JPS6090808A - Molded body of honeycomb activated carbon for decomposing ozone - Google Patents

Molded body of honeycomb activated carbon for decomposing ozone

Info

Publication number
JPS6090808A
JPS6090808A JP58200554A JP20055483A JPS6090808A JP S6090808 A JPS6090808 A JP S6090808A JP 58200554 A JP58200554 A JP 58200554A JP 20055483 A JP20055483 A JP 20055483A JP S6090808 A JPS6090808 A JP S6090808A
Authority
JP
Japan
Prior art keywords
activated carbon
ozone
specific surface
honeycomb
surface area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58200554A
Other languages
Japanese (ja)
Other versions
JPH0131449B2 (en
Inventor
Yoshio Inoue
井上 良男
Koichi Kobayashi
小林 恒一
Mitsunobu Nikaido
二階堂 光信
Morihiko Sugino
守彦 杉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP58200554A priority Critical patent/JPS6090808A/en
Publication of JPS6090808A publication Critical patent/JPS6090808A/en
Publication of JPH0131449B2 publication Critical patent/JPH0131449B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To maintain superior ozone decomposing power for a long time by using a molded body of honeycomb activated carbon having a specified specific surface area as activated carbon for decomposing ozone. CONSTITUTION:Air is cleaned by electrostatically capturing fine liq. droplets and solid particles such as dust suspended in the air. At this time, harmful ozone is generated by electric discharge. In order to remove the ozone, the air is passed through activated carbon to decompose the ozone into oxygen. Honeycomb activated carbon having 600-900m<2>/g specific surface area is used as the activated carbon for decomposing ozone. The honeycomb activated carbon has superior ozone decomposing power and maintains it for a long time.

Description

【発明の詳細な説明】 本発明は、オゾンの分解性能及びその性能の持続性に優
れたハニカム状活性炭質成形体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a honeycomb-shaped activated carbon molded body having excellent ozone decomposition performance and sustainability of the performance.

近年公害防止の強化は勿論のこと、生活環境の一層の快
適さをめる気運が高まりつつあり、各方面でいわゆるク
リーンエンジニアリングが急速に発展してきた0例えば
空気清浄化のためのクリーンエンジニアリングの一環と
して空気中に浮遊している微細な液滴や固体粒子(ごみ
、はこり等)を取除くために静電捕集技術が実用化され
ている。この静電捕集技術は、比較的小さな圧力差で大
量のガスを、しかも必要ならば高温で処理することがで
き、且つ#Lm単位の大きさの粒子のものまで除去でき
るという利点があるため、従来のろ過捕集技術に変わる
ものとして注目されている。しかしそのような多くの利
点を有する一方で、放電現象を利用することの欠点即ち
程度の差はあるがオゾンの2次的発生を避けることがで
きないので、静電捕集技術の実施に当たっては有害なオ
ゾンを効率良く分解できる手段を併わせて実施し生けれ
ばならない。こうした要請下にオゾン分解能を有する活
性炭が着目され、静電捕集装置の排気側通路に活性炭フ
ィルターが設けられるようになった。特に空気浄化等の
場合には比較的小さな圧力差で大量のガス体を処理しな
ければならないので圧損低下をできるだけ来たさないよ
うなフィルターが好ましく、かかる観点からハニカム状
に成形されたフィルターが賞月されている。
In recent years, there has been a growing trend not only to strengthen pollution prevention but also to make the living environment more comfortable, and so-called clean engineering has rapidly developed in various fields.For example, as part of clean engineering for air purification. Electrostatic collection technology has been put into practical use to remove minute droplets and solid particles (dust, dust, etc.) floating in the air. This electrostatic collection technology has the advantage of being able to process a large amount of gas with a relatively small pressure difference, and at high temperatures if necessary, as well as being able to remove particles as small as #Lm. , is attracting attention as an alternative to conventional filtration and collection techniques. However, despite having many advantages, the disadvantage of using the discharge phenomenon is that the secondary generation of ozone cannot be avoided, which is harmful to the implementation of electrostatic collection technology. We must also implement methods that can efficiently decompose ozone. In response to these demands, attention has been focused on activated carbon that has ozone decomposition ability, and activated carbon filters have been installed in the exhaust side passages of electrostatic collection devices. Particularly in the case of air purification, etc., it is necessary to process a large amount of gas with a relatively small pressure difference, so a filter that does not cause pressure drop as much as possible is preferable, and from this point of view, a honeycomb-shaped filter is preferable. It has been awarded.

しかしこれまでにオゾン分解用として実用化されている
゛ハニカム状活性炭質成形体(以下単にハニカム体とい
う)を仔細に再検討してみると、オシン分解能の良いも
のはその持続性に欠は即ち性能の持続性に欠け、反対に
オゾン分解能の持続性があるものはオゾン分解能が悪い
というように要求性能のいずれか一方のみしか満足する
ことができないことが分かった。そのため静電捕集装置
の運転に当たっては実用的に許容し得るオゾン分解率を
有するハニカム体を選定し、該ハニカム体のフィルター
を頻繁に交換すると共にその交換に合わせて運転停止側
のフィルターを再活性化処理をしなければならなかった
ので、オゾン分解に要するコストがいたずらに高騰し、
又装置運転の作業性が煩雑であった。
However, when we carefully reexamine the honeycomb-shaped activated carbon molded bodies (hereinafter simply referred to as honeycomb bodies) that have been put into practical use for ozone decomposition, we find that those with good ozone decomposition performance lack sustainability. It has been found that only one of the required performances can be satisfied, such as those that lack long-lasting performance and have long-lasting ozone resolution, have poor ozone resolution. Therefore, when operating an electrostatic collection device, select a honeycomb body with a practically acceptable ozone decomposition rate, replace the filter of the honeycomb body frequently, and replace the filter on the side that is out of operation at the same time as replacing the honeycomb body filter. Since activation treatment had to be performed, the cost required for ozone decomposition rose unnecessarily.
Moreover, the workability of operating the device was complicated.

本発明はこうした事情のもとで、オゾンの分解能が良く
てしかもその持続性にも優れたハニカム体を開発すべく
鋭意研究の結果完成されたものであって、その構成は、
活性炭からなるハニカム体であって、活性炭層の比表面
積を600〜900m27gに限定したところに要旨が
存在する。
Under these circumstances, the present invention was completed as a result of intensive research to develop a honeycomb body that has good ozone resolution and excellent sustainability.The present invention has the following structure:
It is a honeycomb body made of activated carbon, and the gist lies in that the specific surface area of the activated carbon layer is limited to 600 to 900 m27g.

以下上記数値限定の根拠を明らかにしつつ本発明の内容
を具体的に説明する。
The content of the present invention will be specifically explained below while clarifying the basis for the above numerical limitations.

本発明者等はハニカム体の開発研究に先立ち、オゾンが
活性炭によってどのように分解されるのかというこれま
でに未だ解明されていないオゾン分解機構を究明すべく
実験を行なったところ、下記する様な知見が得られた。
Prior to research and development of the honeycomb body, the present inventors conducted experiments to investigate the ozone decomposition mechanism, which has not yet been elucidated, how ozone is decomposed by activated carbon. Knowledge was obtained.

即ち第1図は活性炭の内部構造を示す要部断面拡大模式
図であり、空孔2の壁面Wに衝突したオゾン分子は酸素
分子と酸素原子に分解され、このうち不安定な状態にあ
る酸素原子は炭素を媒体として活性炭々素質1の表面に
境膜を生成する。この現象は空孔2の各所で起こり、こ
のとき不安定状態の酸素原子は他の酸素原子と反応を起
こし酸素分子となっている。
That is, FIG. 1 is an enlarged schematic cross-sectional view of the main part showing the internal structure of activated carbon. Ozone molecules colliding with the wall surface W of the pores 2 are decomposed into oxygen molecules and oxygen atoms, and among these, oxygen is in an unstable state. The atoms form a film on the surface of the activated carbon material 1 using carbon as a medium. This phenomenon occurs at various locations in the vacancy 2, and at this time, oxygen atoms in an unstable state react with other oxygen atoms to form oxygen molecules.

こうして生じた酸素分子の一部は空孔2内に吸着され、
一部は空孔2の外に逸散する。
Some of the oxygen molecules thus generated are adsorbed into the pores 2,
A part of it escapes to the outside of the hole 2.

尚オゾンの分解はこれまで (1)C+03→CO+02 (2)C+03→CO2+1/202 の化学反応の成立により進行するという推測も行なわれ
てきたが、オゾンを通過させた後の活性炭の重量変化の
測定実験及び処理ガス中のCO2濃度測定実験により低
濃度域(10〜100pp+m程度)のオゾンでは上記
反応はほとんど一成立しないことが確認できた。又活性
炭にオゾンがそのままの形態で吸着されるのではないか
という推測も一方で行なわれてきたが、オゾン通過後の
活性炭における含有オゾン濃度がオゾンを通過させてい
ない活性炭のものに比べて有意に増加している事実は特
に認められなかった。以上のことから活性炭によるオゾ
ンの分解機構は、上述した様な現象即ち活性炭の空孔内
で起こるオゾンの衝突及び分解、境膜反応、酸素吸着と
いう現象に基づくものであることが確認できた。そして
この様な現象は空孔の数又は空孔内構造即ち主と−して
比表面積によって大きく左右されることは明らかである
ことから、オゾンの分解能が良くてしかもその持続性に
も優れたハニカム体とするためには、活性炭層の比表面
積がこれら両者の要求を同時に充足するような大きさの
ものであればよいとの指針が得られた。
It has been speculated that ozone decomposition proceeds through the following chemical reactions: (1) C+03→CO+02 (2) C+03→CO2+1/202; The measurement experiment and the CO2 concentration measurement experiment in the process gas confirmed that the above reaction almost never took place in the low concentration range of ozone (approximately 10 to 100 pp+m). It has also been speculated that activated carbon may absorb ozone in its original form, but it has been hypothesized that the ozone concentration in activated carbon after passing ozone is significantly higher than that in activated carbon without ozone passing through it. There was no particular finding of an increase in the number of people. From the above, it was confirmed that the ozone decomposition mechanism by activated carbon is based on the phenomena described above, namely, the collision and decomposition of ozone that occurs within the pores of activated carbon, film reaction, and oxygen adsorption. It is clear that this phenomenon is greatly influenced by the number of pores or the structure within the pores, that is, mainly by the specific surface area. A guideline was obtained that in order to form a honeycomb body, the specific surface area of the activated carbon layer should be large enough to satisfy both of these requirements at the same time.

そこで本発明者等はまずハニカム体の比表面積を種々変
えてオゾンの分解能(初期分解率)を調べたところ、第
2図に示す様な相関グラフを得ることができた。即ちオ
ゾン分解能と比表面積は斜線領域で示す幅の相間々係に
あり、比表面積が900m2/g程度より小さい場合に
はオゾン分解率が直線的に増加し、比表面積が900m
”/g程度より大きくなるとオゾン分解率の上昇がIE
まってほぼ平衡になることが示されている。このグラフ
から実用的なオゾン分解能(約60%以上)を得るため
には比表面積を少赴くとも500m27g程度より大き
くする必要がある旨理解される。次に比表面積の異なる
ハニカム体についてオゾン分解能の持続テストを行ない
、実用的な持続性(例えば持続時間が約3〜4カ月要求
されるような用途に適用した場合について)を満足する
か否かを調べたところ、第3図に示す様な相関グラフを
得ることができた。このグラフより比表面積の大きい/
Xニカム体はど初期分解率が高いにもかかわらず持続性
の低下が著しくなることが理解できると共に、実用的な
オゾン分解能及び実用的なオゾン分解能持続性を同時に
満足し得るハニカム体の比表面積は600〜9ooJ/
g程度であることが分かった。尚一般に比表面積が大き
くなると空孔数が増えることがらハニカム体は強度的に
弱くなる傾向にあり、そこで上記比表面積の範囲にある
ハニカム体について強度面からの検討をも加えたところ
、比表面積が少なくとも900m”7g以下のものにつ
いては実用的な圧壊強度(20〜30 Kg/cm2以
上)を十分満足し得ることが確認できた。
Therefore, the present inventors first investigated the ozone resolution (initial decomposition rate) by varying the specific surface area of the honeycomb body, and were able to obtain a correlation graph as shown in FIG. In other words, ozone resolution and specific surface area are in a relationship with each other with the width indicated by the shaded area, and when the specific surface area is smaller than about 900 m2/g, the ozone decomposition rate increases linearly, and when the specific surface area is 900 m2/g, the ozone decomposition rate increases linearly.
”/g, the ozone decomposition rate increases.
It has been shown that it reaches an almost equilibrium state. From this graph, it is understood that in order to obtain a practical ozone resolution (approximately 60% or more), the specific surface area needs to be larger than about 500 m27 g at the very least. Next, a durability test of ozone decomposition power is performed on honeycomb bodies with different specific surface areas, and whether or not it satisfies practical sustainability (for example, when applied to applications that require a duration of about 3 to 4 months). When we investigated this, we were able to obtain a correlation graph as shown in Figure 3. Larger specific surface area than this graph/
It can be understood that although the initial decomposition rate is high in the case of the honeycomb body, the sustainability is significantly reduced. is 600~9ooJ/
It was found that it was about g. In general, as the specific surface area increases, the number of pores increases, so the strength of honeycomb bodies tends to weaken.Therefore, we also considered the strength of honeycomb bodies within the above range of specific surface areas, and found that the specific surface area It was confirmed that the practical crushing strength (20 to 30 Kg/cm2 or more) can be sufficiently satisfied for those having a diameter of at least 900 m''7 g or less.

以上のことから活性炭層の比表面積を600〜900 
m2/gに限定する、という本発明特有の構成を採用し
得たものである。
From the above, the specific surface area of the activated carbon layer should be 600 to 900.
This makes it possible to adopt the configuration unique to the present invention of limiting the amount of water to m2/g.

次に本発明の実施例を示す。Next, examples of the present invention will be shown.

第1表の原料に公知の溶媒、バインダー及び押出成形助
剤を適量配合して均一に混練した後、所定時間放置した
。押出機にてハニカム状に押出成形し、得られた押出成
形体を周知のガス賦活手段によって活性炭化し、オゾン
分解用ハニカム体を得たが、賦活手段を調整することに
より比表面積の異なるオゾン分解用ハニカム体を得、夫
々についてオゾン分解能とその持続性について調べた結
果を第1表に示す、但しオゾン分解能の測定に当たって
は、ハニカム体の入口における処理ガス中のオゾン濃度
を20pp層とし、処理ガスの流速を1 tags と
した。
Appropriate amounts of known solvents, binders, and extrusion aids were blended with the raw materials shown in Table 1, and the mixture was uniformly kneaded and then allowed to stand for a predetermined period of time. The extruded body was extruded into a honeycomb shape using an extruder, and the resulting extruded body was activated carbonized using a well-known gas activation means to obtain a honeycomb body for ozonolysis. Table 1 shows the results of investigating the ozone decomposition ability and its sustainability for each honeycomb body.However, when measuring the ozone decomposition ability, the ozone concentration in the treatment gas at the inlet of the honeycomb body was set to 20 pp layer, and the ozone concentration in the treatment gas at the inlet of the honeycomb body was The gas flow rate was 1 tags.

第 1 表 更に本発明の特徴を理解する上での有益な補足説明を行
なう、即ち本発明者等は活性炭によるオゾンの分解機構
の解明に成功し、該機構が活性炭の空孔内で起こるオゾ
ンの衝突及び分解、境膜反応、酸素吸着という現象に基
づくものであるということについては前述した通りであ
るが、この現象を経時的に捉えた場合、いわゆる細孔分
布の点で興味ある新たな現象がみられることが分かった
。例えば比表面積が夫々750+?’/g、500m”
1gのハエカム体について細孔分布を調べたところ、第
4図のグラフに示す結果が得られた。尚測定に当たって
は吸着等温線方法を採用した。このグラフによると第1
ビークエについては7501127gのものが500層
27gのものより若干小さ目であるのに対し、第2ピー
クIIについては750m27gのものが比較的大きく
、500層27gのものでは非常に小さくなっている。
Table 1 provides additional information that is useful for understanding the characteristics of the present invention. Namely, the present inventors have succeeded in elucidating the ozone decomposition mechanism by activated carbon. As mentioned above, it is based on the phenomena of collision and decomposition of particles, film reactions, and oxygen adsorption. However, when this phenomenon is understood over time, an interesting new phenomenon occurs in terms of the so-called pore distribution. It was found that a phenomenon was observed. For example, the specific surface area is 750+? '/g, 500m"
When the pore distribution of 1 g of fly cam body was investigated, the results shown in the graph of FIG. 4 were obtained. The adsorption isotherm method was used for the measurements. According to this graph, the first
For B-que, the one with 7501127 g is slightly smaller than the one with 500 layers and 27 g, while the one with 750 m27 g of second peak II is relatively large, and the one with 27 g of 500 layers is very small.

しかるに上述した通りオゾン分解能及びオゾン分解能持
続性共に750−1gのものの方が優れている事実から
して第2ビークHの存在は非常に有意であると思料され
た6そこで前述の600〜900t”/gの比表面積を
有するハニカム体についてその細孔分布を調べたところ
、いずれのハニカム体についても50〜150人付近に
顕著な第2ピークIIが現われることが確認できた。こ
の第2ピークIIの有意性を第1図を用いて説明すると
、オゾンの分解が始まった時点では、例えば孔径7〜I
OA程度の微細孔2a内で03→02への分解、境膜反
応、02吸着が活発に行なわれる。こうして02吸着に
より微細孔2a内に02が蓄積して詰まってしまうとオ
ゾン分解能の持続性の低下が始まるが、例えば孔径50
〜lOO人程度の細孔2bが存在すると、オゾン分解反
応は微細孔2aから細孔2b内にひき継がれ、該細孔2
b内で前述の03→02への分解、境膜反応、02吸着
が活発に行なわれる。従って微細孔2aの他に細孔2b
が十分あるような活性炭では、細孔2bが全く存在しな
い(例えば原料活性炭)か存在量の少ない活性炭に比べ
てオゾン分解能及びその持続性が向上するものと思われ
る。
However, as mentioned above, the presence of the second peak H was thought to be very significant because of the fact that the 750-1 g product was superior in both ozone resolution and ozone resolution sustainability. When the pore distribution of honeycomb bodies having a specific surface area of To explain the significance of
Decomposition from 03 to 02, film reaction, and 02 adsorption take place actively within the micropores 2a of approximately OA size. If 02 accumulates and becomes clogged in the fine pores 2a due to 02 adsorption, the sustainability of ozone decomposition begins to decrease.
When the pores 2b of ~lOO human size exist, the ozone decomposition reaction is carried over from the pores 2a into the pores 2b, and the pores 2b
In b, the aforementioned decomposition from 03 to 02, film reaction, and 02 adsorption take place actively. Therefore, in addition to the micropores 2a, the micropores 2b
It is thought that activated carbon with a sufficient amount of pores 2b has improved ozone decomposition ability and sustainability compared to activated carbon with no pores 2b (for example, raw activated carbon) or with a small amount of pores 2b.

しかして前述の細孔分布における第2ピーク■は賦活処
理を施すことにより初めて生じ、又そのピークの程度は
賦活処理条件によって変えることができる。従って本発
明のハニカム体の製造に当たっては、活性炭層の比表面
積が600〜900112/gになるようにすることは
勿論のこと、500〜150A付近に第2のピークが存
在するような細孔分布が確保される様に配慮することが
好ましいと言える。
However, the second peak (3) in the pore distribution described above occurs only after the activation treatment, and the degree of the peak can be changed depending on the activation treatment conditions. Therefore, in producing the honeycomb body of the present invention, it is necessary to not only make sure that the specific surface area of the activated carbon layer is 600 to 900112/g, but also to make the pore distribution such that the second peak exists around 500 to 150 A. It can be said that it is preferable to take care to ensure that.

又本発明ハニカム体の製造に当たっては、原料活性炭の
混練、混練物の押出成形、成形物の炭化及び賦活化等の
各工程を経ることになるが、各工程における具体的な手
段に格別の制約はなく、公知の装置及び機器を利用する
ことができる。但し各工程における条件設定は厳密に行
なう必要があり、例えば本発明者等が既に提案した「ハ
ニカム状活性炭質成形体の製造法」 (特開昭58−8
4180号)を利用することが便利である。
In addition, in manufacturing the honeycomb body of the present invention, various steps such as kneading raw activated carbon, extrusion molding of the kneaded product, and carbonization and activation of the molded product are carried out, but there are particular restrictions on the specific means in each step. Instead, known devices and equipment can be used. However, it is necessary to strictly set the conditions in each step.
4180) is convenient.

本発明は以上の様に構成したので、オゾンの分解能が良
くてしかもその持続性にも優れたハニカム体を提供でき
ることとなり、静電捕集装置の運転コストを低減し、又
運転の作業性を容易にすることができる様になった。
Since the present invention is configured as described above, it is possible to provide a honeycomb body that has good ozone resolution and excellent sustainability, which reduces the operating cost of the electrostatic collection device and improves the workability of the operation. Now it can be done easily.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は活性炭の内部構造を示す要部断面拡大模式図、
第2図はI\ニカム体の比表面積とオゾンの分解率(初
期分解率)との関係を示すグラフ、第3図は比表面積の
異なるノ\ニカム体についてのオゾン分解能の持続テス
ト結果を示すグラフ、第4図はハニカム体の細孔分布測
定結果を示すグラフである。 1・・・活性炭々素質 2・・・空孔 2a・・・微細孔 2b・・・細孔 出願人 株式会社 神戸製鋼所
Figure 1 is an enlarged schematic cross-sectional view of the main parts showing the internal structure of activated carbon.
Figure 2 is a graph showing the relationship between the specific surface area and ozone decomposition rate (initial decomposition rate) of I\Nicum bodies, and Figure 3 shows the results of a sustained test of ozone decomposition ability for No\Nicum bodies with different specific surface areas. The graph and FIG. 4 are graphs showing the results of measuring the pore distribution of a honeycomb body. 1... Activated carbon material 2... Voids 2a... Micropores 2b... Micropores Applicant Kobe Steel, Ltd.

Claims (1)

【特許請求の範囲】[Claims] 活性炭力〕らなるハニカム状活性炭質成形体であって、
活性炭層の比表面積600〜900+2/gであること
を特徴とするオゾン分解用ハニカム状活性炭質成形体。
A honeycomb-shaped activated carbon molded body made of activated carbon,
A honeycomb-shaped activated carbon molded body for ozone decomposition, characterized in that the activated carbon layer has a specific surface area of 600 to 900+2/g.
JP58200554A 1983-10-25 1983-10-25 Molded body of honeycomb activated carbon for decomposing ozone Granted JPS6090808A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58200554A JPS6090808A (en) 1983-10-25 1983-10-25 Molded body of honeycomb activated carbon for decomposing ozone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58200554A JPS6090808A (en) 1983-10-25 1983-10-25 Molded body of honeycomb activated carbon for decomposing ozone

Publications (2)

Publication Number Publication Date
JPS6090808A true JPS6090808A (en) 1985-05-22
JPH0131449B2 JPH0131449B2 (en) 1989-06-26

Family

ID=16426236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58200554A Granted JPS6090808A (en) 1983-10-25 1983-10-25 Molded body of honeycomb activated carbon for decomposing ozone

Country Status (1)

Country Link
JP (1) JPS6090808A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4992319A (en) * 1988-05-18 1991-02-12 Nichias Corporation Activated carbon supporting honeycomb structure and process for fabricating the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5645841A (en) * 1979-09-21 1981-04-25 Hitachi Ltd Outside diameter controlling method of optical fiber base material
JPS56168824A (en) * 1980-05-29 1981-12-25 Toyobo Co Ltd Ozone removing material
JPS5742520A (en) * 1980-08-21 1982-03-10 Nippon Soken Inc Preparation of formed active carbon
JPS5795816A (en) * 1980-12-08 1982-06-14 Kyocera Corp Molded body of activated carbon
JPS57200214A (en) * 1981-05-29 1982-12-08 Kyocera Corp Three-dimensional network material
JPS5915531A (en) * 1982-07-17 1984-01-26 東邦レーヨン株式会社 Activated carbon fiber spun yarn

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5645841A (en) * 1979-09-21 1981-04-25 Hitachi Ltd Outside diameter controlling method of optical fiber base material
JPS56168824A (en) * 1980-05-29 1981-12-25 Toyobo Co Ltd Ozone removing material
JPS5742520A (en) * 1980-08-21 1982-03-10 Nippon Soken Inc Preparation of formed active carbon
JPS5795816A (en) * 1980-12-08 1982-06-14 Kyocera Corp Molded body of activated carbon
JPS57200214A (en) * 1981-05-29 1982-12-08 Kyocera Corp Three-dimensional network material
JPS5915531A (en) * 1982-07-17 1984-01-26 東邦レーヨン株式会社 Activated carbon fiber spun yarn

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4992319A (en) * 1988-05-18 1991-02-12 Nichias Corporation Activated carbon supporting honeycomb structure and process for fabricating the same

Also Published As

Publication number Publication date
JPH0131449B2 (en) 1989-06-26

Similar Documents

Publication Publication Date Title
US11583832B2 (en) Manganese oxide based catalyst and catalyst device for the removal of formaldehyde and volatile organic compounds
US7022269B2 (en) Activated carbon for odor control and method for making same
JP4652649B2 (en) Medium, apparatus and method for purifying air in a compressed air system
RU2386468C2 (en) Water filters and methods containing activated carbon particles and surface carbon nanofibers
US20160096163A1 (en) Honeycomb filter article and methods thereof
JP6807913B2 (en) Filter cartridge for air purifier
Lim et al. Extrusion of honeycomb monoliths employed with activated carbon-LDPE hybrid materials
JP2009035463A (en) Carbon nanosheet-titanate nanotube composite material and carbon nanosheet-titania nanorod composite material, their production method, and their application
FR2618134A1 (en) CATALYST OF OZONE CRACKING
KR101217169B1 (en) Honeycomb ceramic biofilter and its manufacturing method
ATE422491T1 (en) CATALYTIC FILTER MADE OF SILICON CARBIDE (-SIC) FOR THE COMBUSTION OF SOOT FROM EXHAUST GASES OF AN COMBUSTION ENGINE
Wang et al. Adsorption of Pb (II) by a polyvinylidene fluoride membrane bearing chelating poly (amino phosphonic acid) and poly (amino carboxylic acid) groups
US11376539B2 (en) Multilayer film for air purification and method for manufacturing same
JPS6090808A (en) Molded body of honeycomb activated carbon for decomposing ozone
KR20100053989A (en) Water purifing filter element using iron oxide nanoparticles and method thereof
JP2009072786A (en) Chemical substance adsorbing material using bamboo coal
KR20210076011A (en) Catalyst-Adsorbent Filters for Air Purification
JPH04235718A (en) Sheet for ozonolysis
JPH03202133A (en) Preparation of polymer separation membrane for concentrating odoriferous matter and removal of odoriferous matter dissolved in water using same membrane
KR20150056101A (en) Adsorbents using alum sludges and method of manufacturing the same
JP6082895B1 (en) Solid photocatalyst material comprising solid material composed only of titanium dioxide having photocatalytic function, and method for producing the same
KR101912719B1 (en) Method for manufacturing alumina membranre modified with y zeolite having mesopores and micropores
JP4314097B2 (en) Chemical substance adsorbent using bamboo charcoal
KR101885249B1 (en) Method of preparing activated carbon
Ucar et al. Improvement of SO2 adsorption capacity of fiber web surface produced from continous graphene oxide fiber

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees