 2M(l O+Si 02→MgfVIg2 Si O
’4゜のように反応して鋼板表面に、フAルステライト
(!vlo 2 Si 04 )の多結晶からなる被膜
を形成する。このどき、余剰のMgOは未反応物としで
、鋼板と鋼板との融着を防止する役割を果す。そして高
温純化焼鈍を終えた鋼板は未反応の焼鈍分離剤を取除き
、心間に応じて絶縁コーティングの上塗りやコイルレッ
トを取除くための処理を施して製品とな寸わけで゛ある
Furthermore, in this purification annealing, the Si 02 in the steel plate surface layer glue scale and the MgO in the annealing separator coated on the surface are expressed by the following formula, 2M(l O + Si 02 → MgfVIg2 Si
The reaction occurs as shown in Figure 4, forming a film made of polycrystalline A-fulsterite (!vlo 2 Si 04 ) on the surface of the steel sheet. At this time, the excess MgO is treated as an unreacted substance and serves to prevent fusion between the steel plates. After high-temperature purification annealing, the steel plate is processed to remove unreacted annealing separator, and to remove the top coat of insulation coating and coillets depending on the center spacing, and then it is made into a finished product.

ところで発明名らは7Aルスデライト被膜の役割を再調
査した結果、こ゛の被膜が張カイ1加型コーティングと
同様、鋼板に張力を付加し、磁区を細分化していること
、しかt)JIlQ板の磁区幅の細分化効果は場所にJ
、り微妙に異っていることを見出した。そこでさらに鋼
板の磁1メ幅の細分化傾向につぎ綿密な検問を加えた結
果、フォルステライト被膜の厚みが変化している場所で
磁区の細分化効果が著しいことが究明されたのである。
By the way, as a result of re-investigating the role of the 7A Lusdellite coating, the inventors found that this coating applies tension to the steel plate and subdivides the magnetic domains, similar to the 7A Lusdellite coating. The effect of subdivision of magnetic domain width is J
, I found that there are some slight differences. Therefore, as a result of further detailed examination of the tendency of the magnetic domain width of the steel sheet to become finely divided, it was discovered that the effect of magnetic domain fragmentation is remarkable in places where the thickness of the forsterite coating changes.

発明の構成 この発明は、上2の知見に由来でるものである。Composition of the invention This invention is derived from the above two findings.

ずなわらこの発明は、地鉄表層部に塑性歪域がみられな
いフォルステライト被膜付きの方向性けい素鋼板ぐあっ
て、該フォルステライト被膜が層厚領域を有づることか
らなる、歪取り焼鈍によっても特性が劣化しない低鉄損
の方向性()い素鋼板である。
Zunawara This invention provides strain relief annealing for a grain-oriented silicon steel sheet with a forsterite coating in which no plastic strain region is observed in the surface layer of the steel, and in which the forsterite coating has a thick layer region. It is a grain-oriented steel sheet with low iron loss that does not deteriorate in properties even when exposed to heat.

この発明C′、素材鋼板につき、塑性歪域がみられない
ものに限定したのは、後)ホづるように、塑性歪の導入
による磁区の細分化方式では、歪取り焼鈍によって特性
の著しい劣化を1(3りから℃ある。
In this invention C', the material steel plate is limited to those in which no plastic strain region is observed. The temperature is 1 (3°C).

またこの発明におけるフォルス7−ライ1〜被膜句ぎの
鋼板とは、表面被膜が7オルスアライト被膜単味のもの
に限らず、その上に重ねて一般の上塗り」−ティング被
膜をそなえるものも含むもの、とりる。
In addition, the steel plate with a FORS 7-Lye 1~ coating in this invention is not limited to one in which the surface coating is a single 7-ORTHALITE coating, but also includes those with a general overcoating coating layered thereon. Take it.

以下この発明について具体的に説明覆る。This invention will be explained in detail below.

さて、発明者らは実験室的にフォルステライト被膜の厚
みを局所的に変化さし、その領域、形状厚み差、および
方位などが磁区の細分化に及ぼす影響につき、種々の検
問を加え、鉄Jtlどの関係について調査した。
Now, the inventors locally changed the thickness of the forsterite film in the laboratory, conducted various tests to determine the influence of the region, shape thickness difference, orientation, etc. on the subdivision of magnetic domains. We investigated the relationship between JTL and JTL.

なおこの実験にJ3い−C局所的に厚みを薄くりるには
、HF溶液を用いて化学的に)Aルステライトを溶Fi
r−tlることにより、また厚みを大きくするには静電
塗装によってフAルステライトを付加さけることにより
行った、。
In addition, in order to locally reduce the thickness of J3-C in this experiment, HF solution is used to chemically dissolve A lusterite.
The thickness was increased by adding A-fulsterite by electrostatic coating.

その結果、フAルスう一シ、(1−の1ffl’?領域
の形状としては、第′1図(イ)に示したにうな連続的
または非運わ°C的の線状凹凸形状がとくに鉄損低減効
果にJ3いCイj効Cあることが認められた。ただし非
連続の線状凹凸領域に(15いては、点と点との間隔が
0.5mm以11.’、Ifれるど効果はイ1(減した
。この点破線のように線の一部が少しづ′つ抜【]てい
る場合は、鉄損(L(i戚効宋(まわjj状の場合とは
ば同じであった。
As a result, the shape of the 1ffl'? region of False (1-) is a continuous or non-carrying linear uneven shape as shown in Figure 1 (a). In particular, it was recognized that there is an effect of reducing iron loss.However, in discontinuous linear uneven regions (15), if the interval between points is 0.5 mm or more, If However, the effect is reduced by 1 (decreased). If a part of the line is gradually removed like this dotted line, the iron loss (L) is It was the same.

次に]Aルメ))イ1〜被膜の層厚領域の方向について
は、ffi ’I図(II)や第2図に示したように、
圧延の/J向にλ・1じGO・〜90°の角度とした場
合がとくに有効であつIζ。さらにフAルステライ1〜
異厚領域の厚みirについ(゛は、第3図に示しlζよ
うに過厚にした揚合し、減厚にした場合もほば同様の結
果が得られ、いずれにしても厚み弁が0.3μm以上あ
れば有効であることがわかった。次に連続または非連続
の線状凹凸領域の幅につい【は、第4図に示したにうに
0.05〜2.0mmとくに0.8〜1.5n+n+の
範囲で優れた効果が得られた。
Next] Regarding the direction of the thickness region of the film, as shown in Figure (II) and Figure 2,
It is particularly effective to make an angle of λ·1GO·˜90° in the /J direction of rolling. Furthermore, A Fullsterai 1~
Regarding the thickness ir of the different thickness region (゛ is shown in Fig. 3, when the thickness is increased as shown in lζ, almost the same results are obtained when the thickness is decreased, and in any case, the thickness valve is 0. It was found that it is effective if the width of the continuous or discontinuous linear uneven area is 0.05 to 2.0 mm, especially 0.8 to 2.0 mm, as shown in Figure 4. Excellent effects were obtained in the range of 1.5n+n+.

なお)Aルステライト被膜の層厚領域は、圧延方向を横
切る向きに繰返し形成覆ることが、鋼板全体の鉄損を下
げるために有効で、たとえば第1図(ハ)に示したよう
な領域間の間隔は、第5図に示したようにlnv〜30
mmの範囲と−4ることが望ましい。またフォルステラ
イト被膜にお1ノる層厚領域の形成は、鋼板の両面であ
っても、片面にのみひあってb、その効果にはどんと変
わりはない。
Note) It is effective to repeatedly form and cover the layer thickness region of the A lusterite coating in a direction transverse to the rolling direction. For example, it is effective to reduce the iron loss of the entire steel plate. The interval is lnv~30 as shown in Figure 5.
A range of -4 mm is desirable. Furthermore, even if the forsterite coating is formed in a layer thickness region of 1 mm, it is applied only to one side of the steel plate, and the effect remains the same.

さらに、この発明の鋼板においては、形状変化部分は被
膜81Sに限られているので、変化分は少なく、従って
占積率を低下さびることはほとんどない。
Furthermore, in the steel plate of the present invention, since the shape-changing portion is limited to the coating 81S, the amount of change is small, and therefore the space factor is hardly reduced and rust is unlikely to occur.

次にこの発明に係る方向性けい素鋼板の製造方法につい
て説明する。
Next, a method for manufacturing a grain-oriented silicon steel sheet according to the present invention will be explained.

この発明の素41は、公知の製鋼方法、例えば転炉、電
気炉などに五つ−(°製鋼し、さらに迄塊−分塊法また
は連続vi造法などによってスラブ(鋼片)としたのら
、熱間11−延によって得られる熱延二1イルを用いる
The element 41 of the present invention is produced by manufacturing steel using a known steel manufacturing method such as a converter or an electric furnace, and further forming a slab (steel billet) by a block-blooming method or a continuous VI manufacturing method. A hot-rolled 21-yl obtained by hot 11-rolling is used.

この熱延板は、5iを2.0〜4.0%程度含有J。This hot rolled sheet contains about 2.0 to 4.0% of 5i.

る組成である必要がある。というのは、Slが2.0%
未Whで(3(鉄損の劣化が大きく、また4、0%を超
えると、冷間加]−性が劣化するからである。
The composition must be suitable for This means that Sl is 2.0%
This is because the deterioration of the iron loss is large at less than Wh, and if it exceeds 4.0%, the cold workability deteriorates.

その他の成分についてはh向性けい素鋼板の素材成分で
あれば、いり゛れも適用可能である。
Any other ingredients can be applied as long as they are the material ingredients of the h-oriented silicon steel sheet.

次に冷間lロー延にJ、す、最終目標板厚とされるが、
冷間圧延は、′1回bり、、<は中間焼鈍を挾む2回の
冷間圧延ににり行なわれる。このとき必要に応じて熱延
板の均一化焼鈍や、l?目111圧延に替わる温間圧延
を隔りこともでさる。。
Next, the final target thickness is determined by cold rolling.
The cold rolling is carried out in two cold rolling steps, one with an intermediate annealing in between. At this time, if necessary, uniform annealing of the hot rolled sheet or l? It is also possible to use warm rolling to replace the 111th rolling. .

最終板厚どされた冷延板(よ、1IiJ炭可能な程度の
酸化性雰full気ししくはりlスクール形成可能な程
度の弱酸化性雰囲気中(゛1次再結晶焼鈍が施される。
The final thickened cold-rolled plate is subjected to primary recrystallization annealing in a full oxidizing atmosphere capable of forming 1IJ carbon or a weak oxidizing atmosphere sufficient to form a school.

ついで、鋼板表面にM(10を主成分とづ゛る焼鈍分離
剤を塗布J゛るのであるが、この塗装l工程において、
鋼板表面に局所的に該分離剤の未塗布領域を形成させる
ことにより、この発明で所期した[1的が有利に達成さ
れるのである。
Next, an annealing separator containing M (10) as the main component is applied to the surface of the steel plate.
The first objective of the present invention can be advantageously achieved by locally forming areas on the surface of the steel sheet where the separation agent is not applied.

すなわち、2次再結晶とそれに続く高温純化焼鈍く最終
仕上焼鈍)を行なうことにより、焼鈍分離剤が塗布され
ている面には通常のフォルステライト被膜が形成される
のに対し、焼鈍分離剤が塗装1jされていない面には薄
いフォルスアライト被膜しか生成せず、従って減厚領域
が形成されるわけである。
In other words, by performing secondary recrystallization followed by high-temperature purification annealing and final finishing annealing), a normal forsterite film is formed on the surface coated with the annealing separator, whereas the annealing separator Only a thin false alite film is formed on the unpainted surface, thus forming a region of reduced thickness.

なお焼鈍分離剤を鋼板へ(=J着さUる手段どしては、
ロールやへケによる塗布、吹f4け、静電塗装が公知で
あるが、いずれを採用してしJ、い。
The method for applying the annealing separator to the steel plate is as follows:
Coating with a roll or spatula, blowing F4, and electrostatic coating are well known, but any of these may be used.

またかかる層厚領域を形成する他の手法としては上記の
方法の他部下にのべる4つの方法がある。
Further, as other methods for forming such a thick layer region, there are four methods that are subordinate to the above-mentioned method.

i)1次再結晶焼鈍後の鋼板表面への焼鈍分離剤の塗布
工程において、該塗布に先立も、鋼板表面に焼鈍分離剤
との反応を阻害する物資を1g/B2以下の範囲で局所
的に付着さける方法。
i) In the process of applying an annealing separator to the steel plate surface after primary recrystallization annealing, a substance that inhibits the reaction with the annealing separator is locally applied to the steel plate surface in an amount of 1 g/B2 or less prior to the application. How to avoid adhesion.

この方法においで反応用害物質としてはSi 02 、
AJ2203 、Zr 02などの酸化物や、/1)、
ΔA、811 、Ni 、 Feなどの金属が挙げられ
る。かかる反応阻害物質は、1g/m2を超えc’(P
Iさると、反応阻害効果が過剰となり、)Aルステライ
ト被膜が形成されなくなる。従一つCあくJ、でも、1
g/m2以下の範囲でノAルステシイト被膜の減厚■を
制御Jる必要がある。’c衣J3、これらの反応阻害物
質のv!A仮への(tJ看手[9としては、塗布、吹付
け、メッキ、印刷d3よび静電塗装などがいずれも利用
できる。
In this method, the harmful substances for reaction include Si 02 ,
Oxides such as AJ2203, Zr 02, /1),
Examples include metals such as ΔA, 811, Ni, and Fe. Such a reaction inhibitor exceeds 1 g/m2 c'(P
In the case of I, the reaction inhibiting effect becomes excessive and no lusterite film is formed. Juichitsu C Aku J, but 1
It is necessary to control the thickness reduction of the NOA Rusteshite coating within a range of g/m2 or less. 'c clothing J3, v of these reaction inhibitors! Coating, spraying, plating, printing d3, electrostatic painting, etc. can all be used for A provisional (tJ inspection) [9].

1i)1次再結晶焼鈍後の鋼板表面への焼鈍分離剤の塗
布工程においで、該塗布に先立ら鋼板表面に焼鈍分前剤
スラリー(水と焼鈍分離剤との懸濁液)に対するIW水
水物物質0.Ig /m 2以下の範囲で局所的に(”
I Q’#さける方法。
1i) In the process of applying an annealing separator to the surface of the steel sheet after primary recrystallization annealing, IW is applied to the surface of the steel sheet prior to the application of an annealing pre-agent slurry (a suspension of water and an annealing separator). Water substance 0. Locally within the range of Ig/m2 or less (”
I Q'# How to avoid.

かかる撥水性物質としては、油性ペイントやワニスなど
がイI刊に適合し、鋼板表面と焼鈍分頼剖とのIB W
phをIjlげて、)Aルステライ1〜生成、反応を遅
tft!させて減厚領域を形成させるわけである。ただ
し0,1(1/ra 2を超えて11着させた場合は、
反応遅滞効果が過剰となって7オルスjライト被膜が全
く形成されなくなるので、あくまでも0.1!+ /m
 2以トの範囲で7オルステライ1〜被膜の減厚量を制
御する必要がある。なJ3これらの撥水性物質の鋼板へ
のイ]着手段としては、前掲した反応阻害物質と同様、
塗布、吹イ」番ノ、印刷a3よび静電塗装などが利用で
きる。
As such water-repellent substances, oil-based paints and varnishes are suitable for IBW of steel sheet surfaces and annealing separations.
Raise the pH to produce A Lusterai 1~, slow down the reaction! Thus, a reduced thickness region is formed. However, if 11th place exceeds 0,1 (1/ra 2),
Since the reaction retardation effect becomes excessive and no 7 ors j-lite film is formed, it is only 0.1! + /m
It is necessary to control the amount of thickness reduction of the 7-orsterite film in the range of 2 or more. J3 As a means of attaching these water-repellent substances to the steel plate, similar to the reaction inhibitors listed above,
Coating, blowing, printing A3, electrostatic painting, etc. can be used.

1ii)1次再結晶焼鈍後の鋼板表°面への焼鈍分離剤
の塗布工程にJ3いて、その塗布に先立ら、鋼板表面に
鋼中の3iの酸化剤となるような物質を2(+/111
2以下の範囲で局所的に11着さUる方法。
1ii) In the step of applying an annealing separator to the surface of the steel sheet after primary recrystallization annealing, a substance that acts as an oxidizing agent for 3i in the steel is applied to the surface of the steel sheet prior to the application. +/111
A method of locally applying 11 U in a range of 2 or less.

これらの物質はその後の最終仕上焼鈍にJ3いて高温で
鋼中のS l/!:酸化させ、鋼板表層リブスケール中
のS: 02粒子の聞を増加ざlることによって、最終
仕上焼鈍後のフォルステライト被膜の厚みを増加さμる
ので、鋼板表面に局所的に過厚被膜を形成させることが
できるわ4−Jである。かかる酸化剤としては、Fe 
O。
These substances are then subjected to a final final annealing at J3 to reduce S l/! in the steel at high temperatures. : By oxidizing and increasing the number of S:02 particles in the surface rib scale of the steel plate, the thickness of the forsterite coating after final annealing is increased, resulting in a locally overthick coating on the steel plate surface. 4-J can be formed. As such an oxidizing agent, Fe
O.

F62 Q3.−1’i 02などの酸化物、Fe25
iOnなどの還元され易い珪酸塩、M(II(OH)z
などの水酸化物などが有利に適合づるが、これらの酸化
剤の(=l W 但が211/l112を超えると、被
膜の厚みが大きくなり過ぎて、鋼板への1&名力を失い
、被膜がはく落してしまって所期した目的を達成づるこ
とかできない。
F62 Q3. -1'i 02 and other oxides, Fe25
Easily reduced silicates such as iOn, M(II(OH)z
Hydroxides such as oxidizers such as If you fail, you will not be able to achieve your intended purpose.

1v)2次再結晶後の鋼板表面に被成したフォルレステ
ライト被11,3/a、地鉄鋼板表層に塑性歪を加えな
いようにしC除去りることより減厚領域を形成 づ る
 7ノ ン大 。
1v) Forresterite coating 11,3/a formed on the surface of the steel sheet after secondary recrystallization, forming a reduced thickness region by removing C without applying plastic strain to the surface layer of the base steel sheet. Non-large.

かヨウ/、C1jv、ト1ノ’CLiL、化学rjl 
Jiff ヤm解rty+iの他、回転りる円?I:)
状の凪6による除去、軽圧力による鉄釘での除去さらに
は出力を適切に調整したレーIJ”−ビームなどの光学
的除去などの方法がある。とくに光学的除去法としてレ
ーザービームを利用する場合は、1つの光源から複数本
のビームを取出したり、また適当なマスキングの存在の
下に全面照射を行うことにJ、って、1回の操”作で効
率よく複数本の層厚領域を形成させることかできる利点
がある。
Kayo/, C1jv, To1no'CLiL, Chemistry rjl
Jiff In addition to Yam solving rty + i, is there a rotating circle? I:)
There are methods such as removal with a 3-dimensional calm 6, removal with an iron nail using light pressure, and optical removal such as a laser IJ''-beam whose output is appropriately adjusted. In particular, a laser beam is used as an optical removal method. In some cases, it is possible to extract multiple beams from a single light source or to irradiate the entire surface in the presence of appropriate masking. It has the advantage of being able to form

ところで上述した除去方式による層厚領域の形成方法に
おいて、どくに注意すべきことはかかる除去処理の際に
、地鉄表面に塑竹歪域を形成させないようにするとであ
る。というのは塑性歪が導入された場合は、後述づるよ
うに歪取り焼鈍後の鋼板の特性が著しく劣化Jるからで
ある。
By the way, in the method of forming a thick layer region using the above-mentioned removal method, care must be taken not to form a plastic bamboo strain region on the surface of the base metal during such removal processing. This is because when plastic strain is introduced, the properties of the steel sheet after strain relief annealing are significantly deteriorated, as will be described later.

かような層厚領域の形状としては、連続的な線状凹凸を
なすものがとりわ【ノ有効であるが、その他罪連続す<
rわち点の列で置き替えることもできる。しかし4rが
らかかる非連続の線状凹凸の場合は、点と点との間隔が
0.511II11以上離れていると効果が小さくなる
。またかような線状凹凸領域幅としては、0.05〜2
.0Il1m程度がとくに効果が大きい。
As for the shape of such a layer thickness region, a continuous linear unevenness is particularly effective, but other forms are effective.
It is also possible to replace it with a sequence of points. However, in the case of discontinuous linear unevenness such as 4r, the effect becomes small if the distance between the points is 0.511II11 or more. In addition, the width of such a linear uneven region is 0.05 to 2
.. A value of about 0Il1m is particularly effective.

線状凹凸領域の向きについ(は、IE延方向に対して6
0〜90°の角度範囲がとくに好ましい。圧延方向に平
行な方向して場合は効果がなく、圧延方向と直角方向で
最大の効果が得られる。こうした鋼板圧延方向にitす
る角度はとくに垂要で、層厚領域の幅が広′りぎる場合
や、孤立した点の場合に鉄損低減効果が弱まるのは、そ
の方向性が不明瞭になるためと思われる。
Regarding the direction of the linear uneven area (is 6 with respect to the IE extension direction)
An angular range of 0 to 90° is particularly preferred. There is no effect in the direction parallel to the rolling direction, and the maximum effect is obtained in the direction perpendicular to the rolling direction. This angle in the rolling direction of the steel plate is particularly important, and the reason why the iron loss reduction effect weakens when the thickness region is too wide or at isolated points is that the directionality becomes unclear. It seems to be for a reason.

こうした連続または非連続の線状凹凸領域は圧延方向に
対しで異なる形状、幅、角度のものも含めて繰返し存(
t tlることが好ましく、この時の領域と領域との間
隔は1.0〜30IlllRの範囲がとりわ番〕有効で
ある。
These continuous or discontinuous linear uneven regions, including those with different shapes, widths, and angles, exist repeatedly in the rolling direction (
It is preferable that the spacing between the regions be in the range of 1.0 to 30IllR.

またフィルスプライ1−被膜の層厚の領域は鋼板の両面
に存(しシて6片面のみに存在していてもその効果にG
;Lどんど変りは4【い。
Also, the thickness of the film sply 1 coating exists on both sides of the steel plate (6) Even if it exists only on one side, the effect will be
;L Dondo change is 4 [i.

以し述べたようにして)Aルステライ1−と被膜に層厚
領域を局所的に形成さμklj向1g、 4ノい素鋼板
は、通常の11111日」い素鋼板と同様にそのまま製
品どして使用される場1合、またさらに上塗り絶縁コー
ティングを稈して製品として使用される場合のいずれに
お−((,1、実際の機器に使用された場A 自 hi
 /) I4紹 讐t、1ここにこの発明に従いフィル
スプライト被膜に層厚領域を区画形成することによって
鉄損特性が改善される理由は、該被膜に異厚領域を段G
Jたことにより鋼板表面には異張力領域が生じるが、こ
の異張ノ」によって鋼板表面に弾性歪が導入され、その
結果磁区が有効に細分化されるためであろうと考えられ
る。
A raw steel sheet with a μklj direction of 1g and 4 in which a layer thickness region is locally formed in the coating with A Lusterite 1- as described above is used as a product as it is in the same way as a normal 11111'' raw steel sheet. When used as a product, or when used as a product with a top insulating coating ((,1, When used in actual equipment)
/) I4 Introduction, 1 Herein, the reason why the core loss characteristics are improved by forming thick regions in the fill sprite film according to the present invention is that the film has different thickness regions.
This is thought to be due to the fact that different tension regions are created on the surface of the steel sheet due to the difference in tension, and elastic strain is introduced to the surface of the steel sheet due to this different tension, and as a result, the magnetic domains are effectively subdivided.

このような巽張力弾性歪を附加した方向性けい素鋼板に
おいて【、I、鋼板の地鉄表層部に塑性歪領域やレーザ
ー照射痕のような高転位密度領域を存在させる従来法の
場合と異なり、人為的な塑性歪領域がみられないので、
通常800℃前後で1分間から数時間にわたって施され
る歪取り焼鈍を施しでら鉄損の劣化がはとlυどないと
いう特筆Jべき利点がある。前者の場合番よ、地鉄表層
部の塑性歪が高温にJ:って消滅さくいくので鉄損の劣
化が生じるという致命的な欠点を有づるが、この発明の
場合は歪取り焼鈍の有無にかかわらf良好な鉄損を示す
In a grain-oriented silicon steel sheet to which Tatsumi tensile elastic strain has been added [,I, unlike the conventional method in which high dislocation density regions such as plastic strain regions and laser irradiation marks are present in the surface layer of the steel sheet, , since no artificial plastic strain region is observed,
It has the notable advantage that the deterioration of iron loss does not stop even after strain relief annealing, which is usually performed at around 800°C for a period of one minute to several hours, is carried out. In the former case, the plastic strain in the surface layer of the steel base disappears at high temperatures, leading to deterioration of iron loss, which is a fatal drawback. Despite this, f shows good iron loss.

実施例 111上 3i : 3.2%を含有りるけい素鋼素材を、常法に
従って厚み0.3On+mの冷間鋼板としたのち脱炭・
1次?Q結晶焼鈍を施し、ついでこの焼鈍板の表面に焼
鈍分離剤を塗布Jるに先立って焼鈍分離剤と鋼板4ノブ
スクール中S:02どの反応阻害物質であるへλ203
粉末を付@ m : 0,5(1/ m 2゜ra−m
A向どなり角爪:90°、何着幅:2Iそして圧延方向
の繰返し間隔4 Ill IIIの条件下に、鋼板表面
に線状にイ」着さI、しかるのち焼鈍分離剤をその上に
塗布してから2次II■結晶焼鈍ついで1200℃。
Example 111, Part 3i: A 3.2% silicon steel material was made into a cold steel plate with a thickness of 0.3 On+m according to a conventional method, and then decarburized and
1st order? Q Crystal annealing is performed, and then an annealing separator is applied to the surface of this annealed plate.
Add powder @ m: 0,5 (1/ m 2゜ra-m
Under the conditions of A-direction angle nail: 90°, number of width: 2I, and rolling direction repeating interval of 4 Ill III, I' is applied in a linear manner to the steel sheet surface, and then an annealing separator is applied thereon. Then, secondary II ■ crystal annealing was performed at 1200°C.

5時間の純化焼鈍を施した。Purification annealing was performed for 5 hours.

なお比較のためΔμ203粉末の何着処理のない常法に
従う7J >)sにJ、す/J向性けい素鋼板を作成し
、比較例とした。
For comparison, a 7J>)s J, S/J oriented silicon steel plate was prepared according to a conventional method without any treatment with Δμ203 powder and used as a comparative example.

被膜性状について調べIこところ比較例では灰色で均等
厚の被膜が形成されていたが、実施例においてはへβ2
03粉末を(tイロした領域については、0.8μmだ
り厚みの少ない)Aルステライト被躾が形成されていた
。両者の鉄損値は下記のとおりであった。
When examining the film properties, it was found that in the comparative example, a gray film of uniform thickness was formed, but in the example, β2
03 powder (the area where it was colored had a small thickness of 0.8 μm) was formed with A lusterite. The iron loss values for both were as follows.

比較例 W 17/ 50 = 1.06 W / k
g実施例 W17150= 1.02 W/kgこの後
りんIli塩系の通常上塗り」−ティングを施した場合
の鉄損値について調べたところ、それぞれ下記のとおり
であった。
Comparative example W 17/50 = 1.06 W/k
gExample W17150=1.02 W/kg After this, the iron loss values when a phosphorus Ili salt-based regular overcoat was applied were investigated and the results were as follows.

比較例 W17150= 1.06 W/kg実施例 
W17150= 1.01 W/kgざらに、これらの
試料に800℃で2時間の歪取り焼鈍を施した場合の、
鉄Jt’l値について調べl〔ところ下記の値が得られ
た。
Comparative example W17150 = 1.06 W/kg example
W17150 = 1.01 W/kg When these samples were subjected to strain relief annealing at 800°C for 2 hours,
The iron Jt'l value was investigated and the following value was obtained.

比較例 W17150 = 1.06 W/驕実施例 
W17150= 1.01 W/kg実施例2 3i : 3.2%を含有り−るけい素鋼素材を、常法
に従って厚み0.30mmの冷延鋼板としたのち、脱炭
・1次再結晶焼鈍を施し、ついでこの焼鈍板表面に焼鈍
分離剤を塗布するに先立ち、焼鈍分離剤スラリーに対し
撥水fjlを右−4るラッカーを付着量:0.05(1
/Il+ 2.圧延/j向どなず角麿ニア5°、付着幅
: 0.5ms+そして圧!Iih向の繰返し間隔3I
I1mの条件下に鋼板表面に線状に吹(−I GEL 
(N1着させたのち、その上に焼鈍分薗剤スラリーを塗
布してから加熱乾燥し、しかるのち2次I11結晶焼鈍
ついで1200℃。
Comparative example W17150 = 1.06 W/Example
W17150 = 1.01 W/kg Example 2 A silicon steel material containing 3i: 3.2% was made into a cold-rolled steel plate with a thickness of 0.30 mm according to a conventional method, and then decarburized and primary recrystallized. Before annealing and then applying an annealing separator to the surface of the annealed plate, apply a lacquer with a water repellent fjl of -4 to the annealing separator slurry in an amount of 0.05 (1).
/Il+ 2. Rolling/J direction: 5° near corner, adhesion width: 0.5ms + and pressure! Repeat interval 3I in Iih direction
Linear blowing on the surface of the steel plate under the condition of I1m (-I GEL
(After depositing N1, an annealing bulking agent slurry was applied thereon and then heated and dried, followed by secondary I11 crystal annealing at 1200°C.

5時間の純化焼鈍を施した1゜ なお比較の!、:め、焼鈍分離剤の塗布に先立つ撥水性
物質の付猶処理のない通常の工程にJ:って方向性1ノ
い素鋼4kを作成し、比較例とした。
1° after 5 hours of purification annealing for comparison! As a comparative example, a raw steel 4k having a directionality of 1 was prepared using a normal process without additional treatment of a water-repellent substance prior to application of an annealing separator.

被膜す4状についC調べたどころ比較例では、均等厚で
灰色のフAルスデライト被・躾が形成されていたが、実
施例に(13い゛(は、ラッカー吹付けた領域について
【よ、0.5μmだり厚みの少ないフォルステライ1−
被膜が形成されていた。両者の鉄損値は下記のとJ′3
りであっ/l−11 比較例 W 1?/ !+0−1.06 W / kg
実施例 W17/!i0− 1.01 W/kgこの後
クロム酸」偏光の通常の上塗りコーディングを施した場
合のD IQ l1fl[について調べたところ、それ
ぞれ下記のとおりであった。
When the coating was inspected, it was found that a uniformly thick gray fulsdellite coating was formed in the comparative example, but in the example (13), the lacquer-sprayed area was Forsterei 1- with a small thickness of 0.5μm
A film was formed. The iron loss values for both are as follows and J'3
Ride/l-11 Comparative example W 1? /! +0-1.06 W/kg
Example W17/! The DIQ l1fl[ when a normal overcoating of i0-1.01 W/kg chromic acid'' polarized light was applied was investigated and the results were as follows.

比較例 W 17/ 50= 1.06 W/ kg実
施例 W 17/ 50= 1.00 W / kgさ
らにこれらの試料に800℃で2時間の歪取り焼鈍を施
した場合の鉄損値について調べたところ下記のとおりで
あった。
Comparative example W 17/50= 1.06 W/kgExample W 17/50= 1.00 W/kgFurthermore, the iron loss value was investigated when these samples were subjected to strain relief annealing at 800°C for 2 hours. The results were as follows.

比較例 W17150 = 1.06 W/kg実施例
 W17150= 1.00 W/kg実施例3 3i : 3,0%を含有するけい素鋼素材を、常法に
従って厚み0.28m1の冷延鋼板としたのち、脱炭・
1次再結晶焼鈍を施し、ついでこの焼鈍板表面にMoO
を主成分とする焼鈍分離剤を一旦塗布したのち先の細い
プラスチックの棒で、焼鈍分離剤を、圧延方向となす角
度90°1幅1.51.圧延方向における繰返し間隔2
#lllの条イシ1下に線状に除去し、ついで2次再結
晶を兼ねる1200℃、5時間の最終仕上げ焼鈍を施し
た。なa3焼鈍分離剤を除去づることのない通常の工程
で最終仕上げ焼鈍まで施したものを比較祠とした。
Comparative example W17150 = 1.06 W/kg Example W17150 = 1.00 W/kg Example 3 A silicon steel material containing 3i: 3.0% was made into a cold rolled steel plate with a thickness of 0.28 m1 according to a conventional method. After that, decarburization
Primary recrystallization annealing is performed, and then MoO is applied to the surface of this annealed plate.
After applying the annealing separator as a main component, use a thin plastic rod to apply the annealing separator at an angle of 90 degrees with the rolling direction and a width of 1.51 mm. Repeat interval in rolling direction 2
#1ll was removed in a line under the strip 1, and then final annealing was performed at 1200° C. for 5 hours, which also served as secondary recrystallization. The comparison shrine was one that was subjected to final annealing in a normal process without removing the A3 annealing separator.

両者の被膜fl状についで調べたところ、比較例におい
ては、均等厚な灰色のフォルステライ1〜被膜が形成さ
れたが、実施例にJ3いては焼鈍分離剤を除去した領域
につい(は厚みの小さいフォルステライト被膜が形成さ
れた。これらの鉄損値は下記のとJ5すCあった。
When the shapes of both coatings were examined, it was found that in the comparative example, a uniformly thick gray Forsterei 1 coating was formed, but in the example J3, the area where the annealing separator was removed (was A small forsterite film was formed.These iron loss values were as follows:

比較例 W17/ !i0= 1.(17W/驕実施例
 W17150 = 1.01 W/kgさらにこれら
の試オ′+1に800°Cで5時間の歪取り焼鈍を施し
た場合の鉄損値について調べたところ下記の値が得られ
た1゜ 比較例 WI7〜!io= 1.07 W/ kg実施
例 W17/’!1(1−1,01W/に8実施例4 3i : 3.(1%を含有りる【ノい素鋼索材を、常
法に従って厚み11.30111 Il+の冷延鋼板と
したのち、脱炭・1次再結晶焼鈍を施し、ついで凹凸を
右づるゴムロールによっ−C鋼扱表面に焼鈍分離剤を塗
布しに0このとさ、焼鈍分離剤の塗布は、圧延方向に対
して交互に塗布領域と未塗布領域とを区画形成し、朱塗
イ5領域の幅は1.!immで圧延方向の繰返し間隔は
5IIIInの条件Fに行なった。その後2次再結晶焼
鈍と1200℃、5時間の純化焼鈍を施した。
Comparative example W17/! i0=1. (17 W/Example W17150 = 1.01 W/kg Furthermore, when these test O'+1 were subjected to strain relief annealing at 800°C for 5 hours, the iron loss value was investigated, and the following values were obtained. Comparative example WI7~!io = 1.07 W/ kg Example W17/'!1 (1-1,01 W/8 Example 4 3i: 3. (containing 1% The steel cable material was made into a cold-rolled steel plate with a thickness of 11.30111 Il+ according to a conventional method, and then subjected to decarburization and primary recrystallization annealing, and then an annealing separator was applied to the -C steel surface using a rubber roll that smoothed the irregularities. In this case, the annealing separator was applied by forming coated areas and uncoated areas alternately in the rolling direction, and the width of the red coating area was 1.!imm, and the annealing separation agent was applied repeatedly in the rolling direction. The interval was 5IIIn under condition F. Thereafter, secondary recrystallization annealing and purification annealing at 1200° C. for 5 hours were performed.

なお比較のため、フォルスプライト被膜を鋼板全面に一
様に塗布する通常の製造工程によつC方向性(プい素鋼
板を作成し、比較例とした。
For comparison, a C-direction steel sheet was prepared by a normal manufacturing process in which a false sprite coating was uniformly applied to the entire surface of the steel sheet, and this was used as a comparative example.

両者の被膜性状についで調べたところ比較例では均等厚
な灰色のフォルスプライト被膜が形成され、実施例にお
いでは焼鈍分子ill剤を未塗布した領域については、
厚みの薄いフォルステライト被膜が形成されていた。こ
れらの鉄損Iffは下記のとおりであった。
When the properties of both films were investigated, a uniformly thick gray false sprite film was formed in the comparative example, and in the example, the area where the annealing molecular ill agent was not applied was as follows.
A thin forsterite film was formed. These iron losses Iff were as follows.

比較例 W17150 = 1.05 W/kg実施例
 W17150= 1.03 W/kgさらにこれらの
試料に800°Cで1114間の歪取り焼鈍を1進じた
場合の鉄損値についC調べたところ下記の値が得られた
Comparative example W17150 = 1.05 W/kg Example W17150 = 1.03 W/kg Furthermore, C was investigated for the iron loss value when these samples were subjected to strain relief annealing at 800°C between 1114 and 1. The following values were obtained.

比較例 W 17/ 50= 1.08 W / kg
実施例 W 17/ 50= 1.03 W / kg
実施例5 Si : 3.2%を含イ1゛りる(ノい素鋼索材を、
常法に従って厚み0.30mmの冷延の鋼板とし、つい
で脱炭・1次再結晶焼鈍を施し、ついで焼鈍分離剤を塗
布覆るに先立ち、鋼板表面に鋼中3iに対して酸化剤で
あるFeOを、0.5g 7m ’の範囲で圧延方向と
なり角爪90°1幅:2111m、圧延方向における繰
返し間l1rii: 1(111111の条(’l下に
線状に塗布したのち、焼鈍分離剤を−t I/) 、J
二に塗装IIシ、しかるのち2次丙結晶焼鈍−)いC1
200℃、511;’i間の純化焼鈍を°施した1、な
(13比較例のため、焼鈍分離剤の塗布に先立ち酸化剤
の塗(1iを行わない通常の工程によって方向性(°J
い素鋼板を作成し、比較例とした。
Comparative example W 17/50= 1.08 W/kg
Example W 17/50= 1.03 W/kg
Example 5 Si: 1 ml containing 3.2% (no raw steel cable material,
A cold-rolled steel plate with a thickness of 0.30 mm is prepared according to a conventional method, and then subjected to decarburization and primary recrystallization annealing. Then, before coating with an annealing separator, FeO, which is an oxidizing agent for 3i in steel, is applied to the surface of the steel plate. in the rolling direction in the range of 0.5 g 7 m', square claw 90° 1 width: 2111 m, repetition interval in the rolling direction l1rii: 1 (111111 strips ('1) After applying the annealing separator in a linear manner under -t I/), J
Second, paint II, then secondary C crystal annealing -) C1
1 and 13 were subjected to purification annealing at 200°C between 511 and 'i.
A steel plate was prepared and used as a comparative example.

鉄損値は土間のど、13すC(ら・)lJ0比較例 W
 17/ !10=−1,04W / kg実施例 W
 171.’ !io= 0.99 W l kgさら
に、800℃、2+1i′I間の11≧取り焼鈍を施し
た後の鉄損(lfiについて調べkどころ下記の値が得
られた。
Iron loss value is earth floor, 13sC(ra・)lJ0 comparison example W
17/! 10=-1,04W/kgExample W
171. '! io = 0.99 W l kg Further, the iron loss (lfi) after annealing at 800°C between 2+1i'I was investigated and the following value was obtained.

比較例 W 17/ !+0 = 1.04 、W 、
/ kg実施例 W17150= 0.9呵IW/kg
実施例6 3i : 3.2%を含有するけい素鋼索材を、常法に
従って厚み0.20mmの冷延鋼板としたのら脱炭・1
次再結晶焼鈍を施し、ついぐ焼鈍分離剤を塗布するに先
立ち、焼鈍分離剤スラリーに対して撥水性を有する油性
ペイントを、印刷法によって下記の要領で鋼板表面に0
.0’+g/m 2の量印刷した。
Comparative example W 17/! +0 = 1.04, W,
/ kg Example W17150 = 0.9 IW/kg
Example 6 3i: Silicon steel cable material containing 3.2% was made into a cold-rolled steel plate with a thickness of 0.20 mm according to a conventional method, and decarburization/1
Before performing the next recrystallization annealing and then applying an annealing separator, an oil-based paint that is water repellent to the annealing separator slurry is applied to the surface of the steel plate using the printing method as described below.
.. A quantity of 0'+g/m2 was printed.

印刷した領域が圧延り向とh寸角瓜90°1幅0.31
11nl非連続線状列の点と点との間隔: 0.3mn
+、そして印刷領域の圧延方向に対す゛る間隔:3n+
n+。
The printed area corresponds to the rolling direction and h dimension 90° 1 width 0.31
Distance between points in 11nl discontinuous linear array: 0.3mn
+, and the distance between the printing area in the rolling direction: 3n+
n+.

その後、焼鈍分離剤を塗布してから加熱乾燥し、しかる
のち2次再結晶焼鈍を兼ねる1200℃、10時間の純
化焼鈍を施した。なa3比較のため上記したような撥水
性物質印刷処理を施さない通常の工程により方向性けい
素鋼板を作成し、比較例とした。
Thereafter, an annealing separator was applied and then heated and dried, followed by purification annealing at 1200° C. for 10 hours, which also served as secondary recrystallization annealing. A3 For comparison, a grain-oriented silicon steel plate was prepared by a normal process without the water-repellent material printing treatment as described above, and was used as a comparative example.

両者の鉄損値は下記のとおりであった。The iron loss values for both were as follows.

比較例 W 17/ 50= 0.92 W / kg
実施例W 17/ 50= 0.87 W / kgさ
らに800℃、2時間の歪取り焼鈍を施した後の鉄損値
に′)い(は下記の値が1qられた。
Comparative example W 17/50=0.92 W/kg
Example W 17/50=0.87 W/kgThe following value was added to the iron loss value after further strain relief annealing at 800°C for 2 hours.

比較例 W 17/ !io = 0.92 W/ k
g実施例 W 17./ !i0 = 0.87 W 
/ kg実施例7 3i : 3.2%を含イj′IJる(〕い素素鋼材を
、71法に従って厚み0.30mn+の冷延鋼板とした
のち、脱炭・1次■i」結晶力2鈍を施し、ついで鋼板
表面にMgOを主成分とする焼鈍分離剤を塗布し/jの
ち、2次再結晶焼鈍ついぐ1200℃、5時間の高温純
化焼鈍を施しC表面に灰色で均一なフォルステライト被
膜をそなえるIJ向tII IJい素鋼板を作成しlこ
Comparative example W 17/! io = 0.92W/k
g Example W 17. /! i0 = 0.87W
/ kg Example 7 3i: A raw steel material containing 3.2% was made into a cold-rolled steel sheet with a thickness of 0.30 mm+ according to the 71 method, and then decarburized and primary ■i'' crystals were formed. After applying an annealing separator mainly composed of MgO to the surface of the steel sheet, secondary recrystallization annealing was performed, followed by high-temperature purification annealing at 1200°C for 5 hours, and the surface of the steel sheet was uniformly gray. A raw steel plate for IJ with a strong forsterite coating was created.

この鋼板の鉄1t、1値はW17150で1.06W、
/kgであった。
1 ton of iron of this steel plate, 1 value is W17150 and 1.06W,
/kg.

次に先の細い鉄↑1にljY、 <圧力をか【ノC線引
きりることによる、フAルスiライl〜被躾の除去方法
により、深さ:0,5μ川で幅0.5n+mの圧延方向
と90°の角度をなづ線状フォルステライト被膜の減厚
領域を形成し1.:。なお圧延方向におけるこの領域の
間隔は(immとした。
Next, apply pressure to the thin iron ↑ 1. By drawing a line with a thin tip, draw a full A line to a depth of 0.5 μ and a width of 0.5 n + m. Forming a thinned region of linear forsterite coating at an angle of 90° with the rolling direction of 1. :. Note that the interval between these regions in the rolling direction was set as (imm).

この結果、鋼板の鉄損はW17150てせ1.02 W
/ kgとなった。なおこの鋼板にさらに850℃、2
時間の歪取り焼鈍を施した後の鉄損値はW17150で
1.O1W/kgであった。
As a result, the iron loss of the steel plate is W17150 1.02 W
/ kg. Furthermore, this steel plate was further heated at 850℃ for 2
The iron loss value after time strain relief annealing is 1. It was O1W/kg.

発明の効果 かくしてこの発明によれば、歪取り焼鈍を施した場合で
あってb特性が劣化しない鉄損特性に優れた方向性【)
い素鋼板を得ることができ、右利である。
Effects of the Invention Thus, according to the present invention, the directionality is excellent in iron loss characteristics without deterioration of b characteristics even when subjected to strain relief annealing.
It is advantageous to be able to obtain raw steel sheets.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(イ)、(ロ)、および(ハ)はそれぞれ、フォ
ルステライト被膜に区画形成した該被膜の層厚領域の形
状、圧延方向に対する傾き具合および間隔の測定要領を
示した図表、 第2図は、線状層厚領域が圧延方向となり角度が、鉄損
特性に及は一4影響を示したグラフ、第3図は、異尽領
域の厚み差と鉄損値との関係を示したグラフ、 第4図は、層厚領域の幅と鉄損値との関係を示したグラ
フ、 第5図は、層厚領域の間隔と鉄損値との関係について示
したグラフCある。 特狛出願人 川崎製鉄株式会社
Figures 1 (a), (b), and (c) are diagrams showing the shape, inclination with respect to the rolling direction, and interval measurement procedures of the thickness regions of the forsterite film, respectively. Figure 2 is a graph showing how the linear layer thickness region is in the rolling direction and the angle has an effect on the iron loss characteristics. Figure 3 is a graph showing the relationship between the thickness difference in the uneven thickness region and the iron loss value. FIG. 4 is a graph showing the relationship between the width of the layer thickness region and the iron loss value, and FIG. 5 is a graph C showing the relationship between the interval of the layer thickness region and the iron loss value. Special Koma Applicant: Kawasaki Steel Corporation

Claims (1)

【特許請求の範囲】 1、地鉄表層部に塑IIl歪域がみられないフAルスー
フフーr1・被膜イー1きの方向性けい素鋼板であって
、該ノAルスフライト被膜が異厚領域を有りることを特
徴とりる、歪取り焼鈍によって特1イIが劣化しくKい
低鉄損の方向性けい素鋼板。 2.7Aルスデライi〜被膜の異厚領域が、連続または
非連続の線状凹凸領域である特許請求の範囲第113″
l記載のh向性tJい素鋼板。 3、連続または非連続の線状凹凸領域が、鋼板のロー延
り向にλJLGO°〜90°Q角亀をなずものである特
許請求の範囲第1または2項記載の方向性tJいSn4
板。 4、フAルステライト被膜異厚領域の厚み差が、0.3
μm 1;/、 lである特許請求の範囲第1.2また
は3項記載の方向性番プい素鋼板。 5、含けい素鋼スラブを熱間11延して得られた熱延板
に、1回または中間焼鈍を挾む2回の冷間圧延を施して
最終板厚としたのち、脱炭・1次再結晶焼鈍を施し、つ
いで鋼板表面にM(10を主成分とする焼鈍弁*1剤を
塗布してから2次再結晶焼鈍および純化焼鈍をfi t
一連の工程よりなる方向性りい素鋼板の製造方法におい
て、 脱炭・1次再結晶後の鋼板表向への焼鈍分離剤の塗布処
理につき、該分離剤を局所的に未塗布または一様塗布後
局所的に除去することにより、純化焼鈍後、鋼板表面に
被成づるフォルステライト被膜に異厚領域を形成させる
ことを特徴とづる、歪取り焼鈍によって特性が劣化しな
い低鉄損の方向性りい素鋼板の製造方法。 6、含けい素鋼スラブを熱間圧延して得られた・熱延板
に、1回または中間焼鈍を挾む2回の冷間圧延を施して
最終板厚としたのち、脱炭・1次再結晶焼鈍を施し、つ
いで鋼板表面にMgOを主成分とりる焼鈍分離剤を塗布
してから2次再結晶焼鈍および純化焼鈍を施°り一連の
工程よりなる方向性けい素鋼板のIllll法において
、 焼鈍分離剤の塗イliに先立って脱炭・1次再結晶焼鈍
後の鋼板表面に、該分離剤と鋼板表面ザブスケニル小(
1) S i 02との反応を阻害す5る物質を1(1
/n’以下の範囲で局所的に(=J盾さUることにより
、純化焼鈍後、鋼板表面に被成りる〕Aルステライト被
膜に異厚領域を形成さUることを特徴どする、歪取り焼
鈍によって特性が劣化しない低鉄損の方向性りい素鋼板
の製〕Δ/J法、。 7、含【ノい素鋼スラブを熱間圧延して得られた熱延板
に、1゛回ま是は中間焼鈍を挾む2回の冷間圧延を施し
゛C最終板厚としたのち、脱炭・1次再結晶焼鈍を施し
、ついで鋼板表面にMOOを主成分とする焼鈍分離剤を
塗布してから2次19結晶焼鈍J3よび純化焼鈍を掩ず
一連の■稈よりなる方向性【ノい素鋼板の製造方法にお
いて、 焼鈍分離剤の塗布に先立って脱炭・1次再結晶焼鈍後の
鋼板表面に、焼鈍分離剤スラリーの撥水性物質を、0.
Ig 7m 2以下の範囲で局所的にイ」着さけること
により、純化焼鈍後、鋼板表面に被成づるフォルステ°
ライト被膜に異厚領域を形成させることを特徴とする、
歪取り焼鈍によって特性が劣化しない低鉄損の方向性け
い素鋼板の製造方法。 8、含けい素鋼スラブを熱間圧延して得られた熱延板に
、1回または中間焼鈍を挾む2回の冷間圧延を施して最
終板厚どしたのち、脱炭・1次再結晶焼鈍を施し、つい
で鋼板表面にM(JOを主成分どする焼鈍分離剤を塗布
してから2次再結晶焼鈍および純化焼鈍を施す一連の工
程よりなる方向性けい素鋼板の製造方法において、 焼鈍分離剤の塗布に先立つ−C脱炭・1次再結晶焼鈍後
の鋼板表面に、鋼中Siに対する酸化剤を2!J /s
+ 2以下の範囲で局所的に14着さ2せることにより
、純化焼鈍後、)Aルステライト被膜に異厚領域を形成
させることを特徴どMる、歪取り焼鈍によって特性が劣
化しない低鉄11の方向+gGIJい素鋼板の製造方法
。 9、含けい素鋼スラブを熱間圧延して得られた熱延板に
、1回または中間焼鈍を挾む2回の冷間圧延を施しC最
終板厚としたのち、脱炭・1次7Q帖品焼鈍を施し、つ
いで鋼板表面にfvloOを主成分とり−る焼鈍分離剤
を塗布してから2次13結晶焼鈍(13よび純化焼鈍を
施り一連の工程よりなる方向性(〕い索鋼板の製造方法
にaりい(、 )Aルスアライト被膜形成後、鋼板の地鉄内部に塑性歪
を尋人ηることなしに、局所的に該被膜の一部を除゛六
りることにより、フォルステライ1へ被膜にkl/厚領
域を形成さUることを特徴どりる、歪取り焼鈍によって
特性が劣化しない(IX鉄損の方向性けい素鋼板の製造
方法。
[Scope of Claims] 1. A grain-oriented silicon steel sheet with a full Arusuffu r1/coating E1 in which no plastic II strain region is observed in the surface layer of the base steel, wherein the non-Arusfrite coating has a different thickness region. A grain-oriented silicon steel sheet with low iron loss that does not deteriorate due to strain relief annealing. 2.7A Lusdelai i ~ Claim 113'' in which the region of different thickness of the coating is a continuous or discontinuous linear uneven region
The h-tropic tJ raw steel sheet described in l. 3. Directionality tJSn4 according to claim 1 or 2, wherein the continuous or discontinuous linear uneven region has a λJLGO° to 90°Q angle turtle in the rolling direction of the steel plate.
Board. 4. The thickness difference in the A-fulsterite coating different thickness region is 0.3
The grain-oriented steel sheet according to claim 1.2 or 3, wherein μm is 1;/, l. 5. A hot-rolled sheet obtained by hot-rolling a silicon-containing steel slab is subjected to cold rolling once or twice with intermediate annealing to obtain the final thickness, and then decarburized and Perform secondary recrystallization annealing, then apply an annealing valve*1 agent containing M(10 as the main component) to the surface of the steel sheet, and then perform secondary recrystallization annealing and purification annealing.
In a method for producing a grain-oriented silicon steel sheet that includes a series of steps, in the process of applying an annealing separator to the surface of the steel sheet after decarburization and primary recrystallization, the separator is not applied locally or uniformly. By locally removing it after application, a region of different thickness is formed in the forsterite film that forms on the surface of the steel sheet after purification annealing.It is characterized by a low core loss directionality that does not deteriorate its characteristics due to strain relief annealing. Manufacturing method of silicon steel sheet. 6. The hot-rolled plate obtained by hot rolling a silicon-containing steel slab is subjected to cold rolling once or twice with intermediate annealing to achieve the final thickness, and then decarburized and 1 Illll method for grain-oriented silicon steel sheets, which consists of a series of steps: performing secondary recrystallization annealing, then applying an annealing separator containing MgO as a main component to the surface of the steel sheet, and then performing secondary recrystallization annealing and purification annealing. In the process, prior to applying the annealing separator, the separator and the steel sheet surface Zabskenyl (
1) Add 5 substances that inhibit the reaction with S i 02 to 1 (1
/n' (= formed on the surface of the steel sheet after purification annealing by shielding) A strain characterized by the formation of regions of different thickness in the lusterite film. [Production of grain-oriented silicon steel sheet with low iron loss whose properties do not deteriorate by annealing] Δ/J method. 7. A hot rolled sheet obtained by hot rolling a raw steel slab containing゛The steel sheet is cold-rolled twice with an intermediate annealing in between to achieve the final plate thickness, then subjected to decarburization and primary recrystallization annealing, and then subjected to annealing separation with MOO as the main component on the surface of the steel sheet. After applying the annealing agent, the secondary 19-crystal annealing J3 and purification annealing are performed. A water-repellent substance of annealing separator slurry is applied to the surface of the steel sheet after crystal annealing.
By locally depositing Ig in a range of 7 m2 or less, the forste° that forms on the steel plate surface after purification annealing is reduced.
characterized by forming a region of different thickness in the light film,
A method for manufacturing a grain-oriented silicon steel sheet with low iron loss whose properties do not deteriorate due to strain relief annealing. 8. Hot-rolled sheets obtained by hot-rolling silicon-containing steel slabs are cold-rolled once or twice with intermediate annealing to achieve the final thickness, and then decarburized and subjected to primary In a method for producing a grain-oriented silicon steel sheet, which comprises a series of steps of performing recrystallization annealing, then applying an annealing separator containing M (JO as the main component) to the surface of the steel sheet, and then performing secondary recrystallization annealing and purification annealing. , An oxidizing agent for Si in steel was applied to the surface of the steel sheet after -C decarburization and primary recrystallization annealing prior to application of an annealing separator at a rate of 2!J/s.
A low iron 11 whose characteristics do not deteriorate by strain relief annealing, characterized by forming a region of different thickness in the lusterite film after purification annealing by locally depositing 14 in a range of + 2 or less. direction + gGIJ method for producing raw steel sheet. 9. A hot-rolled plate obtained by hot rolling a silicon-containing steel slab is subjected to cold rolling once or twice with intermediate annealing to obtain a final plate thickness of C, and then subjected to decarburization and primary rolling. 7Q standard annealing is applied, and then an annealing separator containing fvloO as the main component is applied to the surface of the steel sheet, followed by secondary 13 crystal annealing (13 and purification annealing), which is a series of process steps. A method for manufacturing a steel plate is that after forming a rusualite film, a part of the film is locally removed without creating plastic strain inside the base steel of the steel plate. , a method for producing grain-oriented silicon steel sheet with IX core loss, characterized by forming a kl/thick region in the coating on Forsterei 1, and whose properties are not deteriorated by strain relief annealing.
JP58201279A 1983-10-27 1983-10-27 Grain oriented silicon steel sheet having low iron loss without deterioration of characteristic by stress relief annealing and its production Granted JPS6092479A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP58201279A JPS6092479A (en) 1983-10-27 1983-10-27 Grain oriented silicon steel sheet having low iron loss without deterioration of characteristic by stress relief annealing and its production
US06/663,385 US4655854A (en) 1983-10-27 1984-10-22 Grain-oriented silicon steel sheet having a low iron loss free from deterioration due to stress-relief annealing and a method of producing the same
EP84307320A EP0143548B1 (en) 1983-10-27 1984-10-24 Grain-oriented silicon steel sheet having a low iron loss free from deterioration due to stress-relief annealing and a method of producing the same
DE8484307320T DE3473679D1 (en) 1983-10-27 1984-10-24 Grain-oriented silicon steel sheet having a low iron loss free from deterioration due to stress-relief annealing and a method of producing the same
US07/120,203 US4952253A (en) 1983-10-27 1987-11-05 Grain-oriented silicon steel sheet having a low iron loss free from deterioration due to stress-relief annealing and a method of producing the same
US07/448,059 US5173129A (en) 1983-10-27 1989-12-08 Grain-oriented silicon steel sheet having a low iron loss free from deterioration due to stress-relief annealing and a method of producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58201279A JPS6092479A (en) 1983-10-27 1983-10-27 Grain oriented silicon steel sheet having low iron loss without deterioration of characteristic by stress relief annealing and its production

Publications (2)

Publication Number Publication Date
JPS6092479A true JPS6092479A (en) 1985-05-24
JPH028027B2 JPH028027B2 (en) 1990-02-22

Family

ID=16438328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58201279A Granted JPS6092479A (en) 1983-10-27 1983-10-27 Grain oriented silicon steel sheet having low iron loss without deterioration of characteristic by stress relief annealing and its production

Country Status (1)

Country Link
JP (1) JPS6092479A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5203928A (en) * 1986-03-25 1993-04-20 Kawasaki Steel Corporation Method of producing low iron loss grain oriented silicon steel thin sheets having excellent surface properties
JP2008111152A (en) * 2006-10-30 2008-05-15 Jfe Steel Kk Grain-oriented electrical steel sheet and its manufacturing method
US10147527B2 (en) 2011-12-28 2018-12-04 Jfe Steel Corporation Grain-oriented electrical steel sheet and method for manufacturing same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5594437B2 (en) 2011-09-28 2014-09-24 Jfeスチール株式会社 Oriented electrical steel sheet and manufacturing method thereof
JP5761375B2 (en) 2011-12-22 2015-08-12 Jfeスチール株式会社 Oriented electrical steel sheet and manufacturing method thereof
JP5884165B2 (en) 2011-12-28 2016-03-15 Jfeスチール株式会社 Oriented electrical steel sheet and manufacturing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5203928A (en) * 1986-03-25 1993-04-20 Kawasaki Steel Corporation Method of producing low iron loss grain oriented silicon steel thin sheets having excellent surface properties
JP2008111152A (en) * 2006-10-30 2008-05-15 Jfe Steel Kk Grain-oriented electrical steel sheet and its manufacturing method
US10147527B2 (en) 2011-12-28 2018-12-04 Jfe Steel Corporation Grain-oriented electrical steel sheet and method for manufacturing same

Also Published As

Publication number Publication date
JPH028027B2 (en) 1990-02-22

Similar Documents

Publication Publication Date Title
US4655854A (en) Grain-oriented silicon steel sheet having a low iron loss free from deterioration due to stress-relief annealing and a method of producing the same
JP6828820B2 (en) Manufacturing method of grain-oriented electrical steel sheet and grain-oriented electrical steel sheet
JP2003027194A (en) Grain-oriented electrical steel sheet with excellent film characteristics and magnetic property, and its manufacturing method
JPS6092479A (en) Grain oriented silicon steel sheet having low iron loss without deterioration of characteristic by stress relief annealing and its production
JPS5836053B2 (en) Processing method for electrical steel sheets
EP0143548B1 (en) Grain-oriented silicon steel sheet having a low iron loss free from deterioration due to stress-relief annealing and a method of producing the same
US5173129A (en) Grain-oriented silicon steel sheet having a low iron loss free from deterioration due to stress-relief annealing and a method of producing the same
JPS60103124A (en) Grain oriented silicon steel sheet which obviates deterioration of characteristic by stress relief annealing and production thereof
JPH029111B2 (en)
JP7265186B2 (en) Grain-oriented electrical steel sheet and manufacturing method thereof
JPH025821B2 (en)
JPS6139395B2 (en)
JPH08279409A (en) Low-iron-loss directional electromagnetic steel sheet
JPH0327629B2 (en)
JPS61246376A (en) Low iron loss grain oriented silicon steel sheet free from deterioration in characteristic by stress relief annealing and its production
JPS63162814A (en) Manufacture of thin grain-oriented silicon steel sheet minimal in iron loss deterioration
JPS6396216A (en) Production of grain oriented electrical steel sheet having high adhesiveness of glass film and excellent iron loss characteristic
JPS6123771A (en) Formation of glass film on grain-oriented electrical steel sheet
JPH0218391B2 (en)
JPS61117285A (en) Production of low-iron loss grain-oriented silicon steel sheet
JP5200363B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JPH028028B2 (en)
JPS62133021A (en) Grain oriented electrical steel sheet having good adhesiveness of glass film and low iron loss and production thereof
JPS6286123A (en) Manufacture of grain oriented electrical steel sheet having low iron loss
JPH0327630B2 (en)