JPS6090933A - Method of controlling quantity of operation of operation control means for internal-combustion engine - Google Patents

Method of controlling quantity of operation of operation control means for internal-combustion engine

Info

Publication number
JPS6090933A
JPS6090933A JP19963483A JP19963483A JPS6090933A JP S6090933 A JPS6090933 A JP S6090933A JP 19963483 A JP19963483 A JP 19963483A JP 19963483 A JP19963483 A JP 19963483A JP S6090933 A JPS6090933 A JP S6090933A
Authority
JP
Japan
Prior art keywords
air temperature
intake
intake air
value
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19963483A
Other languages
Japanese (ja)
Inventor
Akihiko Koike
明彦 小池
Toshiyuki Suga
須賀 稔之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP19963483A priority Critical patent/JPS6090933A/en
Publication of JPS6090933A publication Critical patent/JPS6090933A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To obtain a proper operation quantity corresponding to the temperature of intake air, by determining an intake-air temperature correction value from the engine speed and the temperature of intake air, and correcting a base control value for the operation quantity of an engine operation control means on the basis of said correction value. CONSTITUTION:In operation of an engine, an engine control unit (ECU) 5 calculates a base fuel injection period Ti on the basis of the absolute pressure in an intake pipe detected by an absolute pressure sensor 8 and the engine speed detected by an engine- speed sensor 11 and controls a fuel injection valve 6 according to the final fuel injection period TOUT obtained by correcting the base fuel injection period Ti by use of an intake-air temperature correction factor or other correction factors. Here, since the weight flow rate of intake air is decreased with rise of the intake-air temperature detected by an intake-air temperature sensor 9, the aforesaid intake-air temperature correction factor is set at a value to decrease the fuel supply rate with rising of the intake-air temperature. Further, when the temperature of intake air is higher than a reference value (about 30 deg.C), the intake-air temperature correction value is determined on the basis of the absolute pressure in the intake pipe.

Description

【発明の詳細な説明】 本発明は内燃エンジンの作動制御手段の動作量制御方法
に関し、特にエンジン負荷を表わすエンジン運転パラメ
ータ値に応して決定される作動制御1段の動イ)゛旦j
L11御値を実際の吸入空気温度に対応して正確に補正
し、エンジンの運転性能の向上を図った動作量制御方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for controlling the amount of operation of an operation control means for an internal combustion engine, and in particular, the present invention relates to a method for controlling the amount of operation of an operation control means for an internal combustion engine.
The present invention relates to an operating amount control method that accurately corrects the L11 control value in accordance with the actual intake air temperature and improves the operating performance of the engine.

従来、エンジン負荷を表わすエンジン制御パラメータ、
例えば吸気管内絶対圧とエンジン回転数どに応し、てエ
ンジンの作動を制御する作動制御手段の動作量、例えば
燃料供給制御装置によりエンジンに(Jt[される燃料
量、点火時期制御装置により制御さ71シる火花点火時
期、排気還流制御装置によりFf、!I fitさ、1
シるIJ+気運流星等を決定し、斯く決定さ、ltだ動
作量を吸気温度に応して補正して所要の動作量を設定す
る方法が例えば特開昭58−88463号、特開昭53
−8434号等により知ら、lLでいる。
Conventionally, engine control parameters representing engine load,
For example, depending on the absolute pressure in the intake pipe and the engine speed, the operation amount of the operation control means that controls the operation of the engine, for example, the amount of fuel supplied to the engine (Jt) by the fuel supply control device, the amount of fuel controlled by the ignition timing control device, etc. Spark ignition timing, exhaust recirculation control device allows Ff,!I fit, 1
For example, JP-A No. 58-88463 and JP-A-53 No. 58-88463, JP-A No. 58-88463, JP-A No. 53
-8434, etc., and is located at 1L.

然るに、吸気管に設けらJした温度センサにより検出し
た吸入空気温度値を用いて作動制御手段の動作量を上述
の公知方法によって補正すれば、エンジンの運転状態に
よっては、正しく補正出来ない場合が生しる。
However, if the operation amount of the operation control means is corrected by the above-mentioned known method using the intake air temperature value detected by the temperature sensor installed in the intake pipe, it may not be possible to correct the operation amount correctly depending on the operating condition of the engine. Live.

即ち、エンジンの吸気通路はエンジン壁からの熱の伝達
により加熱されており、エンジンに供給さiLる吸入空
気温度は加熱さ、jtだ吸気通路壁からの熱伝達により
上昇する。この吸入空気の温度上昇度合はエンジン運転
状態、特に吸気通路内を流通する吸入空気の流速によっ
て変化するために、動作量の吸気温度補正には吸入空気
温度のみならず吸入空気流速についても考慮する必要が
ある。
That is, the intake passage of the engine is heated by heat transfer from the engine wall, and the temperature of the intake air supplied to the engine increases due to heat transfer from the intake passage wall. The degree of temperature rise of this intake air varies depending on the engine operating conditions, especially the flow velocity of the intake air flowing through the intake passage, so when correcting the intake air temperature of the operation amount, not only the intake air temperature but also the intake air flow velocity are taken into account. There is a need.

又、吸入空気温度を検出する吸気温度センサをエンジン
の組立上の都合等によ・リエンジンより離隔した吸気通
路壁、例えば吸気絞りjl (以下これを「スロットル
弁」と称す)上流側の吸気通路壁に配設せざるを得ない
場合があり、この様な揚台には斯かる温度センサを用い
ると吸入空気がスロットル弁をその圧力の高い上流側か
ら圧力の低い下流側に通過する際に吸入空気は断熱膨張
し、この膨張により吸入空気温度か下降する。この吸入
空気の温度下降度合はエンジン運転状態、即ちスロット
ル弁前後の圧力比によって変化する。従って動作量の吸
気6.14度補正には斯かる断熱膨張による吸入空気の
温度下降度合についても考慮する必要がある。
Also, due to engine assembly reasons, an intake air temperature sensor that detects the intake air temperature may be installed on an intake passage wall that is separated from the rear engine, such as the upstream side of an intake throttle (hereinafter referred to as a "throttle valve"). In some cases, it is necessary to install the temperature sensor on the passage wall, and if such a temperature sensor is used in such a platform, it will be possible to detect the The intake air expands adiabatically, and this expansion causes the intake air temperature to drop. The degree to which the temperature of the intake air decreases varies depending on the engine operating condition, that is, the pressure ratio before and after the throttle valve. Therefore, in order to correct the operation amount of intake air by 6.14 degrees, it is necessary to consider the degree of decrease in temperature of intake air due to such adiabatic expansion.

本発明は上述の問題点を解決するためになされたもので
、吸入空気流速はエンジン負荷を表わすパラメータであ
る吸気通路内のスロットル弁下流側圧力の関数であるこ
と及び断熱膨張による吸入空気の温度下降度合も該スロ
ットル弁下流側圧力の関数であることに着目し、吸気通
路と、該通路途中に配置された絞り弁とを儂える内燃エ
ンジンの作動制御手段の動作量基本制御値をエンジン負
荷を表わすエンジン運転パラメータ値に応じて決定し、
該動4’l−亙基本11;す御値を吸入空気温度検出値
に応し7て補正する作動制御手段の動作量制御方法にお
いて、前記エンジン負荷を表わすエンジン運弓v;パラ
メータ値と前記吸入空気温度検出値とに応しC吸気温度
補正値を決定し、斯く決定した吸気温度補正値に基いて
前記動作量基本制御値を補正するようにして動作量制御
値をエンジンに供給される実空気温度に応じた所定値に
正確に設定し。
The present invention has been made to solve the above-mentioned problems.The present invention is based on the fact that the intake air flow rate is a function of the pressure downstream of the throttle valve in the intake passage, which is a parameter representing the engine load, and the temperature of the intake air due to adiabatic expansion. Focusing on the fact that the degree of descent is also a function of the pressure on the downstream side of the throttle valve, the operating amount basic control value of the operation control means of the internal combustion engine that controls the intake passage and the throttle valve disposed in the middle of the passage is calculated as the engine load. Determined according to the engine operating parameter value representing
Basics 11: In a method for controlling the operation amount of an operation control means in which a control value is corrected according to a detected intake air temperature value, the engine bow movement v representing the engine load; the parameter value and the A C intake air temperature correction value is determined in accordance with the detected intake air temperature value, and the operation amount control value is supplied to the engine in such a manner that the operation amount basic control value is corrected based on the intake air temperature correction value thus determined. Accurately set the specified value according to the actual air temperature.

もってエンジンの排気ガス特性、燃費特性、運転性能等
の向上を図った内燃エンジンの作動制御手段の動作量制
御方法を提供するものである。
The present invention provides a method for controlling the operating amount of an internal combustion engine operating control means, which improves the engine's exhaust gas characteristics, fuel efficiency characteristics, driving performance, etc.

以下本発明の実施例を添伺図面を参照して説明する。Embodiments of the present invention will be described below with reference to accompanying drawings.

第1図は本発明の方法が適用さhた内燃エンジンの燃料
供給制御装置の全体構成図であり、符号lは例えば4気
筒の内燃エンジンを示し、エンジン1には吸気管2が接
続され、吸気管2の途中にはスロットル弁3が設けら九
でいる。スロットル弁3にはスロソ1〜ル弁開度センサ
4が連結されてスロットル弁の弁開度を電気的信号に変
換し電子コントロールユニット(以下rEcUJと言う
)5に送るようにされている。
FIG. 1 is an overall configuration diagram of a fuel supply control device for an internal combustion engine to which the method of the present invention is applied. Reference numeral 1 indicates, for example, a four-cylinder internal combustion engine, and an intake pipe 2 is connected to the engine 1. A throttle valve 3 is provided in the middle of the intake pipe 2. Throttle valve opening sensors 4 are connected to the throttle valve 3 to convert the opening of the throttle valve into an electrical signal and send it to an electronic control unit (hereinafter referred to as rEcUJ) 5.

吸気管2の工゛ンジン】とスコツ1〜ルjl 3 Eに
は燃料噴射弁6が設けられている。この燃料噴射−jt
6は吸気管2の図示しない吸気弁の少し下流側に各気筒
ごとに設けられており、各噴射弁は図示しない燃料ポン
プに接続されていると共にECU3に電気的に接続され
て、ECU3からの信号によって燃料噴射弁の開弁時間
が制御される。
A fuel injection valve 6 is provided at the engine of the intake pipe 2 and the exhaust pipes 1 to 3E. This fuel injection-jt
Reference numeral 6 is provided for each cylinder slightly downstream of an intake valve (not shown) in the intake pipe 2, and each injection valve is connected to a fuel pump (not shown) and electrically connected to the ECU 3, so that the injection valve from the ECU 3 is connected to the fuel pump (not shown). The signal controls the opening time of the fuel injection valve.

一方、スロソ1−ルブr3の直ぐ下流には管7を介して
絶対圧センサ8がII♂れており、この絶対圧センサ8
によって電気的信号に変換さ九た絶対圧信号は前記E 
CU 5に送られる。また、吸気管2のスロノI−ル弁
3上流には吸気温センサ9が取イ」けられており、この
吸気温センサ9も吸気温度を電気的信号に変換し、てE
CU3に送るものである。
On the other hand, an absolute pressure sensor 8 is installed immediately downstream of the suroso 1-r3 via a pipe 7, and this absolute pressure sensor 8
The absolute pressure signal converted into an electrical signal by the E
Sent to CU 5. In addition, an intake temperature sensor 9 is installed upstream of the throttle valve 3 in the intake pipe 2, and this intake temperature sensor 9 also converts the intake air temperature into an electrical signal.
This is what is sent to CU3.

エンジン本体】にはエンジン水温センサ10が設けられ
、とのセンサ10はザーミスタ等から成り、冷却Aζか
充満したエンジン気筒周壁内に挿着さitで、その検出
水温信号をECU3に供給する。
The engine main body is provided with an engine water temperature sensor 10, which is made of a thermistor or the like, and is inserted into the circumferential wall of the engine cylinder filled with cooling Aζ, and supplies its detected water temperature signal to the ECU 3.

エンジン回転数センサ(以下rNeNeセンサ言う)1
1および気筒判別センサ12がエンジンの図示しないカ
ム軸周囲又はクランク軸周囲に取(4けられており、前
者11は1” D C信号即ちエンジンのクランク軸の
180°回転毎に所定のクランク角度位置で、後者■2
は特定の気筒の所定のクランク角度位置でそれぞ乳]パ
ルスを出力するものであり。
Engine speed sensor (hereinafter referred to as rNeNe sensor) 1
1 and a cylinder discrimination sensor 12 are installed around the camshaft or crankshaft (not shown) of the engine (4 digits are installed), and the former 11 generates a 1" DC signal, that is, a predetermined crank angle every 180° rotation of the engine crankshaft. In position, the latter ■2
outputs a milk pulse at a predetermined crank angle position of a specific cylinder.

、これらのパルスはECU3に送られる。エンシ゛ン1
の排気管13には三元触媒14が配置され排気ガス中の
I−I C、CO、N Ox成分の浄化作用を行なう。
, these pulses are sent to the ECU3. Engine 1
A three-way catalyst 14 is disposed in the exhaust pipe 13 of the exhaust gas, and purifies I-IC, CO, and NOx components in the exhaust gas.

この二元触媒14の上流側には02センサ15が排気管
13に挿着されこのセンサ15は排気中の酸素濃度を検
出しその検出値信号をIECU 5に供給する。
An 02 sensor 15 is inserted into the exhaust pipe 13 on the upstream side of the two-way catalyst 14, and this sensor 15 detects the oxygen concentration in the exhaust gas and supplies the detected value signal to the IECU 5.

更に、ccusには、大気圧を検出するセンサ16及び
エンジンのスタータスイッチ17が接続されており、E
C[J5はセンサI6からの検出値信号およびスタータ
スイッチのオン−オフ状態信号を供給さオしる。
Furthermore, a sensor 16 for detecting atmospheric pressure and an engine starter switch 17 are connected to the ccus.
C[J5 supplies the detected value signal from sensor I6 and the on-off state signal of the starter switch.

ECIJ5は上述の各種エンジンパラメータ信号に基い
てエンジン運転状態を判別すると共に、判別したエンジ
ン運転状態に応じて以下に示す演算式で与えられる燃料
噴射弁6の燃料噴射時間”I’o’urを演算する。
The ECIJ 5 determines the engine operating state based on the various engine parameter signals mentioned above, and determines the fuel injection time "I'o'ur" of the fuel injection valve 6 given by the following formula according to the determined engine operating state. calculate.

TouT=TtXKrAXK1 +に2ここにTiは基
本燃料噴射時ff[を示し、この基本燃料噴射時間Ti
は吸気管内絶対圧PnAとエンジン回転数N aに応じ
て演算さ、lLる。KTAは本発明に係る吸気温度補正
係数であり、その詳細については後述する。K1及びに
2は前述の各種センサ、ずなわち、スロットル弁開度セ
ンサ4、吸気管内絶対圧センサ8.エンジン水鼠センサ
1O1Ncセンサ11、気筒判別センサ12.0□セン
サI5、大気圧センサIG及びスタータスイッチ17か
らのエンジンパラメータ信号に応じて演算されるその他
の補正係数又は補正値であってエンジン運転状態に応じ
、始動特性、排気ガス特性、燃費特性、エンジン加速特
性等の詣特性が最適なものとなるように所定の演算式に
基いて演算される。
TouT=Tt
is calculated according to the intake pipe absolute pressure PnA and the engine speed Na. KTA is an intake air temperature correction coefficient according to the present invention, the details of which will be described later. K1 and K2 are the various sensors mentioned above, namely, the throttle valve opening sensor 4, the intake pipe absolute pressure sensor 8. Other correction coefficients or correction values that are calculated according to engine parameter signals from the engine water rat sensor 1O1Nc sensor 11, cylinder discrimination sensor 12.0□ sensor I5, atmospheric pressure sensor IG, and starter switch 17, and are the engine operating state. According to the engine speed, starting characteristics, exhaust gas characteristics, fuel efficiency characteristics, engine acceleration characteristics, and other driving characteristics are calculated based on a predetermined calculation formula so as to be optimal.

L!: CLJ 5は」二連のようにしてめた燃料噴射
時間’J’ o u ・+に)、(いて燃料噴射弁6を
開弁させる駆動信号を燃料噴射弁6に供給する。
L! : CLJ 5 supplies a drive signal to the fuel injection valve 6 to open the fuel injection valve 6 at the fuel injection time 'J' o u ·+ which is set in a double series.

第2図は第1図の丁シc u Jr内部の回路構成を示
す図で、第1図のNeセンサ【Iからのエンジン回転数
信号は波形整形回路501で波形整形さ]した後、 ’
L’ D C〕(O号として中央処理装置(以下「CP
tJJ という)503に供給されると共にMeカウン
タ502はN8センサ1]からの前回所定位置信号の入
力時から今回所定位置信号の入力時までの時間間隔を泪
数するもので、その計数値Meはエンジン回転数NOの
逆数に比例する。Meカウンタ502はこの泪数値M 
eをデータバス510を介してCPU5 Q 3に供給
する。
FIG. 2 is a diagram showing the internal circuit configuration of the engine shown in FIG. 1. After the engine rotation speed signal from the Ne sensor shown in FIG.
L' D C] (Central processing unit (hereinafter referred to as "CP")
tJJ) 503, and the Me counter 502 counts the time interval from the input of the previous predetermined position signal from the N8 sensor 1 to the input of the current predetermined position signal, and the counted value Me is It is proportional to the reciprocal of engine speed NO. Me counter 502 is this tear value M
e is supplied to the CPU 5 Q 3 via the data bus 510.

第1図のスロットル弁開度センサ4、吸気管内絶対圧P
BAセンサ8、吸気温TAセンサ9等の各種センサから
の夫々の出力信号はレベル修正回路504で所定電圧レ
ベルに修正された後、マルチプレクサ505により順次
A/Dコンバータ506に供給さ九る。A/Dコンバー
タ5C16は前述の各センサからの出力信号を順次デジ
タル信号に変換して該デジタル信号をデータバス510
を介してCPU503に供給する。
Throttle valve opening sensor 4 in Fig. 1, absolute pressure P in the intake pipe
Output signals from various sensors such as the BA sensor 8 and the intake air temperature TA sensor 9 are corrected to predetermined voltage levels by a level correction circuit 504, and then sequentially supplied to an A/D converter 506 by a multiplexer 505. The A/D converter 5C16 sequentially converts the output signals from each sensor described above into digital signals and sends the digital signals to the data bus 510.
It is supplied to the CPU 503 via.

CPU503は、更に、データバス510を介してリー
ドオンリメモリ(以下r ROM Jという)507、
ランダムアクセスメモリ(RAM)580及び駆動回路
509に接続されており、RAM508はC〕l’ [
1503での演算結果等を一時的に記憶し、ROiν1
507はCP U 503で実行される制御プログラム
、燃料噴射弁6の基本噴射時間′J″iマツプ、後述す
る吸気温度補正係数Iく丁Aマツプ等を記憶している。
The CPU 503 further includes a read-only memory (hereinafter referred to as rROMJ) 507 via a data bus 510;
It is connected to a random access memory (RAM) 580 and a drive circuit 509, and the RAM 508 is connected to C]l'[
Temporarily stores the calculation results etc. in 1503 and stores them in ROiν1.
507 stores a control program executed by the CPU 503, a basic injection time 'J''i map of the fuel injection valve 6, an intake air temperature correction coefficient I map, which will be described later, and the like.

CPU503はROM507に記1.Q、さ、1[てい
る制御プログラムに従って、先ず枯木噴射11、+1l
ill ’L” iマツプからエンジン回転数N e及
び吸気管内絶対圧P o r\の各検出値に応じた基本
噴射時間Ti値を読出し、次いで前述の各種エンジンパ
ラメータ信号に応じた補正係数値KI+に2及び吸気温
度補正係数値K ・r Aを設定する。
The CPU 503 writes 1. Q, S, 1 [According to the control program, first deadwood injection 11, +1l
The basic injection time Ti value corresponding to each detected value of the engine speed Ne and intake pipe absolute pressure Po r\ is read from the ill 'L'' i map, and then the correction coefficient value KI+ corresponding to the various engine parameter signals mentioned above is read out. 2 and the intake air temperature correction coefficient value K.rA.

第3図はf< OM 507に記憶されている吸気温度
補正係数]く1八マツプを示し、吸気温度TAは例えは
−10℃乃至90℃の範囲でTAI乃至’l’ 八F、
どして5段階設けられ、吸気管内絶対圧P11 、A 
lま、1列えば、PnA−rX+ (260mm1g)
及びP +3 r、7.2 (760mrnf−Tg)
の2段階設けら4している。CP LJ 503はこの
KTAマツプから吸気温度1゛7\及び吸気管内絶対圧
PI]Aの各検出値に応した値KrAijを読出し、該
読出値KTAijを補正係数値KTAとする。尚、前記
吸気温度検出値TA及び吸気管内絶対圧検出値PBAが
上2TA+乃至T 八5及びPBAAIIPBAA2に
該当しない中間値等である場合には内挿法等による補間
引算によって補正係数値KTAを設定する。
FIG. 3 shows a map where f<the intake air temperature correction coefficient stored in the OM 507], and the intake air temperature TA is, for example, TAI to 'l' 8 F in the range of -10°C to 90°C.
The intake pipe absolute pressure P11, A is provided in five stages.
For one row, PnA-rX+ (260mm 1g)
and P +3 r, 7.2 (760mrnf-Tg)
There are two stages: 4. The CP LJ 503 reads a value KrAij corresponding to each detected value of intake air temperature 1'7\ and intake pipe absolute pressure PI]A from this KTA map, and sets the read value KTAij as a correction coefficient value KTA. If the intake air temperature detection value TA and the intake pipe absolute pressure detection value PBA are intermediate values that do not correspond to upper 2TA+ to T85 and PBAAIIPBAA2, the correction coefficient value KTA is calculated by interpolation subtraction using an interpolation method or the like. Set.

第4図は第3図のKTAマツプの各マツプ値KTA +
 jを線図に表わしたもので、吸気温度TAがTAI(
例えば−10℃)からlA5 (例えば90°C)に増
加すに応じて係数値K T Aは小さい値となる。即ち
、係数値KTAは、吸気温度TAの上昇に伴ってエンジ
ンに供給さJしる吸入空気重量流量は減少するのでそれ
に伴って供給燃料爪も減少するように、すなわちエンジ
ンに供給される混合気の空燃比が所要の一定値となるよ
うに実験的に設定されている。
Figure 4 shows each map value KTA + of the KTA map in Figure 3.
j is expressed in a diagram, where the intake air temperature TA is TAI (
The coefficient value K T A becomes smaller as the temperature increases from 1A5 (for example, -10°C) to 1A5 (for example, 90°C). That is, the coefficient value KTA is determined so that as the intake air temperature TA increases, the weight flow rate of the intake air supplied to the engine decreases, and the supplied fuel flow decreases accordingly, that is, the air-fuel mixture supplied to the engine decreases. The air-fuel ratio is experimentally set to a required constant value.

又、吸気温度TAが基準温度(例えば30℃に設定され
、このときの補正係数値KTAは1.0となる)より高
いとき、吸気管内絶対圧P[lAが上昇するに応じて、
即ちエンジンの負荷の増大を、α味する1吸気流星の増
加に応して同一、吸気温度での補正係数値K ’r A
は増加する一方、吸気温度′[Aか前記基準温度より低
いとき、吸気管内絶対圧1]口、−が上昇するに応じて
同一吸気温度での補正係数値KTAは減少するように設
定される。
Further, when the intake air temperature TA is higher than the reference temperature (for example, set to 30°C, and the correction coefficient value KTA at this time is 1.0), as the intake pipe absolute pressure P[lA increases,
In other words, the correction coefficient value K'r A at the same intake air temperature corresponds to the increase in the number of intake air meteors that increase the engine load.
is set to increase, while the correction coefficient value KTA at the same intake air temperature is set to decrease as the intake air temperature '[when A is lower than the reference temperature, the intake pipe absolute pressure 1] - increases. .

CP [J 503は」二連のようにしてめた補正係数
値に−r\等を前記演算式にj開用して燃料噴射弁6の
燃料噴射時間”I” o u qを演算し、この演算値
に基づく制御Ca号をデータバス510を介して駆動回
路509に供給する。駆動回路509は制御1ご号か入
力している間に亘って燃料噴射弁6を開プtさせるlU
41J信号を該噴射弁6に供給する。
CP [J 503] calculates the fuel injection time "I" o u q of the fuel injection valve 6 by applying -r\ etc. to the above calculation formula for the correction coefficient value obtained in a double series, A control number Ca based on this calculated value is supplied to the drive circuit 509 via the data bus 510. The drive circuit 509 opens the fuel injection valve 6 while the control number 1 is being input.
41J signal is supplied to the injection valve 6.

尚1本発明は」二連の燃料噴射制御装置の燃料噴射爪制
御に限定されず、動作量の制御を吸入空気凰に関連して
行なうものであれば種々の作動制御手段、例えは点火時
期制御装置、排気還流制御装置等に適用することが出来
る。
Note that the present invention is not limited to the fuel injection claw control of a dual fuel injection control device, but can be applied to various operation control means, such as ignition timing, as long as the operation amount is controlled in relation to the intake air intake. It can be applied to control devices, exhaust gas recirculation control devices, etc.

以上詳述したように本発明の内燃エンジンの作動制御手
段の動作量制御方法に依jしば、エンジン負荷を表わす
エンジン運転パラメータ値と吸入空気温度検出値とに応
じて吸気温度補正値を決定し、斯く決定した吸気温度補
正値に基いて動作量基本制御値を補正するようにしたの
で作動制御手段の動作量を吸入空気の実温度に応じた所
要値に正確に設定することが出来、エンジンの排気ガス
特性。
As detailed above, depending on the operation amount control method of the internal combustion engine operation control means of the present invention, the intake air temperature correction value is determined according to the engine operating parameter value representing the engine load and the intake air temperature detection value. However, since the operation amount basic control value is corrected based on the intake air temperature correction value determined in this way, the operation amount of the operation control means can be accurately set to the required value according to the actual temperature of the intake air. Engine exhaust gas characteristics.

m費特性、運転性能等の向上を図ることが出来る。It is possible to improve m-cost characteristics, driving performance, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明が適用さオした燃料噴射制御装置の全体
構成図、第2図は第1図の電子コントロールユニット(
ECU)の内部構成を示す回路図、第3図は第2図のリ
ードオンリメモリ(ROM)に記憶さ九た吸気温度補正
係数値KTAのマツプ図、第4図は第3図の吸気温度補
正係数の各マツプ値KTAを表わした線図である。 】・・・内燃エンジン、2・・・吸気通路、3・・・絞
り弁、5・・・電子コントロールユニy ト(ECU)
、6・・・燃料噴射弁、8・・・吸気管内絶対圧センサ
、9・・・吸気温センサ。
FIG. 1 is an overall configuration diagram of a fuel injection control device to which the present invention is applied, and FIG. 2 is an electronic control unit (
Figure 3 is a map of the intake air temperature correction coefficient value KTA stored in the read-only memory (ROM) shown in Figure 2, and Figure 4 is a diagram showing the intake air temperature correction coefficient value KTA shown in Figure 3. FIG. 3 is a diagram showing each map value KTA of coefficients. ]... Internal combustion engine, 2... Intake passage, 3... Throttle valve, 5... Electronic control unit (ECU)
, 6...Fuel injection valve, 8...Intake pipe absolute pressure sensor, 9...Intake temperature sensor.

Claims (1)

【特許請求の範囲】 1、 吸気通路と、該通路途中に配置された絞り弁とを
備える内燃エンジンの作動制御手段の動作里基本制御値
をエンジン負荷を表わすエンジン運転パラメータ値に応
して決定し、該動作量基本制御値を吸入空気温度を検出
直に応じて補正する作動制御手段の動作量制御方法にお
いて、 1)if記エンジンC′[荷を表わすエンジン
運転パラメータ値と前記吸入空気温度1カ出値とに応じ
て吸気温度補正値を決定し、斯く法定し、た吸気温度補
正値に基いて前記動作几基本制J5’ll I直を補正
することを特徴とする内燃エンジンの作動制御手段の動
作量制御方法。 2、 前記吸入空気温度検出値は前記紋り弁上流側の吸
入空気温度であり、前記エンジン負荷を表わすエンジン
運転パラメータ値角辺内気通路内の前記紋り弁下流側圧
力であることを特徴とする特許請求の範囲第1項記載の
内燃エンジンの作動制御手段の動作量制御方法。 3、 前記作動制御手段は燃料供給量制御手段であり、
前記動作量は該燃料供給量制御手段がエンジンに供給す
る燃131量であることを特徴とする特許請求の範囲第
1項記載の内燃エンジンの作動制御手段の動作量制御方
法。 4、 前記吸気6A度補正値は吸気温度の上昇に応じて
燃料供給量を減少させるように設定さ71することを特
徴とする特許請求の範囲第3項記載の内燃エンジンの作
動制御手段の動作量制御方法。 5、 前記吸気温度検出値が基準温度より低温側の値で
あるどき、前記吸気温度補正値は吸気通路内圧力値がよ
り高負荷を表わす値の方向に変化するに応じて燃料供給
mを減少させるように設定される一方、前記吸気温度検
出値が前記基準温度より高温側の値であるどき、前記吸
気温度補正値は吸気通路内圧力値がより高負荷を表わす
値の方向に変化するに応じて燃料供給量を増加させるよ
うに設定されて成ることを特徴とする特許請求の範囲第
3項又は第4項記載の内燃エンジンの作動制御手1女の
動作量制御方法。
[Claims] 1. Determining the basic operating control value of the operation control means of an internal combustion engine that includes an intake passage and a throttle valve disposed in the middle of the intake passage in accordance with an engine operating parameter value representing the engine load. In the operation amount control method of the operation control means for correcting the operation amount basic control value in response to the detected intake air temperature, 1) if engine C' [engine operating parameter value representing the load and the intake air temperature; 1. An operation of an internal combustion engine characterized in that an intake air temperature correction value is determined according to an output value, the intake air temperature correction value is determined in accordance with the above, and the operation basic control is corrected based on the intake air temperature correction value. A method for controlling the amount of operation of a control means. 2. The intake air temperature detection value is the intake air temperature upstream of the crest valve, and the engine operating parameter value representing the engine load is the pressure downstream of the crest valve in the corner internal air passage. A method for controlling an operation amount of an operation control means for an internal combustion engine according to claim 1. 3. The operation control means is a fuel supply amount control means,
2. The method of controlling the operating amount of an internal combustion engine operation control means according to claim 1, wherein the operating amount is an amount of fuel supplied to the engine by the fuel supply amount controlling means. 4. The operation of the internal combustion engine operation control means as set forth in claim 3, wherein the intake air 6A degree correction value is set 71 so as to reduce the fuel supply amount in accordance with a rise in intake air temperature. Volume control method. 5. When the intake air temperature detection value is a value on the lower temperature side than the reference temperature, the intake air temperature correction value decreases the fuel supply m as the intake passage pressure value changes toward a value representing a higher load. On the other hand, when the intake air temperature detection value is on the higher temperature side than the reference temperature, the intake air temperature correction value is set as the intake passage pressure value changes toward a value representing a higher load. 5. A method for controlling the amount of operation of an operation controller of an internal combustion engine according to claim 3 or 4, wherein the amount of fuel supplied is increased accordingly.
JP19963483A 1983-10-25 1983-10-25 Method of controlling quantity of operation of operation control means for internal-combustion engine Pending JPS6090933A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19963483A JPS6090933A (en) 1983-10-25 1983-10-25 Method of controlling quantity of operation of operation control means for internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19963483A JPS6090933A (en) 1983-10-25 1983-10-25 Method of controlling quantity of operation of operation control means for internal-combustion engine

Publications (1)

Publication Number Publication Date
JPS6090933A true JPS6090933A (en) 1985-05-22

Family

ID=16411107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19963483A Pending JPS6090933A (en) 1983-10-25 1983-10-25 Method of controlling quantity of operation of operation control means for internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS6090933A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5341786A (en) * 1991-10-03 1994-08-30 Honda Giken Kogyo Kabushiki Kaisha Fuel injection control device for internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5341786A (en) * 1991-10-03 1994-08-30 Honda Giken Kogyo Kabushiki Kaisha Fuel injection control device for internal combustion engine

Similar Documents

Publication Publication Date Title
JPS59192838A (en) Air-fuel ratio controlling method
US6655357B2 (en) Abnormality detection apparatus for intake system of internal combustion engine
EP2378102B1 (en) Device for calculating intake air volume in cylinder of internal combustion engine
JP2548273B2 (en) Fuel injection control device for internal combustion engine
JPS6088831A (en) Method of controlling operation characteristic quantity for operation control means of internal-combustion engine
JPS58150057A (en) Study control method of air-fuel ratio in internal-combustion engine
JPH0575902B2 (en)
JPS6357852A (en) Control device for internal combustion engine
JPS61182440A (en) Fuel injection timing control method for internal-combustion engine
JPH08121211A (en) Fuel control device for internal combustion engine
JPS6090933A (en) Method of controlling quantity of operation of operation control means for internal-combustion engine
JPS58222941A (en) Method of compensating signal of pressure in intake pipe for internal combustion engine controller
JPS6213754A (en) Idle rotational speed control device in internal-combustion engine
JP3240780B2 (en) Fuel supply control device for internal combustion engine
JP3972925B2 (en) Catalyst deterioration detection device for internal combustion engine
JPH06185396A (en) Basic fuel injection method
JPS614842A (en) Fuel supply feedback control under cooling of internal-combustion engine
JPS5872631A (en) Air-fuel ratio control method of engine
JP2685176B2 (en) Engine air-fuel ratio control device
JPS603449A (en) Method of controlling fuel supply of internal-combustion engine
JPS60230538A (en) Feedback control for supplied fuel amount for internal-combustion engine
JPS61116041A (en) Method of controlling air-fuel ratio feedback control of internal-combustion engine
JPS63113171A (en) Air-fuel ratio control method for internal combustion engine for vehicle
JPS62182458A (en) Air-fuel ratio control of internal combustion engine
JPS61106961A (en) Control method of exhaust gas recirculating quantity in internal-combustion engine