JPS6077264A - Arithmetic circuit - Google Patents

Arithmetic circuit

Info

Publication number
JPS6077264A
JPS6077264A JP18614983A JP18614983A JPS6077264A JP S6077264 A JPS6077264 A JP S6077264A JP 18614983 A JP18614983 A JP 18614983A JP 18614983 A JP18614983 A JP 18614983A JP S6077264 A JPS6077264 A JP S6077264A
Authority
JP
Japan
Prior art keywords
group
gates
circuit
gate
outputs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18614983A
Other languages
Japanese (ja)
Inventor
Koji Okazaki
岡崎 晃二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP18614983A priority Critical patent/JPS6077264A/en
Publication of JPS6077264A publication Critical patent/JPS6077264A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/38Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
    • G06F7/48Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
    • G06F7/544Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices for evaluating functions by calculation
    • G06F7/5443Sum of products

Abstract

PURPOSE:To miniaturize circuit constitution and to attain high speed processing by constituting a digital arithmetic circuit with AND gates, OR gates, a multiplexer, an adder, etc. CONSTITUTION:Multiplier outputting products X0XY0, X1XY1... of inputs X0, X1, X2..., Y0, Y1, Y2... is constituted of arithmetic circuits of even and odd items. Respective arithmetic circuits are provided with AND gates a0, a2 and a1, a3..., OR gates A0, B0 and A1, B1..., multipliers M0, M1..., AND gates b0, b2 and b1, b3... and the sum of the outputs from both the arithmetic circuits is calculated by an adder SIGMA. It is previously discriminated that only a certain number K of continuous integers are ''0''s and others are all ''1''s out of the inputs Y0, Y1, Y3.... The discriminated logical value Si is inputted to odd and even item logical circuits. Thus, the size of the constitution of the digital arithmetic circuit is miniaturized and high speed processing is attained.

Description

【発明の詳細な説明】 (a)3発明の技術分野 本発明は演算回路に係り、特にΣx−y形式の演算回路
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (a) 3 Technical Field of the Invention The present invention relates to an arithmetic circuit, and particularly to a Σx-y type arithmetic circuit.

(b)、従来技術の問題点 ディジタル形通信装置の自動等化器の演算等に於いては
ΣXi −Yi形式の計算が頻繁に行われる。
(b) Problems with the Prior Art In calculations of automatic equalizers of digital communication devices, calculations in the ΣXi -Yi format are frequently performed.

然し自動等化器の演算の場合、Yjを自動等化による回
線のインパルス応答を推定した値と仮定すると、時間の
原点の取り方により定まる成るiの値があり、今仮に其
のiの値をjとすると、此のjから成る値j+に迄の値
に対応するYの値は必ず0以外の数値で、其の他のiに
対応するYの値は必ず0となるのが普通である。
However, in the case of automatic equalizer calculations, if Yj is assumed to be the value estimated from the impulse response of the line by automatic equalization, there is a value of i that is determined depending on how the time origin is taken, and now the value of i is If j is the value of j, then the value of Y corresponding to the value j+ consisting of this j is always a number other than 0, and the value of Y corresponding to other i is always 0. be.

尚本説明に於いて使用されるサヒソクスi、j、kは総
て0を含む正の整数とする。
It is assumed that all of the variables i, j, and k used in this description are positive integers including 0.

従来は此のI余な計算を行うのに、iの数だけ乗算器を
設けるか、iの数だけ乗算を繰り返すか、又はYiの内
、i=0 から順々にYiの値がOとならないiを探し
出し、其れからに個に就いての乗算をして、k個のX−
Yの総和を算出していた。
Conventionally, in order to perform this extra calculation, it is necessary to provide as many multipliers as the number of i, repeat the multiplication as many as the number of i, or change the value of Yi from Yi to O in order from i = 0. Find the i that does not hold, and then multiply the items to k X-
The sum of Y was calculated.

然し第一の方法は乗算器が沢山必要であり、第二、第三
の方法は時間がかかり、高速処理は望めないと云う欠点
があった。
However, the first method requires a large number of multipliers, and the second and third methods are time-consuming and have the disadvantage that high-speed processing cannot be expected.

(C)8発明の目的 本発明の目的は従来技術の有する上記の欠点を除去し、
小規模な回路構成で高速処理を可能とする演算回路を提
供することである。
(C)8 Purpose of the Invention The purpose of the present invention is to eliminate the above-mentioned drawbacks of the prior art;
An object of the present invention is to provide an arithmetic circuit that enables high-speed processing with a small-scale circuit configuration.

(d)1発明の構成 上記の目的は本発明によれば、入力Xo 、x、、X2
 ・・XI、YoSYl、Y2 ・・Yiに対し、積x
o XY、 、 X、 XY、 、X2XY2− ll
−11XjXYiを出力する乗算回路に於いて(但しi
は0を含む正の整数とする)、前記数列Yo 、y、、
Y2 ・・・・の内続けて成る整数個にのみは0となら
ず他は総てOである事が予め判っている場合、前記Yi
がOか否かにより0が1を出力する論理回路群(Si)
、前記論理回路群(Si )と前記>Hの各ピントの論
理積をとる第一ゲート群(ai)、前記続けて成る整数
個にのみは0とならなり’Yi(7)各ヒツトの論理和
をとる第二ゲート群(Bk)、前記続けて成る整数個に
のみは0とならないYiに対応するXiの各ピントの論
理和をとる第三ゲート群(Ak > 、前記第三ゲート
群(Ak)、及び第二ゲート群(Bk )の積をめる乗
算回路群(Mk ) 、前記論理回路群(Si)の出力
が1であるiに対応する前記乗算回路群<Mk)の出力
と前記論理回路群(St )の出力1の論理積をめる第
四ゲート群(bi )を設け、前記第四ゲート群(bi
 )の出力として積xixyiをめ、且つ前記乗算回路
群(Mk )の出力の和をめる加算回路を設けることに
よりΣ(Xi xYi )を得ることを特徴とする演算
回路を提供することにより達成される。
(d) 1 Configuration of the Invention According to the present invention, the above object is achieved by inputting Xo, x, ,X2
・・XI, YoSYl, Y2 ・・For Yi, the product x
o XY, , X, XY, , X2XY2-ll
In the multiplier circuit that outputs -11XjXYi (however, i
is a positive integer including 0), the sequence Yo, y, ,
If it is known in advance that only consecutive integers among Y2... are 0 and all others are O, then the above Yi
Logic circuit group (Si) that outputs 1 depending on whether 0 is O or not
, a first gate group (ai) which takes the AND of the logic circuit group (Si) and each pinpoint of >H, and only the consecutive integers become 0, 'Yi (7) The logic of each hit A second gate group (Bk) that calculates the sum, a third gate group (Ak >) that calculates the logical sum of each focus of Xi corresponding to Yi that is not 0 only for the consecutive integers, and the third gate group ( Ak), and a multiplication circuit group (Mk) that multiplies the second gate group (Bk), an output of the multiplication circuit group <Mk) corresponding to i where the output of the logic circuit group (Si) is 1; A fourth gate group (bi) is provided for calculating the logical product of outputs 1 of the logic circuit group (St), and the fourth gate group (bi
) is achieved by providing an arithmetic circuit characterized in that it obtains Σ (Xi xYi ) by providing an adder circuit that calculates the product xixyi as the output of be done.

(e)1発明の実施例 第1図は本発明の一実施例を示す回路図であり、fal
は偶数項の回路図、申)は奇数項の回路図、(C1は総
和を取る回路図である。
(e) 1 Embodiment of the Invention FIG. 1 is a circuit diagram showing an embodiment of the present invention.
is the circuit diagram for the even term, C1 is the circuit diagram for the odd term, and (C1 is the circuit diagram for taking the summation).

図中、aOlal、a2−1b(、Sb+、b2 ・・
・は夫々アンド・ゲート、Ao、、A、、、B、、B、
は夫々オア・ゲート、MO,、Mlは夫々乗算器、Σは
加算器である。
In the figure, aOlal, a2-1b(, Sb+, b2...
・are respectively and gates, Ao, ,A, ,B, ,B,
are OR gates, MO, , Ml are multipliers, and Σ is an adder.

尚本発明の説明を簡単化するため、Xi、Yiの値は総
て1ビツトの数とし、k=2であるとした。
In order to simplify the explanation of the present invention, it is assumed that the values of Xi and Yi are all 1-bit numbers, and that k=2.

又Yiが0か否かに応じてOか1かを出力する回路の出
力をSi とする。即ち、 Yi=0の時、5i=O Yi≠0の時、5i=1 である。
Also, let Si be the output of a circuit that outputs O or 1 depending on whether Yi is 0 or not. That is, when Yi=0, 5i=O; when Yi≠0, 5i=1.

Y、、Y、、y2 ・・・の内続けてに個のみがOとな
らないと云う仮定から、積xo−yo、積X2−Y2、
積X、・yl ・−(7)内、Yi#Qとなる唯一つの
iを除いて他は総て0である。
From the assumption that only consecutive pieces of Y,, Y,, y2... do not become O, the product xo-yo, the product X2-Y2,
In the product X,·yl·−(7), except for the only i which is Yi#Q, all others are 0.

従ってYi≠0となる唯一っのiを除くiに就いてゲー
トbiを閉じ、0を出力させる。
Therefore, the gate bi is closed for i except for the only i such that Yi≠0, and 0 is output.

又デー)Aoの入力はゲートaiの出力を除き総て0で
あるので、ゲートA、の出力はXiとなる。
Also, since all inputs of Ao are 0 except for the output of gate ai, the output of gate A becomes Xi.

デー)Boの方もYi以外の入力は総て0となるので、
ゲートB、の出力はYiとなる。
(day) Since all inputs other than Yi for Bo are 0,
The output of gate B becomes Yi.

此の為乗算器M、の出力は、Xl−Yiとなる。Therefore, the output of the multiplier M becomes Xl-Yi.

従ってゲートbiの出力はXl−Yiとなり、其の他は
総て0となる。
Therefore, the output of gate bi becomes Xl-Yi, and all others become 0.

積xl・yl、積X3・Y3、積xs−ysに就いても
全く同一である。
The product xl·yl, the product X3·Y3, and the product xs−ys are also exactly the same.

更に加算器Σを通るとΣ(Xi−Yi)が算出される。Furthermore, when it passes through an adder Σ, Σ(Xi-Yi) is calculated.

尚ゲートao、bo等は総て2人カアンド・ゲートであ
り、大規模な回路は必要でなく、ゲートA、、Bo等の
オア・ゲート素子はオーブン・コレクタによるワイヤー
ド・オアを使用すれば全体の素子数は大変少なくて済む
Gates ao, bo, etc. are all two-person gates, and large-scale circuits are not required.The OR gate elements such as gates A, BO, etc. can be completely integrated by using wired ORs using oven collectors. The number of elements can be very small.

此の様に本発明によるとに個の乗算器と小規模のゲート
の追加で、高速でベクトル演算(Xi ・Yi)及び内
積Σ(Xi−Yi)を算出することが出来る。
As described above, according to the present invention, vector operations (Xi.Yi) and inner product Σ(Xi-Yi) can be calculated at high speed by adding multipliers and small-scale gates.

第2図はYiが多ビットの時のStの構成法を示す図で
ある。図に示すオア・ゲートDにはYiの最上位ビン)
MSB、最下位ピノ)LSBが夫々入力される。
FIG. 2 is a diagram showing a method of configuring St when Yi has multiple bits. In the or gate D shown in the figure, the top bin of Yi)
MSB, lowest pinot) LSB are respectively input.

此の場合、(Yi=O)は(Yiの全ビットが0)に対
応するので、Yiの内一つでも0でないものがあれば、
5i=1とする。
In this case, (Yi = O) corresponds to (all bits of Yi are 0), so if even one of Yi is not 0,
Let 5i=1.

此の場合も第2図に示す様にオア・ゲート素子のみであ
るので素子数は増加することはない。
In this case as well, as shown in FIG. 2, there is only an OR gate element, so the number of elements does not increase.

(f)1発明の効果 以上詳細に説明した様に本発明によれば、小規模な回路
構成で高速処理を可能とする演算回路を実現出来ると云
う大きい効果がある。
(f) 1. Effects of the Invention As described in detail above, the present invention has the great effect that it is possible to realize an arithmetic circuit that enables high-speed processing with a small-scale circuit configuration.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す回路図であり、(a)
は偶数項の回路図、山)は奇数項の回路図、(C1は総
和を取る回路図である。 第2図はYiが多ピントの時のSiの構成法を示す図で
ある。 図中、a(1,、al 、a2”’、bo、b、、b2
 ・・・は夫々アンド・ゲート、Ao、、AI、B (
) % B 1 は夫々オア・ゲート、M、、M、は夫
々乗算器、Σは加算器、Dはオア・ゲートである。 11レメ 「≦” /i2) ]X2l−Y2yt フχ3・Y3 一0本ケナトカ 第2図 Wf/
FIG. 1 is a circuit diagram showing one embodiment of the present invention, (a)
is a circuit diagram for an even term, crest) is a circuit diagram for an odd term, and (C1 is a circuit diagram for taking the summation). Figure 2 is a diagram showing how to configure Si when Yi has multiple focuses. ,a(1,,al ,a2''',bo,b,,b2
...are respectively AND gate, Ao, , AI, B (
) % B 1 are respective OR gates, M, , M are multipliers, Σ is an adder, and D is an OR gate. 11 reme "≦" /i2) ]

Claims (1)

【特許請求の範囲】[Claims] 入力XO、Xl、X2 ・・Xi 、YO、Yi、Y2
 ・・Yi に対し、積XoxYo、XI xYl、X
2×Y2 ・・・Xi xytを出力する乗算回路に於
いて((Elしi はOを含む正の整数とする)、前記
数列yo 、Y、、Y2 ・・・・の内続けて成る整数
個にのみは0とならす他は総て0である事が予め判って
いる場合、前記Yiが0か否かによりOか1を出力する
論理回路群(Si ) 、前記論理回路群(Si )と
前記Xiの各ビットの論理積をとる第一ゲート群(ai
)、前記続けて成る整数個にのゐは0とならないYiの
各ビットの論理和をとる第二ゲート群(Bk ’) 、
前記続けて成る整数+11iIkのみは0とならないY
iに対応するXiの各ビットの論理和をとる第三ゲート
群(Ak)、前記第三ゲート群(Ak ”) 、及び第
二ゲート群(Bk)の積をめる乗算回路群(Mk)、前
記論理回路群(Si )の出力が1であるiに対応する
前記乗算回路群(Mk )の出力と前記論理回路群(S
t )の出力1の論理積をめる第四ゲート群(b3)を
設け、前記第四ゲート群(bj )の出力として積Xi
’XYiをめ、且つ前記乗算回路群(Mk )の出力の
和をめる加算回路を設けることによりΣ(Xi XYi
 3を得ることを特徴とする演算回路。
Input XO, Xl, X2...Xi, YO, Yi, Y2
・For Yi, the product XoxYo, XI xYl, X
In the multiplication circuit that outputs 2×Y2...Xi A logic circuit group (Si) that outputs O or 1 depending on whether Yi is 0 or not when it is known in advance that only one is 0 and all others are 0, the logic circuit group (Si) A first group of gates (ai
), a second gate group (Bk') that calculates the logical sum of each bit of Yi that does not become 0 in the consecutive integers;
Only the consecutive integers +11iIk are not 0 Y
A third gate group (Ak) that calculates the logical sum of each bit of Xi corresponding to i, a multiplication circuit group (Mk) that multiplies the third gate group (Ak''), and the second gate group (Bk). , the output of the multiplication circuit group (Mk) corresponding to i for which the output of the logic circuit group (Si) is 1 and the logic circuit group (S
A fourth gate group (b3) is provided to perform the logical product of the outputs 1 of t), and the product Xi is
'XYi and by providing an adder circuit that calculates the sum of the outputs of the multiplier circuit group (Mk), Σ(Xi
An arithmetic circuit characterized by obtaining 3.
JP18614983A 1983-10-05 1983-10-05 Arithmetic circuit Pending JPS6077264A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18614983A JPS6077264A (en) 1983-10-05 1983-10-05 Arithmetic circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18614983A JPS6077264A (en) 1983-10-05 1983-10-05 Arithmetic circuit

Publications (1)

Publication Number Publication Date
JPS6077264A true JPS6077264A (en) 1985-05-01

Family

ID=16183235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18614983A Pending JPS6077264A (en) 1983-10-05 1983-10-05 Arithmetic circuit

Country Status (1)

Country Link
JP (1) JPS6077264A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11466671B2 (en) 2016-12-08 2022-10-11 Lintec Of America, Inc. Artificial muscle actuators

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11466671B2 (en) 2016-12-08 2022-10-11 Lintec Of America, Inc. Artificial muscle actuators
US11703037B2 (en) 2016-12-08 2023-07-18 Lintec Of America, Inc. Artificial muscle actuators

Similar Documents

Publication Publication Date Title
Hotkar et al. Implementation of Low Power and area efficient carry select Adder
US4953115A (en) Absolute value calculating circuit having a single adder
US4638449A (en) Multiplier architecture
Mondal et al. Synthesis of balanced ternary reversible logic circuit
Cotofana et al. Low weight and fan-in neural networks for basic arithmetic operations
JPS6077264A (en) Arithmetic circuit
US5870322A (en) Multiplier to selectively perform unsigned magnitude multiplication or signed magnitude multiplication
JP3604518B2 (en) Divider
EP0472030A2 (en) Method and apparatus for modifying two&#39;s complement multiplier to perform unsigned magnitude multiplication
US6484193B1 (en) Fully pipelined parallel multiplier with a fast clock cycle
Balsara et al. Understanding VLSI bit serial multipliers
Hema et al. Low Power and Area Efficient Carry Save Adder Based on Static 125nm CMOS Technology
Bankar et al. Design of arithmetic circuit using Quaternary Signed Digit Number system
Abinaya et al. Power efficient carry skip adder based on static 125nm cmos technology
JP2518551B2 (en) Multi-input adder circuit
EP0129039B1 (en) Improved multiplier architecture
Jain Realization of Carry-Free Adder Circuit Using FPGA
JPH03177922A (en) Wallence tree circuit
Sreelakshmi et al. Efficient vedic signed digit decimal adder
Nagaraj et al. Design and Comparision of 16X16 Reversible Vedic Multiplier using Different Adders.
JP2000347834A (en) Arithmetic circuit by sw number system
JPS6265131A (en) Multiplier
JP2711487B2 (en) Fixed data addition / subtraction circuit
Sakthimohan et al. An Optimized 4* 4 Braun Multiplier for Parallel Processing Architectures with a 3-bit KSA Adder
Schafer et al. A fast computer implementation of adding and arithmetic multi-polarity transforms for logic design