JPS608072B2 - luminescent material - Google Patents

luminescent material

Info

Publication number
JPS608072B2
JPS608072B2 JP16132779A JP16132779A JPS608072B2 JP S608072 B2 JPS608072 B2 JP S608072B2 JP 16132779 A JP16132779 A JP 16132779A JP 16132779 A JP16132779 A JP 16132779A JP S608072 B2 JPS608072 B2 JP S608072B2
Authority
JP
Japan
Prior art keywords
luminescent material
crab
brightness
light
antimony
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16132779A
Other languages
Japanese (ja)
Other versions
JPS5682875A (en
Inventor
明彦 石谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP16132779A priority Critical patent/JPS608072B2/en
Publication of JPS5682875A publication Critical patent/JPS5682875A/en
Publication of JPS608072B2 publication Critical patent/JPS608072B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は新規な低速電子線励起用発光材料、さらに詳し
くはアンチモンをドープした酸化スズと硫化亜鉛蟹光体
とを適当量混合してなる低速電子線励起用発光材料に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a novel luminescent material for excitation by slow electron beams, more specifically, a luminescent material for excitation by slow electron beams, which is made by mixing appropriate amounts of antimony-doped tin oxide and zinc sulfide phosphor. It is related to.

近年、遷移金属イオン、希土類元素イオンなどを付活剤
とした蟹光体が数多く開発された。
In recent years, many crab photons using transition metal ions, rare earth element ions, etc. as activators have been developed.

これらの金属イオンが各種固体中、液体中にあって電子
線、紫外線、近赤外光などで照射されると各金属イオン
に特有の輝線状の発光スペクトルを示すことは以前から
知られ、特にレーザ材料として注目され研究されるよう
になった。これらの研究の中から、例えばYAO:Nd
レーザが実用に供される一方、セリウム、ユーロビウム
、エルビウムなどが種々の母体中にあって高い効率で発
光することも見出され、以来、希±類元素イオンを付活
剤とした蟹光体が盛んに研究された。その結果実用に供
されているものも多く、その中でもユーロビウムで付活
した酸化イットリウム、酸硫化イットリウム、バナジン
酸イットリウムなどが特に重要で、カラーテレビ、高圧
水銀灯などの赤色成分として使用されている。これらの
蟹光体は数KV以上の高電子数、紫外線などの励起によ
って、高輝度に発光する。しかしながら、数10V以下
の低速電子線励起ではこれらの蟹光体はほとんど発光し
ないために蟹光表示管用蟹光体としては使用できない。
その結果、発色光が緑色だけの蟹光表示管では用途は限
定され、表示管の用途拡大にはどうしても緑色以外の明
るい発光を示す発光材料の開発が強く要望されてきた。
従来、低速電子線励起によって高輝度に発光し実用に供
されている発光材料としては自己付活酸化亜鉛蟹光体(
Zn○:Zn)が知られている。
It has long been known that these metal ions in various solids and liquids exhibit emission line-like emission spectra unique to each metal ion when irradiated with electron beams, ultraviolet rays, near-infrared light, etc. It has been attracting attention and research as a laser material. Among these studies, for example, YAO:Nd
While lasers were put into practical use, it was also discovered that cerium, eurobium, erbium, etc. can emit light with high efficiency when they are present in various matrixes, and since then, crab photons using rare element ions as activators have been developed. has been extensively researched. As a result, many products have been put into practical use, and among these, yttrium oxide activated with eurobium, yttrium oxysulfide, and yttrium vanadate are particularly important, and are used as red components in color televisions, high-pressure mercury lamps, etc. These crab photons emit light with high brightness when excited by a high number of electrons of several KV or more, ultraviolet rays, and the like. However, these crab phosphors hardly emit light when subjected to slow electron beam excitation of several tens of volts or less, so they cannot be used as crab phosphors for crab optical display tubes.
As a result, the applications of crab light display tubes that emit only green light are limited, and in order to expand the use of display tubes, there has been a strong demand for the development of luminescent materials that emit bright light other than green.
Conventionally, the self-activated zinc oxide crab photoreceptor (
Zn○:Zn) is known.

この姿光体は低速電子線励起によって緑色発光を示し、
電卓、各種計測機器などの蟹光表示管用蟹光体として使
用されている。この自己付活酸化亜鉛蟹光体の発光する
緑色以外の色、たとえば赤色、黄色、青色などを低速電
子線励起で発光する発光材料としては実験室的にはY2
02S:Eu,ZnS:Agなどに1山03で導電性を
付与したものが知られているが導電性付与が不十分なた
めに表示管に実用化されるまでに到っていない。低抵抗
材料の導電性は化学吸着したガス分子の量によって大き
く変る。
This phosphor emits green light when excited by slow electron beams,
It is used as a light display tube for calculators, various measuring instruments, etc. In the laboratory, Y2 is a luminescent material that emits colors other than green emitted by this self-activated zinc oxide crab photoform, such as red, yellow, and blue, when excited by slow electron beams.
It is known that 02S:Eu, ZnS:Ag, etc. are imparted with conductivity in one strand of 03, but they have not been put to practical use in display tubes because the conductivity is insufficient. The conductivity of low-resistance materials varies greatly depending on the amount of chemically adsorbed gas molecules.

たとえばn型半導体の低抵抗材料に電子受容体である酸
素が吸着してイオン化したとき、禁止帯の中に新しく表
面準位が形成され、表面が電気的中性条件を満たすため
にエネルギーバンドが曲つて表面ポテンシャルバリアが
できる。すなわち酸素分子の化学吸着によって電子がド
ナー準位から吸着層に移動し、酸素は負荷電吸着状態に
なり半導体表面付近で空間電荷層が形成されて半導体の
フェルミ準位が下がり、酸素の電子エネルギーと半導体
のフェルミ準位が等しくなって平衡に達する。粉末の低
抵抗材料の場合、ガス分子が粒子一粒子の界面で吸着さ
れる結果粒界にポテンシャルバリアが形成され伝導電子
の移動を阻止するため、全体としての電導度は非常に減
小した状態を示す。
For example, when oxygen, which is an electron acceptor, is adsorbed to a low-resistance n-type semiconductor material and ionized, a new surface level is formed within the forbidden band, and the energy band is changed because the surface satisfies the electrical neutrality condition. It bends to form a surface potential barrier. In other words, electrons move from the donor level to the adsorption layer due to chemical adsorption of oxygen molecules, oxygen becomes negatively charged adsorption state, a space charge layer is formed near the semiconductor surface, the Fermi level of the semiconductor decreases, and the electron energy of oxygen decreases. and the Fermi level of the semiconductor become equal and equilibrium is reached. In the case of powdered low-resistance materials, gas molecules are adsorbed at the interface of each particle, forming a potential barrier at the grain boundary and blocking the movement of conduction electrons, so the overall electrical conductivity is extremely reduced. shows.

このようなガス分子の吸着による導電性の低下を防ぎ高
輝度を得るためには十分なべーキングが必要である。
Sufficient baking is necessary to prevent the conductivity from decreasing due to the adsorption of gas molecules and to obtain high brightness.

一般に粉体のガス出し‘ま困難であるため、高真空、高
温でのべーキングが必要である。酸化インジウムは高温
でのべーキングで特性が劣化し、十分な輝度が得られな
い。そのため、低温でべーキングすればある程度の輝度
は得られるが、脱ガスが不十分となるため実用的な表示
管としての寿命は短いものとなるという欠点があった。
本発明の目的は上記の要望に応えるべく、低速電子線に
よって緑白色以外の発光色を示し、かつ十分なべーキソ
グによってガス出しを行っても特性が変化しない発光材
料を得ることにある。
Generally, it is difficult to degas the powder, so baking at a high vacuum and high temperature is necessary. Baking at high temperatures deteriorates the properties of indium oxide, making it impossible to obtain sufficient brightness. Therefore, although a certain degree of brightness can be obtained by baking at a low temperature, degassing is insufficient, resulting in a short life as a practical display tube.
SUMMARY OF THE INVENTION In order to meet the above-mentioned needs, an object of the present invention is to obtain a luminescent material that exhibits a luminescent color other than green-white when exposed to a slow electron beam, and whose characteristics do not change even when gas is vented by sufficient baking soda.

すなわち、本発明は金、銅、アルミウム、ガリウム、マ
ンガン、ビスマス、鉄のうち少なくとも1つを付活した
硫化亜鉛後光体とアンチモンをドープした酸化スズとを
混合した発光材料である。これを低速電子線で励起する
と高輝度の赤、緑などの付活物質に特有の発光を示す。
アンチモンをドープした酸化スズは酸化インジウムとは
異り、蟹光表示管の製造において500℃程度までのべ
ーキングでは特性が変化することはなく、十分なガス出
しを行うことができるため実用に供しうる寿命を有する
蟹光表示管を製造することができる。
That is, the present invention is a luminescent material in which a zinc sulfide halo activated at least one of gold, copper, aluminum, gallium, manganese, bismuth, and iron is mixed with antimony-doped tin oxide. When this is excited with a slow electron beam, it emits high-brightness red and green light that is characteristic of activated materials.
Unlike indium oxide, tin oxide doped with antimony does not change its properties when baked at temperatures up to about 500°C in the production of optical display tubes, and sufficient gas release can be performed, making it suitable for practical use. It is possible to produce a light display tube with a long lifespan.

以下に本発明を実施例を用いて詳しく説明する。The present invention will be explained in detail below using examples.

亜鉛塩の水溶液に硫化水素を通じて硫化亜鉛の沈澱をつ
くり、この硫化亜鉛に付活剤としての金塩、アルミニウ
ム塩および融剤としてNaCeを添加して90ぴ0で焼
成した。
Zinc sulfide was precipitated by passing hydrogen sulfide into an aqueous solution of zinc salt, and gold salt and aluminum salt as activators and NaCe as a flux were added to the zinc sulfide, and the mixture was calcined at 90°C.

焼成後、溶解性副成物を水洗除去し、不溶性ケイ酸塩で
表面処理して金、アルミニウム付活硫化亜鉛蟹光体を作
成した。付活剤金およびアルミニウムの量は母体格子の
亜鉛に対していずれも0.028アトミックパーセント
であった。また修酸スズ粉末と酸化アンチモンを溶解さ
せた塩酸水溶液とを混ぜて乾燥させた後1200?○で
焼成して、低抵抗のアンチモンドーフ酸化スズを得た。
両者をよく混合した後、ポIJビニールアルコール水溶
液とグリセリンを用いてペースト状にして図に示した陽
極群3a〜3nにスクリーン印刷した。空気中で500
qoで焼成し、第1図に示すような蟹光表示管を組立て
て窒素中で500q○でガラスシールし、450午○で
べーキングした。図において、1は透明フロントガラス
、2はガラス基板、3a〜3nは発光材料を塗布した陽
極群、4は陰極フィラメント、5a〜5nは制御グリツ
ト群である。蟹光体を励起して発光させたところ、点灯
後15時間後の輝度は陽極電圧30Vで170フートラ
ンバートであった。
After firing, soluble by-products were removed by washing with water, and the surface was treated with an insoluble silicate to produce a gold- and aluminum-activated zinc sulfide crystal. The amounts of the activators gold and aluminum were both 0.028 atomic percent relative to the zinc in the host lattice. Also, after mixing tin oxalic acid powder and an aqueous hydrochloric acid solution in which antimony oxide was dissolved and drying it, the temperature was 1200? By firing at ○, antimony dolph tin oxide with low resistance was obtained.
After thoroughly mixing both, they were made into a paste using a POIJ vinyl alcohol aqueous solution and glycerin, and screen printed on the anode groups 3a to 3n shown in the figure. 500 in the air
A crab light display tube as shown in FIG. 1 was assembled, glass-sealed at 500 qo in nitrogen, and baked at 450 qo. In the figure, 1 is a transparent windshield, 2 is a glass substrate, 3a to 3n are an anode group coated with a luminescent material, 4 is a cathode filament, and 5a to 5n are control grit groups. When the crab photogen was excited to emit light, the brightness 15 hours after lighting was 170 foot lamberts at an anode voltage of 30V.

べーキング温度を変えて実験を行ってみると、最高輝度
は400〜500ooで得られた。また点灯後の輝度の
時間変化も緩やかであり、最大輝度の50%に低下する
のに5000時間以上を要し、十分実用に耐えるもので
あった。一方実施例と比較をするために、アンチモンド
ープ酸化スズの代りに酸化インジウムを混合して上記と
同じ実験を行ったところ最高輝度は200〜300oo
で得られた。この程度のべーキング温度では溝光体粉末
の脱ガスが十分ではなく、したがって表示管にしたとき
残留吸着ガスの影響で輝度の劣化が早く1000時間程
度で最大輝度の50%に低下した。本実施例では金とア
ルミを付活した硫化亜鉛幹光体について述べたが、銅、
ガリウム、マンガン、鉄、ビスマスなどを付活した硫化
亜鉛蟹光体とアンチモンをドープした酸化スズとを混合
した蜜光材料の場合も50ぴ○程度までの熱処理温度に
耐え、最大輝度は150フートランバートを越え、最大
輝度の50%に低下するまでに500斑時間以上使用し
うるものであった。
When experiments were conducted by changing the baking temperature, the highest brightness was obtained at 400 to 500 oo. Furthermore, the luminance after lighting changed gradually over time, and it took more than 5,000 hours for the luminance to drop to 50% of the maximum luminance, which was sufficient for practical use. On the other hand, in order to compare with the example, when indium oxide was mixed instead of antimony-doped tin oxide and the same experiment as above was conducted, the maximum brightness was 200 to 300 oo.
Obtained with. At this baking temperature, the grooved light material powder was not sufficiently degassed, and therefore, when it was made into a display tube, the brightness deteriorated quickly due to the influence of the residual adsorbed gas, and the brightness decreased to 50% of the maximum brightness after about 1000 hours. In this example, a zinc sulfide trunk light body activated with gold and aluminum was described, but copper,
The luminous material, which is a mixture of zinc sulfide phosphor activated with gallium, manganese, iron, bismuth, etc., and tin oxide doped with antimony, can withstand heat treatment temperatures of up to 50 psi and has a maximum brightness of 150 ft. It could be used for more than 500 hours before the brightness exceeded Lambert's and decreased to 50% of the maximum brightness.

5 以上のように本発明の発光材料は赤、緑色など緑白
色以外の発光色を示し、かつ高温の熱処理に耐えるので
ガス出しを十分に行うことができ、したがって長寿命の
鯵光表示管を得ることができる。
5 As described above, the luminescent material of the present invention emits luminescent colors other than green and white, such as red and green, and can withstand high-temperature heat treatment, allowing for sufficient gas release. Obtainable.

0図面の簡単な説明 図は蟹光表示管の典型的な基本構造を示す断面図である
The simple explanatory diagram in Figure 0 is a sectional view showing the typical basic structure of a crab optical display tube.

1は透明フロントガラス、2はガラス基板、3a〜3n
は発光材料を塗布した陽極群、4は陰極フィラメント、
5a〜5nは制御ブリット群を表わす。
1 is a transparent windshield, 2 is a glass substrate, 3a to 3n
4 is an anode group coated with a luminescent material, 4 is a cathode filament,
5a to 5n represent control blit groups.

Claims (1)

【特許請求の範囲】[Claims] 1 金、銅、アルミニウム、ガリウム、マンガン、ビス
マス、鉄のうち少なくとも1つを付活した硫化亜鉛螢光
体とアンチモンをドーブした酸化スズとを混合してなる
ことを特徴とする発光材料。
1. A luminescent material comprising a mixture of a zinc sulfide phosphor activated with at least one of gold, copper, aluminum, gallium, manganese, bismuth, and iron and tin oxide doped with antimony.
JP16132779A 1979-12-12 1979-12-12 luminescent material Expired JPS608072B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16132779A JPS608072B2 (en) 1979-12-12 1979-12-12 luminescent material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16132779A JPS608072B2 (en) 1979-12-12 1979-12-12 luminescent material

Publications (2)

Publication Number Publication Date
JPS5682875A JPS5682875A (en) 1981-07-06
JPS608072B2 true JPS608072B2 (en) 1985-02-28

Family

ID=15732973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16132779A Expired JPS608072B2 (en) 1979-12-12 1979-12-12 luminescent material

Country Status (1)

Country Link
JP (1) JPS608072B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02147342A (en) * 1988-05-31 1990-06-06 Gold Star Co Ltd Carriage for electronic type typewriter
KR20230020516A (en) 2020-07-15 2023-02-10 가부시키가이샤 고베 세이코쇼 Overlapping fillet welded joint, manufacturing method thereof, and closed section member

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60156786A (en) * 1984-01-27 1985-08-16 Toshiba Corp Cathode ray tube
US5087214A (en) * 1991-05-21 1992-02-11 United Technologies Automotive, Inc. Battery terminal connector
DE19953924A1 (en) * 1999-11-10 2001-06-07 Bundesdruckerei Gmbh Zinc sulfidic electroluminophores and process for their production

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02147342A (en) * 1988-05-31 1990-06-06 Gold Star Co Ltd Carriage for electronic type typewriter
KR20230020516A (en) 2020-07-15 2023-02-10 가부시키가이샤 고베 세이코쇼 Overlapping fillet welded joint, manufacturing method thereof, and closed section member

Also Published As

Publication number Publication date
JPS5682875A (en) 1981-07-06

Similar Documents

Publication Publication Date Title
JP2947156B2 (en) Phosphor manufacturing method
JP2007238827A (en) Phosphor for display device and field emission type display device
JP2004131583A (en) El phosphor powder and el fluorescence element
US5635110A (en) Specialized phosphors prepared by a multi-stage grinding and firing sequence
Liu et al. Tunable cathodoluminescence properties of Tb3+-doped La2O3 nanocrystalline phosphors
US3569762A (en) Electron discharge lamps with rare earth phosphor coating
JPS608072B2 (en) luminescent material
US3767459A (en) Method for making electron energy sensitive phosphors for multi-color cathode ray tubes
CN1384528A (en) Gas discharge lamp with descending-conversion light emitter
WO2010137533A1 (en) Process for producing surface-treated fluorescent-substance particles, and surface-treated fluorescent-substance particles
JP3832024B2 (en) Vacuum ultraviolet-excited luminescent phosphor and method for producing the same
Itoh et al. Cathodoluminescent phosphors
JP2001303042A (en) Fluorescent substance for rapid starting type fluorescent lamp and rapid starting type fluorescent lamp using the same
US6042746A (en) Specialized phosphors prepared by a multi-stage grinding and firing sequence
JPH11172244A (en) Phosphor, manufacture thereof and fluorescent lamp
JP5011082B2 (en) Image display device
JP2008208325A (en) Alkali earth metal aluminate phosphor and fluorescent lamp using it
JPS608073B2 (en) luminescent material
KR20030040040A (en) Oxide-based lattice phosphor
JPH0633052A (en) Three-band fluorescent material and fluorescent lamp produced by using the material
JPS62201990A (en) Sulfide phosphor
JP2005154770A (en) Green light-emitting phosphor for vacuum ultraviolet-excited light-emitting device, method of preparing the same, and light-emitting device including the same
JPS6243474B2 (en)
JP2007099909A (en) Mixed phosphor, phosphor paste composition and vacuum ultraviolet light-excited light emitting element
JP2004263068A (en) Green light emitting fluorescent substance for low voltage/high current density use, and field emission type display unit using the same