JPS6090916A - Coolant boiling and cooling apparatus internal- combustion for engine - Google Patents

Coolant boiling and cooling apparatus internal- combustion for engine

Info

Publication number
JPS6090916A
JPS6090916A JP19897083A JP19897083A JPS6090916A JP S6090916 A JPS6090916 A JP S6090916A JP 19897083 A JP19897083 A JP 19897083A JP 19897083 A JP19897083 A JP 19897083A JP S6090916 A JPS6090916 A JP S6090916A
Authority
JP
Japan
Prior art keywords
control
tank
liquid
phase refrigerant
solenoid valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19897083A
Other languages
Japanese (ja)
Inventor
Yoshinori Hirano
芳則 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP19897083A priority Critical patent/JPS6090916A/en
Priority to DE8484112777T priority patent/DE3483349D1/en
Priority to US06/663,911 priority patent/US4549505A/en
Priority to EP84112777A priority patent/EP0143326B1/en
Publication of JPS6090916A publication Critical patent/JPS6090916A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/22Liquid cooling characterised by evaporation and condensation of coolant in closed cycles; characterised by the coolant reaching higher temperatures than normal atmospheric boiling-point
    • F01P3/2285Closed cycles with condenser and feed pump

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Abstract

PURPOSE:To improve controllability of a control system, by providing a passage connecting a small tank disposed on the outside of the system to the inside of the system constituting an enclosed cooling system, and executing air discharging control, cold start control, hot start control, etc. through control of a plurality of solenoid valves. CONSTITUTION:In cast that the temperature of a coolant after starting of an engine is higher than a predetermined value (for instance, 45 deg.C), cold start control is executed when a solenoid valve 4 disposed in a pipe 18 extended between a small reservoir tank 7 and a lower tank 15 of a condenser 14 is opened, for instance, through detection of a liquid-level sensor 8 that the liquid surface is lower than the uppermost position in a system. That is, boiling of a coolant is started at first by opening solenoid valves 2, 3 while closing solenoid valves 1, 4, and liquid coolant is forced into the reservoir tank 7 from the lower position of a cooling jacket 12 by use of the vapor pressure. When the liquid surface is lowered to the position of a liquid-level sensor 9, the solenoid valve 2 is closed while the solenoid valve 4 is opened to discharge coolant in the condensor 14 into the reservoir tank 7 via the pipe 18.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、内燃機関、例えば自動車用エンジンの沸騰
6月1装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a boiling June 1 device for internal combustion engines, such as motor vehicle engines.

[従来技術] 従来の内燃機関の沸騰冷却装置としては、例えば第1図
に承りようなものがある(特開昭51−137044号
公報参照)。
[Prior Art] As a conventional boiling cooling device for an internal combustion engine, there is one shown in FIG. 1, for example (see Japanese Patent Laid-Open No. 137044/1983).

これは、冷u1ジVケットJに液相冷媒を満し、その気
化潜熱で熱を奪い、コンデンサにで放熱液化する方式で
窄気扱きフィルタFで系を大気開放どするものである。
This is a system in which a liquid-phase refrigerant is filled in a cold U1 di-Vette J, and the latent heat of vaporization takes away heat, and the heat is liquefied in a condenser, and the system is opened to the atmosphere using a filter F that handles constricted air.

しかしながら、この従来のものは、フィルタが気体を外
部に通してしまうので、ここから徐々に蒸気が失われ、
たびたび冷u1水を補給しなければならないし、エンジ
ン停止後は、系内の蒸気の凝縮に伴い、該フィルタから
不凝縮気体である空気を多聞に吸引してしまい、再始動
後、空気が」ンデンザに内に残留し易く、放熱効率が低
下づる欠点のあるものであった。
However, with this conventional type, the filter allows the gas to pass through to the outside, so steam is gradually lost from there.
Cold U1 water must be replenished frequently, and after the engine is stopped, as the steam in the system condenses, a large amount of air, a non-condensable gas, is sucked in from the filter, and after the engine is restarted, the air... This has the disadvantage that it tends to remain in the heat sink, reducing heat dissipation efficiency.

このように、従来の内燃機関の沸騰冷却装置にあっては
、冷却系が常に人気開放された構造となっていたため、
運転中、コンデンリ内に空気が残留しゃ1J−り、放熱
効率が低く、エンジン停止後も系内の蒸気のiu i!
iに伴い空気を多量に吸引してしまい、再始動後も増1
(放熱効率が低重づると(1つ問題や、系内の液相冷媒
が徐々に失われたびたび補給しなければならないという
問題点があった。
In this way, in conventional boiling cooling devices for internal combustion engines, the cooling system was always open to the public.
During operation, 1J- of air remains in the condenser, resulting in low heat dissipation efficiency, and even after the engine is stopped, steam in the system still remains.
Due to i, a large amount of air is sucked in, and the amount increases by 1 even after restarting.
(One problem was that the heat dissipation efficiency was low, and the liquid phase refrigerant in the system was gradually lost and had to be replenished frequently.

そこC1木出願人は先願としC特[i昭58−8663
2号を始め、その他の出願をし、上述の空気混入及び熱
弁損失の防止を図るべく対処した。
Therefore, the applicant for C1 tree should be the first to apply for the C patent [i.
No. 2 and other applications were filed to prevent the above-mentioned air entrainment and hot valve loss.

しかしながら、イの後のrtll究聞介にJ、す、該装
置の冷却性能を更に向上さUるためには、空気抜さ又は
通常運転の制御に加えて、コールドスター1〜又は小ツ
1〜スター1〜雪の制911をさめ細かに?J ’、r
うことが必要であることが分って来た。
However, in order to further improve the cooling performance of the device, in addition to controlling the air release or normal operation, it is necessary to ~ Star 1 ~ Detailed snow control 911? J', r
I realized that I needed to do something.

[発明の目的] この発明は、従来の問題点に省Ll−!Iると」ξに、
先願を更に改良し、沸騰冷yII装置の制御として、A
空気JJI出、13 ml−ルドスタート、Cホラ1〜
スターi〜、D通常運転及び[g Iシリン停止の各制
御を有効、かつ確実に、行なうことがひぎるようにづる
ことを目的とづる。
[Object of the Invention] This invention eliminates the problems of the prior art! I and 'ξ,
Further improving the previous application, A
Air JJI out, 13 ml - cold start, C Hola 1~
The purpose of this manual is to make it possible to effectively and reliably perform the controls for Star i~, D normal operation, and [g I cylinder stop].

[発明の構成] この発明は上記目的を達成するため、エンジンスター1
へ直後、系内に混入した不凝縮気体を液相冷媒と置換し
、運転中の大部分を液相冷媒と、該液相冷媒が沸騰によ
り相変化した気相冷媒とにより満された密[3IJ冷却
系を形成づるように構成づる一方、エンジン停止後、系
外の小型タンク内の液相冷媒を系内の気相冷媒の凝縮に
伴う負圧を防止づべく吸引させるように構成した内燃機
関の沸llを冷却装置にa3いて、系外の小型タンクと
密閉冷却系を形成する系内とを接続り゛る通路として、
該小型タンクと、シリンダブ]」ツク内冷2J1ジヤケ
ツ1〜を結ぶ配管、コンデンサロワタンクを結ぶ配管、
a3 J:び、供給ポンプの吸入側を結ぶ配管をF=U
 Gノると共に、それぞれの配管に該通路の開閉手段を
設()たものである。
[Structure of the Invention] In order to achieve the above object, the present invention provides an engine star 1
Immediately after, the non-condensable gas that has entered the system is replaced with a liquid phase refrigerant, and most of the time during operation is filled with the liquid phase refrigerant and the gas phase refrigerant whose phase has changed due to boiling of the liquid phase refrigerant. The internal combustion engine is configured to form a 3IJ cooling system, and after the engine is stopped, the liquid refrigerant in a small tank outside the system is sucked in to prevent negative pressure caused by condensation of the gas refrigerant in the system. The boiler of the engine is connected to the cooling system, and as a passage connecting a small tank outside the system and the inside of the system forming a closed cooling system.
Piping connecting the small tank and the cylinder tube inner cooling 2J1 jacket 1 ~, piping connecting the condenser lower tank,
a3 J: and connect the pipe connecting the suction side of the supply pump with F=U.
In addition, each pipe is provided with means for opening and closing the passage.

[作用] 空気排出、コールドスタート、ホットスタート、通常運
転おJ、び土ンジン停止の各制御を、一連のbのとして
各通路の開閉手段である電磁弁を適切に開閉することに
J、す(−」うようにしたので、系内には、空気がなく
、かつつA−クジ1フケツト及び−1」ワタツクのi&
而が所定値に保たれる密閉クローズドシステムを得るこ
とができた。
[Function] Air exhaust, cold start, hot start, normal operation, and engine stop are controlled by appropriately opening and closing the solenoid valves, which are means for opening and closing each passage, as a series of b. (-), so there is no air in the system, and at the same time, there is no air in the system.
We were able to obtain a hermetically sealed closed system in which the temperature was maintained at a predetermined value.

「実施例」 第2図は、この発明の一実施例を承り図である。"Example" FIG. 2 is a diagram of an embodiment of the present invention.

まず構成を説明りると、1が系内の最上端とリザーブタ
ンク(系外の小型タンク)7を結ぶ空気排出用通路の開
閉を?jう電磁弁、2がシリンダブロックの冷却ジIl
ゲツ1〜12とリザーブタンク7を結ぶ通路の開閉を行
う電磁弁、3がコンデンサ14の1」ワタツク15と冷
Mlジレケツト12を結ぶ通路の開閉をi′Jう電磁弁
、4がリザーブタンク7とコンデンサロワタンク15、
あるいは、すIJ’ −ブタツク7と冷7JIジVクツ
1〜12の通路の開閉をijう電磁弁で(bる。
First, to explain the configuration, 1 opens and closes the air exhaust passage connecting the top end of the system and the reserve tank (small tank outside the system) 7. The solenoid valve 2 is the cylinder block cooling valve.
3 is a solenoid valve that opens and closes the passage that connects the ports 1 to 12 and the reserve tank 7; 3 is the solenoid valve that opens and closes the passage that connects the condenser 14 and the cold Ml socket 12; 4 is the solenoid valve that opens and closes the passage that connects the cold Ml socket 12; and condenser lower tank 15,
Alternatively, a solenoid valve may be used to open and close the passages between the IJ'-button 7 and the cold 7JI shoes 1 to 12.

8が系内の最上V2jに設りられた液面レンリー、9が
シリンダヘッド内冷uJジ1zケツ1〜13の水位を検
出覆る液面レンリ、10がコンデシリロワタンク15内
の液面セン1)、5が液相冷媒をエンジンの冷却ジャク
ツ1へに供給する小型ポンプ、6が」ンデンザ14に送
風する冷1jフアンCある。また、エンジンの冷却ジャ
ケット13内には温度セン4ノ11が設【プられている
8 is a liquid level receptacle installed at the top V2j in the system, 9 is a liquid level receptacle that detects and covers the water level of the cooling UJ 1z butts 1 to 13 in the cylinder head, and 10 is a liquid level sensor in the condenser lower tank 15. 1), 5 is a small pump that supplies liquid-phase refrigerant to the cooling jack 1 of the engine, and 6 is a cooling fan C that blows air to the engine cooling jack 14. Further, a temperature sensor 4/11 is provided inside the cooling jacket 13 of the engine.

16が小型の供給ポンプ5の吸入側、17が冷141ジ
ヤケツ1−12とリザーブタンク7を直接結ぶ通路即ち
配管、18がリザーブタンク7どコンデンサロワタンク
15を結ぶ通路、19がリザーブタンクと供給ポンプ5
の吸入側16とを結ぶ通路であり、通路19は供給ポン
プ5を介してウオークジ+7り“ット12に接続するも
のである。
16 is the suction side of the small supply pump 5, 17 is a passage or piping that directly connects the cold 141 jacket 1-12 and the reserve tank 7, 18 is a passage that connects the reserve tank 7 and the condenser lower tank 15, and 19 is the reserve tank and supply. pump 5
The passage 19 is connected to the walkway 12 via the supply pump 5.

従って、電磁弁4は前述のように、通路18あるいは通
路19の開閉を1個で行なう。
Therefore, as described above, one solenoid valve 4 opens and closes the passage 18 or the passage 19.

次に、上記実施例の制御システムの作動を説明づ−る。Next, the operation of the control system of the above embodiment will be explained.

まず、制御プログラムとして基本的なジ〕−ネラルフロ
ーヂャ−]〜を第5図に承り。
First, the basic control program [-neural flow]~ is shown in Figure 5.

ジエネラルフ(]−制御(第5図) エンジンスター1−後、温度センリ“11により、比較
的低温に設定された冷媒温度(仮に45℃とづる)以下
の場合と、それ以上の場合とを判断さμ、2系統にソ1
−1−を分りる。
Generalf () - Control (Fig. 5) After engine star 1, temperature sensor 11 determines whether the refrigerant temperature is below a relatively low temperature (temporarily set at 45°C) or above. μ, 2 systems and 1
Understand -1-.

(1) 設定温度以下の場合(系内が液相冷媒でC,L
ぽ満されている場合)は、次に、最上端の液面セン1す
8により、系内上部に空気が存在しているか、いないか
を判断さUる3、この液面センリー8が液相冷媒に植1
にされf液が無いこと、即ち、空気が存在しているど判
断したら、A空気排出制御を1うう。J、た、液面セン
サ8が液があり従って空気が存在し−Cい41いと判I
liシたら、Bコールドスター1・制御に入る。
(1) When the temperature is below the set temperature (with liquid phase refrigerant in the system)
If the liquid is full), then the liquid level sensor 18 at the top determines whether or not there is air in the upper part of the system. Plant 1 in phase refrigerant
If it is determined that there is no F liquid, that is, that air is present, the A air discharge control is activated. J, the liquid level sensor 8 indicates that there is liquid and therefore air is present.
Once lit, enter B Cold Star 1 control.

(2ン 設定?:lAI哀を超えCいる場合(系内が液
相気相の241J 0)冷奴が其存し−Cいる場合)は
、後述りるLエンジンイア1後の制御と関連して、リザ
−ブタンク7ど二+ン):′ン(ノロワタンク15を結
ぶ通路(配管)18が連通しているか、していないかの
判断として、電磁弁4が閉じCいるか、いないか、(通
電しでいるか、いないが)を判Igiリ−る。
(2nd setting?: If C exceeds lAI (241J0) in the liquid phase gas phase in the system and there is cold tofu and -C), it is related to the control after L engine year 1 described later. To determine whether the passage (piping) 18 connecting the reserve tank 15 is communicating or not, check whether the solenoid valve 4 is closed or not ( Check whether the power is on or not.

電磁ブl′4が閉じ(いると判断した場合は、Cホラ1
ヘスタート制御を経て、D通常運転制御に入る。
The electromagnetic block 1'4 is closed (if it is determined that the C hole 1 is closed)
After the start control, the D normal operation control is entered.

電磁弁4が聞いていると判断した場合は、Bコールドス
タート制御を経て、D通常運転制御に入る。
If it is determined that the solenoid valve 4 is listening, the control goes through B cold start control and then enters D normal operation control.

Δ空気排出制御(第6図及び第2図参照)第6図にA空
気υ1出制御のノローヂ11−1〜図を示すが、先の最
上端液面センサ8が液がないと判断したら電磁弁1,4
を(iFJき、電磁弁2,3を閉じて、ポンプ5を回転
作動することによりリリ“−ブタンクツ内の液を系内に
供給し、系内上部に残存していた空気を電磁弁1を通し
て排出づる。91アープタンク7は上部が人気開放され
ているので空気は人気に逃げ、液は該リザーブタンク内
に溜まる。このときの状態を第2図に示J、液面aが上
昇し、系内を満水にし1ζ結宋、該液面セン1j8が液
があると判IWi シたら、電磁弁1,4をEJじ、電
磁弁2.3をl?flいて、供給ポンプ5をA)とJる
。これにより空気排出制御を終了づ゛る。
Δ Air Discharge Control (Refer to Figures 6 and 2) Figure 6 shows the flow rate 11-1 of the A air υ1 output control.If the uppermost liquid level sensor 8 determines that there is no liquid, Valve 1, 4
(iFJ), close the solenoid valves 2 and 3, and rotate the pump 5 to supply the liquid in the reservoir tank into the system, and the air remaining in the upper part of the system to pass through the solenoid valve 1. Since the upper part of the 91 Arp tank 7 is open, the air escapes and the liquid accumulates in the reserve tank.The situation at this time is shown in Figure 2.The liquid level a rises and the system When the inside is filled with water and the liquid level sensor 1j8 detects that there is liquid, the solenoid valves 1 and 4 are set to EJ, the solenoid valve 2.3 is set to l?fl, and the supply pump 5 is set to A). J. This ends the air exhaust control.

B]−ルドスタート制御(第7図、第2図、第3図及び
第4図参照) 第7図にBコールドスター1〜制御のフローブ]l−1
・図を示づ。系内は前回の制御終了時ど同じに液相4傳
;でψ)水の状態から開始される。まず、最初に、電磁
弁制御は、これも前回制御終了+15とl1i1様に、
電磁弁2.3が11)1いてJ3す、電磁弁1,4か開
じている。
B] - cold start control (see Figure 7, Figure 2, Figure 3 and Figure 4)
・Show a diagram. The system starts from the same liquid phase as at the end of the previous control; ψ) water state. First of all, the solenoid valve control is also like the previous control end +15 and l1i1.
Solenoid valve 2.3 is 11) J3, and solenoid valves 1 and 4 are open.

液相冷媒がθ1:1流を開始すると、系内の上部に蒸−
一、つまり、気相冷媒か溜まり、その蒸気圧により電磁
弁2を通しC,液相冷媒がシリンダブロックの干娼:、
冷ノJIジ11グツ1−12の下方から、リザーブタン
ク7に押し出される。このJ、うにりるど、冷lulジ
丸・フット1・部の力の比較的低温の液相冷媒が先にD
)出されるため、暖機性11シが向上りる。
When the liquid phase refrigerant starts flowing θ1:1, vaporization occurs at the top of the system.
1. In other words, the vapor phase refrigerant accumulates and passes through the solenoid valve 2 due to its vapor pressure.The liquid phase refrigerant flows into the cylinder block.
It is pushed out into the reserve tank 7 from below the cold JI pipes 1-12. In this J, the relatively low-temperature liquid phase refrigerant of the force of 1 part of the cold lulji circle is D first.
), which improves warm-up performance.

この状態fL 、 ffi 3図のシリンダヘッド内の
液面を検出りる液面eンリ0の位置、つまり通常レベル
以上に水1ηがするJ、で続f)され、液面が通常レベ
ル以−1・になると、電磁弁2を開じ、電f台弁4を聞
く。このIl、′Ij:、iて・は、コンテン1ノ14
内は液相冷に1゛(充満されている。そこで、発生蒸気
の増加による辻力(、X1ンj゛ンリ内の液相冷媒は、
この電磁弁4を軽(通路18を通ってり1F−ブタンク
ツ内に排出される。
In this state fL, ffi 3, the liquid level in the cylinder head is detected at the position where the liquid level is 0, that is, the water level is above the normal level (f), and the liquid level is below the normal level. When it reaches 1, open the solenoid valve 2 and listen to the electric power stand valve 4. This Il,'Ij:,ite・is content 1 no 14
The inside of the tank is filled with liquid phase cooling. Therefore, the liquid phase refrigerant inside the tank is
This electromagnetic valve 4 is discharged through the light passage 18 into the 1F tank.

一方、冷却ジャケット13内で沸騰により、液面センサ
9より液面が減少づるど、液面セン99の信号に従い、
供給ポンプ5によりロソタンク15の液41J冷奴をh
li充づることで、シリンダヘッド内冷1JJジ(Iケ
ット13の液面を一定に保つ。
On the other hand, as the liquid level decreases due to boiling in the cooling jacket 13, the liquid level decreases according to the signal from the liquid level sensor 99.
Supply 41J of liquid in Roso tank 15 using supply pump 5.
By filling the cylinder head with liquid, the liquid level in the cylinder head (Iket 13) is kept constant.

やがて、コンデンサロワタンク15丙の液面がドっで、
第4図のように液w1t?ン1ノ1oの位置に達づると
、液面センサ1oの検出により、電磁弁4を閉じてコー
ルドスター1〜制御を終了りる。つまり、この制御終了
時は、シリンダヘッド及びロワタンク共に、液相冷媒が
通常レベルに有り、電磁弁1,2、及び4が閉状態に有
るので、系内は完全なりローズドリイクルとなっ−Ud
3す、通1;i運転iil制御の状態に入っていること
を示している。
Eventually, the liquid level in the condenser lower tank 15cm dropped,
Liquid w1t as shown in Figure 4? When the cold star 1 reaches the position 1o, the electromagnetic valve 4 is closed based on the detection by the liquid level sensor 1o, and the cold star 1 control is ended. In other words, at the end of this control, the liquid phase refrigerant is at the normal level in both the cylinder head and lower tank, and the solenoid valves 1, 2, and 4 are closed, so the system becomes completely low refrigerant.
3, Pass 1; Indicates that the system is in the i-operation and i-il control state.

C小ツ1−スター1−iliII御(第8図及び第3図
参照)第3図は、」−ルドスタ−1・途中にd3いて、
1ンジンキーAノされ、かつ、後述りる、Eエンジン停
止後の制御にJ、り系内の密121が保たれた状態で再
始動された場合であり、要するに、通常運転制御の前段
階の場合(゛ある。
C Small 1-Star 1-iliII (see Figure 8 and Figure 3) Figure 3 shows "-Rudstar-1" with d3 in the middle,
This is a case where the engine key A is pressed and the E engine is restarted with the control after stopping the engine maintained at 121, which will be described later. There are cases.

この状態では、系内は液相冷媒と蒸気(気相冷媒)とに
J、リイ−またされているが、液相冷媒が必要以」二に
系内に存在しCいる場合として省えられる。
In this state, the system contains liquid phase refrigerant and vapor (vapor phase refrigerant), but since liquid phase refrigerant is not necessary, this can be omitted as the case where there is C in the system. .

従って、Jj−1”、シリンダヘッド内冷JJJジ11
クツ!−内に、液面ピン1ノ9以上に液面が′)ヱし−
Cいる場合は、電磁弁24聞き通常レベルJ、で下り゛
、その後電磁弁2を閉じる。
Therefore, Jj-1'', cylinder head cold JJJji11
Shoes! - Inside, the liquid level is above the level pin 1 to 9.
If so, the solenoid valve 24 is normally lowered to level J, and then the solenoid valve 2 is closed.

次に、シリンダヘッド内の液面を一定に保つJ:う制御
しながら、]ンシ゛ン→ノ14内に、液面1′!ン1ノ
’I 0以上に液面が達し−Cいる場合は、電磁弁4を
間さ、11ソタンク15の液面センリ10にJ:す、通
常レベルになつ/jどころで電磁弁1を閉じ、ホットス
ター1へ制御を終了り−る。これらの流れは第8図のフ
ローチ17−1・図に示されている。
Next, while controlling the liquid level in the cylinder head to be constant, the liquid level in the cylinder → 14 is increased to 1'! When the liquid level reaches 0 or higher, close the solenoid valve 4 and check the liquid level 10 of the tank 15. When the liquid level reaches the normal level, close the solenoid valve 1. Close and end control to Hot Star 1. These flows are shown in flowchart 17-1 of FIG.

1つ通富連i1ガ制ρII (H59図及び第4図参照
)第9図に通常運転制御のフローテレ−1〜図を承り。
One Tsutsufuren i1 gas control ρII (See Figure H59 and Figure 4) Figure 9 shows flow tele-1 to diagrams for normal operation control.

この場合は第1図に示すごとく、系内は密閉されくいる
(電磁弁1.2.4は開で電磁弁3のみ開である)。
In this case, as shown in FIG. 1, the inside of the system is sealed (electromagnetic valves 1, 2, 4 are open and only electromagnetic valve 3 is open).

この制御は、系内の水位制御ど温度制御を行うもので、
水位制御としては、シリンダヘッド内水位を設定以下に
ならないように制御し、かつ、コンデンザロワタンク内
水位をC9定以上にならないにうに制御づ゛ることで、
エンジンの冷7JI性能、コンデン1すの放熱効率を良
好に保つようにしている。
This control controls the water level and temperature within the system.
The water level is controlled by controlling the water level in the cylinder head so that it does not go below a set level, and by controlling the water level in the condenser lower tank so that it does not go above a C9 constant.
The engine's cold 7JI performance and condenser heat dissipation efficiency are maintained at a good level.

温度制御はエンジンの点火パルス、吸入空気量信号等に
より運転条件を判l!Iiシ、運転条件に応じC可変に
づることも容易である。
Temperature control determines operating conditions based on engine ignition pulse, intake air amount signal, etc. It is also easy to make the C variable depending on the operating conditions.

1ヨエンジン停止[後の制!lI (第10図及び第2
図参照) 第10図にエンジン停止後の制御を承りが、エンジン停
止ど同時に、前制御と同様に、電磁弁1゜2.4を閉じ
、電磁弁3を間に制御し系内を密閉状態に保持する。即
ち、系内の冷媒湿度を温瓜センリ11により監祝し、系
内温度が大気圧以下の設定した負圧上ての冷媒沸点温度
に達するまで密閉を保ち、該温度に達した後は電磁弁4
を開さ、系内の蒸気の凝縮に伴う負圧を防止するように
リザーブタンク7内の液相冷媒を吸引させる。このどさ
吸引される液相冷媒LJ ′、z磁弁4,3を経で、コ
ンデンリ側L1ツタンク15から導入するようにりる。
1. Engine stopped [later control! lI (Fig. 10 and 2
(See figure) Figure 10 shows the control after the engine has stopped.As soon as the engine is stopped, solenoid valves 1, 2, and 4 are closed, and solenoid valve 3 is controlled between them to seal the system. to hold. That is, the humidity of the refrigerant in the system is monitored by the warming sensor 11, and the system is kept sealed until the temperature in the system reaches the boiling point temperature of the refrigerant above the set negative pressure, which is below atmospheric pressure. valve 4
is opened, and the liquid phase refrigerant in the reserve tank 7 is sucked in to prevent negative pressure due to condensation of vapor in the system. The liquid phase refrigerant LJ' that is sucked in is introduced from the L1 tank 15 on the condenser side via the Z magnetic valves 4 and 3.

J−ンジントン’ Jl−1白1身131、まだ正L1
の場合があり、このときに電磁弁4を聞くと、コンデン
サ1」ワクンク内の液相冷媒が[Jj出されてしまうの
で、必要以」−にり1アープタンク7の容積を人さくし
なけれはなら4fくなる。従って、エンジン停止後は、
系内の蒸気がiん110低1・してやや凝縮が進んだ後
、系内が負r−1に41つに時点でリザーブタンクと連
通りることか8曹となる。この負圧4検出りるには、人
気j1のしと(゛の玲媒沸点即ら100℃以トのある設
定iA+11良(例えば97°CIJ′X適当)にjヱ
した11.1点C−1このR+A Inを(σ)出する
ことC′足りる。
J-Njinton' Jl-1 white 1 body 131, still correct L1
At this time, if you listen to the solenoid valve 4, the liquid phase refrigerant in the condenser 1 will be discharged, so you will have to reduce the volume of the tank 7. It becomes 4f. Therefore, after the engine stops,
After the steam in the system reaches 110 degrees and condenses a little, the system reaches negative r-1, which means it is connected to the reserve tank and becomes 8 Sodium. In order to detect this negative pressure 4, the most popular method (11.1 point C set to IA + 11 good (for example, 97° CIJ' -1 It is sufficient to produce (σ) this R+A In by C'.

すな4つら、系内の圧力に3=I L、、飽和蒸気温度
、あるいは飽和水温度が大凡正確に対応りることから系
内111111度を検出りれば充分であり、このときの
温度を検出りる温度センサは、先の系内渇Ifi制御に
用いたしのを利用1:きる。
In other words, 3 = I L, saturated steam temperature, or saturated water temperature roughly corresponds accurately to the pressure in the system, so it is sufficient to detect 111111 degrees in the system, and the temperature at this time is The temperature sensor that detects the temperature is the same as that used for the system temperature control described above.

また、系内の1・−j閉を保つ手段としては、エンジン
停止後も、電磁弁の給電制御用]ン1〜ロールユニッ1
〜の通電が断たれないように構成し、温度はン4ノの検
出信号により、系内温1肛が前)本の飽和温1豆にj¥
Jるよでリレーを作動し、該温度に達したとき始めてコ
ン(−〇−ルユニツ1〜の通電を断つようにりる。この
とぎ電磁弁はリベて間部に通電を断つわりであるが、電
磁弁4は当然、通電111に閉のbのを使用づ−る。な
お、電磁弁3も通電時閉であり、電磁弁1,2は共に、
通電114聞ぐある。
In addition, as a means of keeping 1 and -j closed in the system, even after the engine has stopped, the solenoid valve power supply control unit 1 to roll unit 1 is kept closed.
It is configured so that the power supply to ~ is not cut off, and the temperature is determined by the detection signal of n4.
Activate the relay at the J side, and only when the temperature reaches the specified temperature will it cut off the electricity to the unit (-〇-ru unit 1~). Of course, the solenoid valve 4 is closed when energized 111.The solenoid valve 3 is also closed when energized, and both solenoid valves 1 and 2 are closed when energized.
I have heard of 114 electricity.

また、す1f−ブタンク7の液相冷媒を電磁弁4゜3を
紅てコンデンサ1−1ワタンク15から吸引さUる理由
は、小山でも系内に混入していた空気が凝縮イ1用によ
りコンデン1)内に東まる171. 負があるため、コ
ンデンサの1・から液面を上ツ1ざゼ、その混入空気を
系内の上部に移動させるようにづるためである。このよ
うにしてJ3 <と1次の空気排出制御の際、効果的に
空気を抜くことができる。
In addition, the reason why the liquid phase refrigerant in the tank 7 is sucked from the tank 15 of the condenser 1-1 by turning the solenoid valve 4. Conden 1) Higashimaru 171. This is to raise the liquid level from the capacitor 1 and move the mixed air to the upper part of the system. In this way, air can be effectively evacuated when J3 < and primary air exhaust control is performed.

以上の各5個の制御と4個の電磁弁の開目1関係を第1
1図に一括して承り。
The relationship between each of the five controls and the opening of the four solenoid valves is expressed as follows.
We accept one drawing at a time.

なお、第2図に示り゛ように、電磁弁4をパイバスしC
1−息鎖線のように、リザーブタンク7と1」ワタンク
1りを電磁弁20を介しC直接、接続しても同様の17
1・用効果を生ずる。
In addition, as shown in Fig. 2, the solenoid valve 4 is bypassed and C
Even if the reserve tank 7 and the tank 1 are connected directly via the solenoid valve 20 as shown in the dashed line, the same result will occur.
1. Produces a medicinal effect.

以上、6と明しできたJζうに、この発明によれば、そ
の構成を適量の油相冷媒を満たした系外の小型タンクと
密閉冷却系を形成Jる系内とを、シリングブしノック内
iii JJlシ\ノケツ1−に通ずる通路と、コンデ
ンサIJ ロワタンクに通−fる通路と、供給ポンプの
吸入側に通i°る通路によつ−C結び、途中の電磁す?
を開閉りることで、液相冷媒のみを必要量だけ出入さμ
゛′12気が1ジ入りることを防ぐよう制御したIこめ
、i;3に、f1ンノ5ンリの放熱効率を良りfに保つ
ことがでさ、かつ、液相冷媒がほとんど失われないよう
にでさ、また、系外のタンク−6小さくて済むようにり
″ることができる効果が得られる。
According to the present invention, the configuration is such that a small tank outside the system filled with an appropriate amount of oil phase refrigerant and the inside of the system forming a closed cooling system are connected in a shilling block. iii Connect the passage leading to the JJl hole 1-, the passage leading to the condenser IJ lower tank, and the passage leading to the suction side of the supply pump, and connect the electromagnetic cable in the middle.
By opening and closing, only the required amount of liquid phase refrigerant can be taken in and out.
It is possible to keep the heat dissipation efficiency of f1 to 5 to a good value f, and the liquid phase refrigerant is almost lost. In addition, the tank outside the system can be made smaller.

以−1・に実施の態様を列記りる。The embodiments are listed below-1.

(1) エンジン(<<止題、系内がる干負圧になるま
で冷7J1系の密閉を1′A:つように構成し、設定負
圧以下になったどさ゛上記小型タンクとコンデンサロワ
タンクをし11ぶ配管の途中の開閉手段である電磁弁を
聞き、タンク内の液相冷奴を吸引覆るようにしたこと。
(1) Engine (<< End, the cold 7J1 system is sealed in 1'A: until the negative pressure inside the system drops, and when the negative pressure drops below the set value, the above small tank and condenser By listening to the solenoid valve, which is the opening/closing means in the middle of the lower tank piping, the liquid-phase cold tofu in the tank was suctioned and covered.

(2) 不凝縮気体を液相冷媒と置換し、系内をif+
:水にした後、発生蒸気空間分の液相冷媒を系外に排出
りる通路として、1ンジン冷却ジ17ケツトの液相冷奴
【よ小型タンクどシリンダブロック内冷んjジレケット
どをむりぶ配管途中の電磁弁を間さ、必要■だけ小型タ
ンクに排出Jるよう通路を設【ノると共に、」ンデンリ
の液相冷媒は小型タンクど=1ンデンリ゛ロワタンクと
を結ぶ配管途中の電磁弁を開さ、必要量だり小型タンク
にIJI出りる」、う通路を設()たこと。
(2) Replace the non-condensable gas with liquid phase refrigerant and bring the system to if+
: After converting to water, a 17-ket liquid-phase refrigerant is used as a passage for discharging the liquid-phase refrigerant corresponding to the generated vapor space to the outside of the system. A passage is installed between the solenoid valve in the middle of the piping to discharge as much as necessary into the small tank. A passageway was established to allow the necessary amount of IJI to flow into a small tank.

〈3) 上iij M! 1項記載のf1圧を検出Jる
手段として系内の温度を検出し、大気圧以下の飽和蒸気
記瓜を設定値とし、この設定値以下になるまで冷却系内
の密閉を保つようにしたこと。
<3) Upper iij M! As a means of detecting the f1 pressure described in item 1, the temperature in the system was detected, the saturated steam temperature below atmospheric pressure was set as a set value, and the cooling system was kept sealed until the temperature fell below this set value. thing.

し発明の効果] (1) 沸騰冷却系のり【コースト制御を確実に行なう
ことができる。
Effects of the invention] (1) Boiling cooling system glue [Coast control can be performed reliably.

〈2) コンアン1ノの放熱効率をIυ人眼に発揮でき
る。
(2) The heat dissipation efficiency of Conan 1 can be demonstrated to the human eye.

(3) 各11−制御を1711単明瞭に?’J/J、
うことかできる。
(3) Is each 11-control 1711 simple and clear? 'J/J,
I can do it.

(4) 系外タンクを小型にできる。(4) The external tank can be made smaller.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(Jυ〔来装;r¥の17i面図、第2図〜第4
図はこの発明の各制御状態を承り説明図で、第2図は空
気抽出、第3図は」−ルドスタ−1〜、第4・図は通常
運転の各状態を71−どして承りもの、第一)1メ1〜
第10図は名利tal+のフローチ17−1−図で、第
5図はジエネラルノ1」−1第6図1.a 9L気1ノ
1出制御、第7図は二1−ルドスタ−1へ制御、第8図
は小ツトスタート制御、a)≦)図は通1へi運転制御
、第10図はエンジン停止後の制御を示1bの、第11
図は各制御に幻りる/l f161の電磁弁の開閉状態
を承り図である。 図面に現4′)シた?3号の説明 1.2,3,4.20・・・電磁弁(l1tl閉手段)
5・・・供給ポンプ (3・・・冷却ファン7・・・リ
ザーブタンク(系外の小型タンク)8.9.10・・・
、1々而レンリ 11・・・温度セン9− 12.13・・・冷ノJ1ジ1ノケツ1−14・・・コ
ンデンサ 15・・・ロワタンク16・・・供給ポンプ
の吸入側 17.18.19・・・通路(配色) −r ゛ セ()、′問 第1図 F 第2図 第8図 第4図 第5図 ■闘匹正n亙口 第6図 エンV 6カーi′l′l索3T転制御 第9 図エンド 第1O図 エ レド 第11図
Figure 1 (17i side view of Jυ [Next;
The figures are explanatory diagrams for each control state of this invention. Figure 2 is for air extraction, Figure 3 is for "-Rudostar-1", and Figure 4 is for each state of normal operation. , 1st) 1me 1~
Figure 10 is the flowchart 17-1 of Nari tal+, and Figure 5 is Generalno 1''-1 Figure 6 1. a 9L air 1 no 1 output control, Fig. 7 shows control to 21-LDSTAR-1, Fig. 8 shows small start control, a)≦) shows i operation control to 1, Fig. 10 shows engine stop. The following control is shown in 1b, 11th
The figure shows the opening and closing states of the /l f161 solenoid valve that is involved in each control. Is there a current 4') in the drawing? Explanation of No. 3 1.2, 3, 4.20... Solenoid valve (l1tl closing means)
5... Supply pump (3... Cooling fan 7... Reserve tank (small tank outside the system) 8.9.10...
, 1 each... Temperature sensor 9- 12.13... Cold pipe J1 hole 1-14... Capacitor 15... Lower tank 16... Suction side of supply pump 17.18. 19...Aisle (color scheme) -r 'l cable 3T rotation control Fig. 9 End Fig. 1 O Fig. 11

Claims (1)

【特許請求の範囲】[Claims] 土ンジンスター1〜.j、、後、系内に混入した不凝縮
気体を液相冷媒と置換し、運転中の大部分を液相冷媒と
該波相冷奴が沸騰にJzり相変化しlご気相冷媒どによ
りh−シたされ!ご密閉冷IJj系を形成づ−るように
(14成りるープj、エンジン停止後、系外の小型タン
ク内の液相冷媒を系内の気相冷奴の凝縮に伴う負+Xを
防止リベく吸引さUるにうに構成した内燃機関のSlj
 I流冷7JI装置において、系外の小型タンクと畜1
ffl冷IJJ系を形成υる系内とを接続する通路とし
て、該小型タンクと、シリンダブロック内冷却ジトケッ
1〜を結ぶ配管、コンデンリ′ロワタンクを結ぶ配管・
、diよσ、供給ポンプの吸入側を結ぶ配管を設置)る
ど共に、それぞれの配管に該通路の開閉手段を設けたこ
とを14徴とりる内燃機関の沸騰冷却装置。
Tojinjin Star 1~. After that, the non-condensable gas mixed into the system is replaced with a liquid phase refrigerant, and during most of the operation, the liquid phase refrigerant and the wave phase refrigerant boil and change phase, and then the vapor phase refrigerant etc. H-Shitase! In order to form a hermetically sealed cooling IJj system (14 loops, after the engine has stopped, remove the liquid phase refrigerant in the small tank outside the system to prevent the negative + Slj of an internal combustion engine configured to absorb air
I In the flow cooling 7JI equipment, small tank slaughtering outside the system 1
As passages connecting the ffl cooling IJJ system to the inside of the system, piping connecting the small tank and the cylinder block cooling unit 1~, piping connecting the condenser lower tank, etc.
, di, σ, and piping connecting the suction side of the supply pump), and each piping is provided with means for opening and closing the passage.
JP19897083A 1983-10-25 1983-10-26 Coolant boiling and cooling apparatus internal- combustion for engine Pending JPS6090916A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP19897083A JPS6090916A (en) 1983-10-26 1983-10-26 Coolant boiling and cooling apparatus internal- combustion for engine
DE8484112777T DE3483349D1 (en) 1983-10-25 1984-10-23 COOLING DEVICE FOR A MOTOR VEHICLE.
US06/663,911 US4549505A (en) 1983-10-25 1984-10-23 Cooling system for automotive engine or the like
EP84112777A EP0143326B1 (en) 1983-10-25 1984-10-23 Cooling system for automotive engine or the like

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19897083A JPS6090916A (en) 1983-10-26 1983-10-26 Coolant boiling and cooling apparatus internal- combustion for engine

Publications (1)

Publication Number Publication Date
JPS6090916A true JPS6090916A (en) 1985-05-22

Family

ID=16399948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19897083A Pending JPS6090916A (en) 1983-10-25 1983-10-26 Coolant boiling and cooling apparatus internal- combustion for engine

Country Status (1)

Country Link
JP (1) JPS6090916A (en)

Similar Documents

Publication Publication Date Title
CN109340114A (en) Steam turbine Roots-water ring vacuum pump frequency control extract system and its control method
US6196163B1 (en) Boiler feed water heat energy saver
WO2019019514A1 (en) System for automatic gas extraction and discharge
JPS6090916A (en) Coolant boiling and cooling apparatus internal- combustion for engine
JPS60243321A (en) Boiling cooling device for internal-combustion engine
JPS60168501A (en) Distillation apparatus
JPS60122223A (en) Evaporative cooler of internal-combustion engine
JPS6143213A (en) Evaporative cooling device of internal-combustion engine
JPS61123712A (en) Evaporative cooling apparatus for internal-combustion engine
JPS6183437A (en) Evaporative cooling device for internal-combustion engine
CN117648022B (en) High-power phase-change heat dissipation system of data center server and control method
CN211552128U (en) Accurate temperature control cooling circulator
JPH0144951Y2 (en)
JP2594099B2 (en) Non-condensable gas discharge device of absorption chiller / heater
CN207123185U (en) A kind of evacuation system for steam condenser
KR960003114Y1 (en) Vapour pumping boiler
JPH0410331Y2 (en)
JPS60243319A (en) Boiling cooling device for internal-combustion engine
JPS6220471B2 (en)
JPH0519546Y2 (en)
JPH0410332Y2 (en)
JPH0510596B2 (en)
JPH0144952Y2 (en)
JPS6111578A (en) Discharger for noncondensable gas from absorption refrigerator
JPH034726B2 (en)