JPS6081134A - Production of octafluoropropane - Google Patents

Production of octafluoropropane

Info

Publication number
JPS6081134A
JPS6081134A JP18927983A JP18927983A JPS6081134A JP S6081134 A JPS6081134 A JP S6081134A JP 18927983 A JP18927983 A JP 18927983A JP 18927983 A JP18927983 A JP 18927983A JP S6081134 A JPS6081134 A JP S6081134A
Authority
JP
Japan
Prior art keywords
gas
reaction
higher metal
fluorine
products
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18927983A
Other languages
Japanese (ja)
Other versions
JPS6254777B2 (en
Inventor
Koichi Katamura
浩一 片村
Yutaka Kageyama
影山 豊
Hidetoshi Nakayama
秀俊 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP18927983A priority Critical patent/JPS6081134A/en
Publication of JPS6081134A publication Critical patent/JPS6081134A/en
Publication of JPS6254777B2 publication Critical patent/JPS6254777B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To produce the titled compound useful as a hydraulic fluid for low- temperature use, an etching gas for the manufacture of a semiconductor device, etc., in high purity, without leaving unreacted material, and producing little by- products, by reacting hexafluoropropylene with a higher metal fluoride. CONSTITUTION:Octafluoropropane is produced by reacting hexafluoropropylene with a higher metal fluoride containing at least one compound selected from cobalt trifluoride, manganese trifluoride and silver difluoride. The reaction temperature is 100-400 deg.C for CoF3, 200-480 deg.C for MnF3 and about 40-100 deg.C for AgF2.

Description

【発明の詳細な説明】 本発明は、ヘキサフルオロプロピレンに高次金属フッ化
物を反応させるオクタフルオロプロパンの製造方法に関
づる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing octafluoropropane by reacting hexafluoropropylene with a higher metal fluoride.

オクタフルオロプロパンは、低温用作動流体として、あ
るいは、最近半導体用エツチングガスとして注目されて
いる化合物である。
Octafluoropropane is a compound that has recently attracted attention as a working fluid for low temperatures or as an etching gas for semiconductors.

これまで、オクタフルオロプロパン(C3F8 )の製
造方法として、フッ素ガスを用いた気相フッ素化法、電
解フツ素化法、およびフッ素化剤を用いたフッ素化法等
が知られている。
Hitherto, known methods for producing octafluoropropane (C3F8) include a gas phase fluorination method using fluorine gas, an electrolytic fluorination method, and a fluorination method using a fluorinating agent.

フッ素ガスを用いた気相フッ素化法としては、例えばプ
ロパンのフッ素化(J、 A、C,S、、82゜582
7 (1960) ) 、ヘキサフルオロプロピレンの
フッ素化(特開昭58−41829 ) 、あるいは、
ヘキサフルオロプロピレンにフッ化水素を付加さUて得
るヘプタフルオロプロパンのフッ素化(特開昭53−1
19802)等が知られているが、これらの方法に85
いては、極めて反応性の強いフッ素ガスを用いるため、
反応が暴走、爆発の危険性が高く安全上問題があり、更
に多量の反応熱による炭素−炭素結合の切断、重合等が
発生し、これらの副反応を制御するため特殊構造の装置
を必要とし、あるいは多量の不活性ガスでフッ素ガスを
希釈しなければならない。また、フッ素化を完全にする
ために、過剰のフッ素を供給覆る必要があり、従って未
反応フッ素の処理を要する等の欠点がある。
As a gas phase fluorination method using fluorine gas, for example, fluorination of propane (J, A, C, S, 82゜582
7 (1960)), fluorination of hexafluoropropylene (JP-A-58-41829), or
Fluorination of heptafluoropropane obtained by adding hydrogen fluoride to hexafluoropropylene (JP-A-53-1
19802), etc., but these methods have 85
In this case, extremely reactive fluorine gas is used, so
There is a high risk of runaway reactions and explosions, which poses safety problems.Furthermore, a large amount of reaction heat causes carbon-carbon bond severing, polymerization, etc., and special equipment is required to control these side reactions. , or the fluorine gas must be diluted with a large amount of inert gas. Further, in order to complete the fluorination, it is necessary to supply excess fluorine, and therefore there is a drawback that unreacted fluorine must be treated.

電解フツ素化法の例としては、プロパン(米国特許第3
,840,445号)、あるいは1−クロルプロパン(
米国特許第3,709,800@ )からC3F8を製
造する方法が知られている。しかし、これらの方法にお
いては装置がきわめて複雑であり、更に炭素−炭素ヶ結
合の切断等の副反応が生じるため収率が低く、工業的に
有利な方法とはいえない。
An example of an electrolytic fluorination method is propane (U.S. Pat.
, 840, 445), or 1-chloropropane (
A method for producing C3F8 is known from US Pat. No. 3,709,800@). However, in these methods, the equipment is extremely complicated, and furthermore, side reactions such as cleavage of carbon-carbon bonds occur, resulting in low yields and cannot be said to be industrially advantageous methods.

フッ素化剤を用いたフッ木化法としては、例えばトリフ
ルオロペンタクロロプロパンと三フッ化マンガンの反応
(米国特許第2,578,721号)によりC3FBを
製造Jる方法が知られているが、この反応においては部
分的に塩素の残ったクロロフルAロブロバン類が副生し
、C3Feの収率は低く、また細点の近い副生物の分離
のために煩雑な操作を必要としCいる。一般に、フッ素
化剤として高原子価金属フッ化物−即ら高次金属フッ化
物−には三フッ化コバルト(COF3 ) 、三フッ化
マンガン(Mn F3 ) 、ニフッ化銀(A(] I
F )等、あるいはこれらとアルカリ金属フッ化物が混
合した組成の化合物(例えばKCOF4 )を用い、炭
北水素あるいは塩化炭化水素中の水素や塩素とフッ素を
置換しフッ素化を行うことは知られていた。しかしなが
ら高次金属フッ化物を用いたフッ素化反応においては、
副生物どして多くの部分フツ素化物を生成し、目的生成
物の収率は低く、しかもこれらの副生物は沸点の近いも
のが多く、目的生成物との分離が難しい等の欠点があっ
た。
As a fluorinating method using a fluorinating agent, for example, a method for producing C3FB by the reaction of trifluoropentachloropropane and manganese trifluoride (U.S. Pat. No. 2,578,721) is known. In this reaction, chloroflurobans with partially residual chlorine are produced as by-products, the yield of C3Fe is low, and complicated operations are required to separate the by-products with close points. In general, high-valent metal fluorides (i.e., higher-order metal fluorides) used as fluorinating agents include cobalt trifluoride (COF3), manganese trifluoride (MnF3), and silver difluoride (A(]I).
It is known that fluorination can be carried out by replacing fluorine with hydrogen or chlorine in carboxylic hydrogen or chlorinated hydrocarbon using a compound having a composition such as F) or a mixture of these and an alkali metal fluoride (for example, KCOF4). Ta. However, in fluorination reactions using higher metal fluorides,
It produces many partially fluorinated products as by-products, the yield of the desired product is low, and many of these by-products have similar boiling points, making it difficult to separate them from the desired product. Ta.

本発明者らは、鋭意研究を重ねた結果、ヘキサフルオロ
プロピレン(C3F6 )に、高次金属フッ化物を反応
させると、原料であるC3 FBガスがほとんど未反応
として残らず、かつ副生物もほとんどなく、目的生成物
である03 FBが高純度にて得られることを見出し、
本発明を完成させた。
As a result of extensive research, the present inventors have found that when hexafluoropropylene (C3F6) is reacted with a higher metal fluoride, almost no C3 FB gas, which is the raw material, remains unreacted, and almost no by-products are left. found that the desired product 03 FB could be obtained with high purity without any
The present invention has been completed.

本発明について、更に詳しく説明すると、本発明に用い
られる高次金属フッ化物としては、COF3 、Mll
 F3およびA!] F2から選択された少くとも1種
を含んでおればよく、これらの高次金属フッ化物を単独
で、あるいは混合して使用覆る場合は、粉末状、粒状、
錠剤状等にて反応に用いることができる。錠剤状等に成
形して用いる方が取扱いが容易であるが、特にこの形に
限定されるものではない。これら高次金属フッ化物は、
対応する塩化物、臭化物、ヨウ化物、炭酸塩、硝酸塩、
硫酸塩、フルオロケイ酸塩、酢酸塩、酸化物あるいは対
応する金属粉末や低次金属フッ化物(例えばCo F2
他)等を、フッ素により対応づる高次金属フン化物とし
て使用することもできる。
To explain the present invention in more detail, the higher metal fluorides used in the present invention include COF3, Mll
F3 and A! ] It is sufficient to contain at least one kind selected from F2, and when these higher metal fluorides are used alone or in a mixture, powder, granule,
It can be used in the reaction in the form of tablets, etc. Although it is easier to handle when formed into a tablet or the like, it is not particularly limited to this form. These higher metal fluorides are
Corresponding chlorides, bromides, iodides, carbonates, nitrates,
Sulfates, fluorosilicates, acetates, oxides or corresponding metal powders and lower metal fluorides (e.g. Co F2
etc.) can also be used as higher metal fluorides corresponding to fluorine.

高次金属フッ化物は、そのまま或いは安定な化合物(例
えばフッ化カルシウム等)と混ぜ合せて、打錠法など公
知の方法により成形してもよい。また安定な担体く例え
ば三フッ化アルミニウム等)へ担持して用い−Cもよい
The higher metal fluoride may be molded as it is or mixed with a stable compound (for example, calcium fluoride, etc.) by a known method such as a tableting method. Alternatively, -C may be used by supporting it on a stable carrier (eg, aluminum trifluoride, etc.).

フッ素により対応1゛る高次金属フッ化物とする際には
、通常用いられる耐食材質の反応器に充填させフッ素ガ
スによりフッ素化させる。フッ素ガスは窒素、ヘリウム
、)−IF等のフッ素に対して不活性なガスで希釈して
使用Jることもできる。また、フッ素ガスを用いるかわ
りに、三フッ化塩素のようなフッ素を放出しやすいフッ
素化合物で、ガス状のものを用い又もにい。
When producing a higher metal fluoride corresponding to fluorine, it is charged into a reactor made of a commonly used corrosion-resistant material and fluorinated with fluorine gas. The fluorine gas can also be used after being diluted with a gas inert to fluorine, such as nitrogen, helium, or )-IF. Also, instead of using fluorine gas, a gaseous fluorine compound such as chlorine trifluoride that easily releases fluorine may be used.

このようにして調整した高次金属フッ化物を充填した反
応器へ、03 Filを供給し反応せしめる。
03 Fil is supplied to the reactor filled with the higher metal fluoride prepared in this way and allowed to react.

この場合、流通法あるいは循環法のいずれを用いてもよ
く、又、反応器は、固定床あるいは流動床等いずれを用
いてもよい。反応圧力は、常圧、加圧、減圧のいずれも
可能であるが、常圧系が操作は容易である。
In this case, either a flow method or a circulation method may be used, and the reactor may be either a fixed bed or a fluidized bed. The reaction pressure can be normal pressure, increased pressure, or reduced pressure, but normal pressure systems are easier to operate.

C3Fe原料ガスに、希釈ガスとして、窒素、ヘリウム
、アルゴン等の反応に不活性で、かつ生成ガスである0
3F8との分離が容易なものを用いることもできるが、
本発明においては、このような希釈ガスを使用しなくて
も反応を安全に行わせることができる。C3Feと高次
金属フッ化物の反応温度は、高次金属フッ化物として、
Co F3の場合は40〜500°C1好ましくは10
0〜400℃であり、Mn F3の揚台は100〜53
0℃、好ましくは200〜480℃であり、A(] I
Fの場合は30〜200℃、好ましくは40〜100℃
である。これらの高次金属フッ化物を単独でなく、二種
以上混合して反応を行なわせる場合は、上記の温度範囲
の中から適宜に選ぶことができる。又、上記のとがある
ので、循環法を行うことが好ましい。何故ならば、原料
ガスであるCa F6と製品ガスであるC3FBの沸点
は近似しているので、分@粕製する操作が煩雑となるか
らである。
0, which is inert to the reaction of nitrogen, helium, argon, etc. and is a generated gas, is added to the C3Fe raw material gas as a diluent gas.
Although it is possible to use one that is easy to separate from 3F8,
In the present invention, the reaction can be carried out safely without using such a diluent gas. The reaction temperature between C3Fe and higher metal fluoride is as follows:
For Co F3, 40 to 500°C1, preferably 10
The temperature is 0 to 400℃, and the lifting platform for MnF3 is 100 to 53℃.
0°C, preferably 200-480°C, A(] I
In the case of F, 30 to 200°C, preferably 40 to 100°C
It is. When these higher metal fluorides are used not alone but in a mixture of two or more to carry out the reaction, the temperature can be appropriately selected from the above-mentioned temperature range. Also, because of the above, it is preferable to use a circulation method. This is because the boiling points of CaF6, which is the raw material gas, and C3FB, which is the product gas, are close to each other, so that the operation of making lees becomes complicated.

上記の温度条件下では、副生成物はきわめて少なく、炭
素−炭素結合の切断、重答等も実質上認められず、純度
99.9%、またはそれ以上のCa FBを1qること
かでき、本発明の製造方法は極めて有利である。
Under the above temperature conditions, there are very few by-products, virtually no cutting of carbon-carbon bonds, no double reactions, etc., and it is possible to produce 1 q of Ca FB with a purity of 99.9% or higher. The manufacturing method of the invention is extremely advantageous.

次に、実施例によりさらに具体的に本発明を説明する。Next, the present invention will be explained in more detail with reference to Examples.

実施例1 塩化コバルトを錠剤状(5mmφx5mm+)に成形し
、これをHF、次にF2ガスによりフッ素化しCo F
3を調整した。このCOFil 120gをニツウル製
反応器(25mmφx iooomm)に充填し、反応
温度270℃にて、常圧で、純度99.9%以上の03
−Fe b3.3gを0.6時間の間に流通法で反応器
に導入した。反応生成物は捕集し、計(6)を行い通常
のガスクロマ1−グラフィにより組成分析を行った結果
、未反応のCa Faは検出されず、純度99.9%以
上の03F866.3gを1!1だ。
Example 1 Cobalt chloride was formed into a tablet shape (5 mmφ x 5 mm+), which was fluorinated with HF and then F2 gas to form Co F
3 was adjusted. 120g of this COFil was packed into a reactor manufactured by Nitsuur (25mmφ
3.3 g of -Fe b was introduced into the reactor in a flow method over a period of 0.6 hours. The reaction products were collected, measured in step (6), and analyzed by conventional gas chromatography. As a result, no unreacted CaFa was detected. !1.

実施例2 実施例1に用いたと同じCo F3 120Ilを、同
じ反応器に充填し、反応温度110℃、常圧下で純度9
9.9%以上のC3Fa 43.Ogを0.8時間の間
に、流通法で反応器に導入した。実施例1と同様にして
、組成分析の結果、未反応のCa Filは検出されず
純度99.9%以上のCa Fo 53.8!Jを得た
Example 2 The same 120 Il of Co F3 used in Example 1 was charged into the same reactor, and the purity was reduced to 9 at a reaction temperature of 110° C. and under normal pressure.
9.9% or more C3Fa 43. Og was introduced into the reactor in a flow manner during 0.8 hours. As in Example 1, as a result of compositional analysis, no unreacted Ca Fi was detected and Ca Fo 53.8! with a purity of 99.9% or more! I got J.

又、C3Fa 43.Ogを窒素ガスにて約50%に希
釈し、供給時間を1.5時間にした外は上記と同じ条件
で反応を行わせたところ、未反応の03 F6は検出さ
れず純度99.9%以上のCa Fa 53.8gを得
 lこ 。
Also, C3Fa 43. When the reaction was carried out under the same conditions as above except that Og was diluted to about 50% with nitrogen gas and the supply time was 1.5 hours, unreacted 03F6 was not detected and the purity was 99.9%. 53.8g of CaFa was obtained.

実施例3 実施例1に用いたと同じCo F3 120gを、同じ
反応器に充填し、この反応器に純度99.9%以上の0
3 F816.Igをあらかじめ入れておき、ポンプに
てガスを循環させる循環法をとった。ガスの循環量は2
00Id/ m i nで、反応器中の温度を50℃に
して5時間反応させた。最初は03F6が多く、Ca 
F8は少量であったが、時間の経過とともにCa F6
が減じ、Cs Faは増加し、5時間経過後には03 
F6は痕跡となり、N!度99.9%以上のC3Fs 
20,0(l を 得 lこ 。
Example 3 120 g of the same Co F3 used in Example 1 was charged into the same reactor, and 0 with a purity of 99.9% or more was charged into the reactor.
3 F816. A circulation method was used in which Ig was added in advance and the gas was circulated using a pump. The amount of gas circulated is 2
00Id/min, the temperature in the reactor was raised to 50°C, and the reaction was carried out for 5 hours. Initially, there were many 03F6, Ca
F8 was a small amount, but over time CaF6
decreases, CsFa increases, and after 5 hours it reaches 03
F6 becomes a trace and N! C3Fs with a degree of 99.9% or more
20,0(l).

実施例4 ニフツ化マンガンを錠剤状(5mmφx5mm)に成形
し、これをF2ガスによりフッ素化し、1yln F3
を得た。このMnF3110gを実施例1と同様の反応
器に充填し、流通法にて反応を行なった。
Example 4 Manganese nitride was molded into a tablet (5 mmφ x 5 mm), which was fluorinated with F2 gas to form 1yln F3.
I got it. A reactor similar to that in Example 1 was filled with 110 g of this MnF3, and a reaction was carried out using the flow method.

反応温度110℃にて、03 FB 33.2!lを4
時間で供給し、反応生成物を捕集、計量後組成分析を行
なった。その結果、未反応C3FBは痕跡であ3F8 す、純度99.9%以上のに)−一41.2gを得た。
At a reaction temperature of 110°C, 03 FB 33.2! l to 4
The reaction products were collected, weighed, and analyzed for composition. As a result, 41.2 g of 3F8 with a purity of 99.9% or higher was obtained, with only traces of unreacted C3FB.

実施例5 塩化銀72(lとフッ化カルシウム7811の混合物(
10= 32+++esl+ )を、実施例1と同様の
反応器に充填し、ト11:、次にF2ガスによりフッ素
化した。
Example 5 A mixture of silver chloride 72 (l) and calcium fluoride 7811 (
10=32+++esl+) was charged into a reactor similar to Example 1, and then fluorinated with F2 gas.

得られたフッ化カルシウムで希釈されたA!] F2を
用い゛C1反応を行なった。C3Fa a、Igを、窒
素ガスで濃度50%に希釈し、反応器に入れ、実施例3
と同様にして温度10℃にて4.5時間循環反応させた
。反応生成物は、捕集し、計量を行なった後、組成分析
を行なった。その結果、未反応C3Faは痕跡であり、
純度99.9%以上の03 Fa io、ogを得た。
A diluted with the obtained calcium fluoride! ] A C1 reaction was carried out using F2. Example 3
A circulation reaction was carried out in the same manner as above at a temperature of 10° C. for 4.5 hours. The reaction products were collected, weighed, and then analyzed for composition. As a result, unreacted C3Fa is a trace;
03 Fa io, og with a purity of 99.9% or more was obtained.

実施例6 ニフツ化コバルト61(lとニフッ化マンガン59gの
混合物を錠剤状に成形し、これを1=2ガスにより、フ
ッ素化した。得られたCo FilとMn F3の混合
物を、実施例1と同様の反応器に充填し、流通法にて反
応を行なった。反応温度300’C#、常圧下で純度9
9.9%以上の03 F640.2gを3時間の間に反
応器に導入した。反応生成物は、捕集、計量後、組成分
析を行なった。その結果、未反応Cs F6は痕跡であ
り、純度99.9%以上のC3Fa 50.Ogを得た
Example 6 A mixture of cobalt nitride 61 (l) and manganese difluoride 59 g was molded into a tablet, and this was fluorinated using 1=2 gas. The resulting mixture of Co Fil and Mn F3 was prepared in Example 1. The reaction was carried out using the flow method.The reaction temperature was 300'C# and the purity was 9 at normal pressure.
440.2 g of 03 F6 with a concentration of 9.9% or more was introduced into the reactor during a period of 3 hours. The reaction products were collected, weighed, and analyzed for composition. As a result, there were only traces of unreacted CsF6, and C3Fa with a purity of 99.9% or more. Obtained Og.

Claims (1)

【特許請求の範囲】[Claims] ヘキサフルオロプロピレンに、三フッ化コバルト、三フ
ッ化マンガンd3よびニフツ化銀から選択された少なく
とt)1種を含む高次金属フッ化物を、反応させること
を特徴とするオクタフルオロプロパンの製造方法。
Production of octafluoropropane, characterized in that hexafluoropropylene is reacted with a higher metal fluoride containing at least one selected from cobalt trifluoride, manganese trifluoride d3, and silver nitride. Method.
JP18927983A 1983-10-12 1983-10-12 Production of octafluoropropane Granted JPS6081134A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18927983A JPS6081134A (en) 1983-10-12 1983-10-12 Production of octafluoropropane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18927983A JPS6081134A (en) 1983-10-12 1983-10-12 Production of octafluoropropane

Publications (2)

Publication Number Publication Date
JPS6081134A true JPS6081134A (en) 1985-05-09
JPS6254777B2 JPS6254777B2 (en) 1987-11-17

Family

ID=16238653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18927983A Granted JPS6081134A (en) 1983-10-12 1983-10-12 Production of octafluoropropane

Country Status (1)

Country Link
JP (1) JPS6081134A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995010494A1 (en) * 1993-10-15 1995-04-20 Solvay Fluor Und Derivate Gmbh Process for producing pentafluoroethane and for purifying 1,1,1,2-tetrafluoroethane
JP2002069014A (en) * 2000-08-30 2002-03-08 Showa Denko Kk Method for producing octafluoropropane and applicatoin thereof
WO2002022254A2 (en) * 2000-09-14 2002-03-21 Showa Denko K. K. Adsorbent for purifying perfluorocarbon, process for producing same, high purity octafluoropropane and octafluorocyclobutane, and use thereof
KR100447804B1 (en) * 2001-07-09 2004-09-08 울산화학주식회사 Manufacturing method of high purity perfluoroprpane
US7041264B2 (en) 2001-01-15 2006-05-09 Showa Denko K.K. Process for purifying octafluoropropane
JP2007106726A (en) * 2005-10-17 2007-04-26 National Institute Of Advanced Industrial & Technology Method for producing 1,1,2,2,3-pentafluorocyclobutane
JP2007176842A (en) * 2005-12-27 2007-07-12 Showa Denko Kk Method for producing octafluoropropane
CN103497086A (en) * 2013-09-22 2014-01-08 佛山市华特气体有限公司 Preparation method of perfluoropropane

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
THE JOURNAL OF ORGANIC CHEMISTRY 28=1963 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995010494A1 (en) * 1993-10-15 1995-04-20 Solvay Fluor Und Derivate Gmbh Process for producing pentafluoroethane and for purifying 1,1,1,2-tetrafluoroethane
JP2002069014A (en) * 2000-08-30 2002-03-08 Showa Denko Kk Method for producing octafluoropropane and applicatoin thereof
WO2002022254A2 (en) * 2000-09-14 2002-03-21 Showa Denko K. K. Adsorbent for purifying perfluorocarbon, process for producing same, high purity octafluoropropane and octafluorocyclobutane, and use thereof
WO2002022254A3 (en) * 2000-09-14 2002-10-10 Showa Denko Kk Adsorbent for purifying perfluorocarbon, process for producing same, high purity octafluoropropane and octafluorocyclobutane, and use thereof
US7094935B2 (en) 2000-09-14 2006-08-22 Showa Denko K.K. Adsorbent for purifying perfluorocarbon, process for producing same, high purity octafluoropropane and octafluorocyclobutane, and use thereof
US7041264B2 (en) 2001-01-15 2006-05-09 Showa Denko K.K. Process for purifying octafluoropropane
KR100447804B1 (en) * 2001-07-09 2004-09-08 울산화학주식회사 Manufacturing method of high purity perfluoroprpane
JP2007106726A (en) * 2005-10-17 2007-04-26 National Institute Of Advanced Industrial & Technology Method for producing 1,1,2,2,3-pentafluorocyclobutane
JP2007176842A (en) * 2005-12-27 2007-07-12 Showa Denko Kk Method for producing octafluoropropane
CN103497086A (en) * 2013-09-22 2014-01-08 佛山市华特气体有限公司 Preparation method of perfluoropropane

Also Published As

Publication number Publication date
JPS6254777B2 (en) 1987-11-17

Similar Documents

Publication Publication Date Title
EP0770048B1 (en) Process for the manufacture of 1,1,1,3,3-pentafluoropropane
EP0328127B1 (en) Gas-phase fluorination process
JPH0427218B2 (en)
JPH0662691B2 (en) Method of making polymers using permanent perfluoroalkyl free radicals
JPS6081134A (en) Production of octafluoropropane
EP0703208A1 (en) Process for producing 1,1,1,3,3-pentafluoropropane, process for producing 2,2,3-trichloro-1,1,1,3,3-pentafluoropropane, and process for producing 2,2,3-trichloro-1,1,1-trifluoropropane
JPH0824362A (en) Production of 1, 1, 1, 2, 3, 3, 3-heptafluoropropane
JP5397483B2 (en) Method for producing fluorine-containing propane
EP1770061B1 (en) Method for producing carbonyl difluoride
US6093860A (en) Method for producing perfluoro(n-pentane)
EP0379793A1 (en) Process for the preparation of 1,1,1,2-tetrafluorethane
RU2024474C1 (en) Method of synthesis of 1,1-dichloro-1-fluoroethane and a method of 1,1-dichloroethylene content decrease
JPH05194287A (en) Production of halogenated butene and butane
JPS5842849B2 (en) Method for producing lower perfluoroalkane
US20100121117A1 (en) Process for preparing decafluorocyclohexene
EP0366404B1 (en) Improved process for the preparation of 1,1,1,2-tetrafluoroethane
JP4727830B2 (en) Process for producing 1,1,1-trifluoro-2,2-dichloroethane
JPH0665117A (en) Production of 1,1,1,2-tetrafluoroethane
US7417167B2 (en) Process for producing carbonyl difluoride
US20100121116A1 (en) Process for preparing octafluorocyclohexadiene
US5008476A (en) Process for the preparation of 1,1,1,2-tetrafluoroethane
EP1208083B1 (en) Low temperature initiators for fluoroolefin polymerization
US5545776A (en) Synthesis of n-perfluorooctyl bromide
JPH0620560B2 (en) New catalyst for liquid phase fluorination
US3072730A (en) Process for preparing perfluoroethyl iodide