JPS6074681A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS6074681A
JPS6074681A JP18270883A JP18270883A JPS6074681A JP S6074681 A JPS6074681 A JP S6074681A JP 18270883 A JP18270883 A JP 18270883A JP 18270883 A JP18270883 A JP 18270883A JP S6074681 A JPS6074681 A JP S6074681A
Authority
JP
Japan
Prior art keywords
oxide film
film
entire surface
electrode
doped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18270883A
Other languages
Japanese (ja)
Inventor
Kazuyoshi Shinada
品田 一義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP18270883A priority Critical patent/JPS6074681A/en
Publication of JPS6074681A publication Critical patent/JPS6074681A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)

Abstract

PURPOSE:To enhance the stability of a transistor by simplification of the process, and to contrive the fine formation of an element by a method wherein a nitride film is partly left on an oxide film doped with an impurity of the second conductivity type over the entire surface, and is then heat-treated in the atmosphere of oxygen. CONSTITUTION:A field oxide film 22 is formed on the surface of a P<-> type Si substrate 21. Next, a thermal oxide film is formed on the surface of an element region surrounded by the field oxide film, and a polycrystalline Si film is deposited over the entire surface. Thereafter, a gate electrode 24 is formed on the element region by successive pattering. Then, an As-doped oxide film 25 is deposited over the entire surface. Only a thin part of the side wall of the gate electrode of the oxide film 25 is removed by etching. A nitride film 26 is etched by RIE, and a remaining nitride film 26' is formed only on the side wall of the gate electrode. Successively, thermal diffusion is carried out in the atmosphere of oxygen. After the film 26' and the film 25 are successively removed by etching, the surface of the gate electrode and the exposed surface of the subsrate are are changed into the state of thermal oxide films 29 by thermal oxidation.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は半導体装置の製造方法に関し、特にソース、ド
レイン領域に低濃度不純物領域を有するMO8半導体装
置の製造方法に係る。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for manufacturing a semiconductor device, and particularly to a method for manufacturing an MO8 semiconductor device having low concentration impurity regions in source and drain regions.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来のMOS )ランジスタの製造方法を第1図を参照
して説明する。すなわち、P−型シリコン基板1上にノ
々ターニングによりダート酸化膜2を介してダート電極
3を形成した後、ダート電極3をマスクとして例えば八
8を高ドーズイオン注入し、つづいて熱処理を行なうこ
とによりN十型ソース領域4及びN+型ドレイン領域5
を形成する。
A method of manufacturing a conventional MOS transistor will be explained with reference to FIG. That is, after a dirt electrode 3 is formed on a P-type silicon substrate 1 through a dirt oxide film 2 by continuous turning, high-dose ions of, for example, 88 are implanted using the dirt electrode 3 as a mask, and then heat treatment is performed. Possibly an N+ type source region 4 and an N+ type drain region 5.
form.

このようにして形成されるN+型ドレイン領域5は高濃
度の拡散層であるため、その近傍には電界が集中し、正
孔と電子の対が生成する。この結果、基板電位が上昇し
てバイポーラアクションをもたらしたシ、ホットエレク
トロンがダート酸化膜2中に注入をれてvth異常を起
こす等トランジスタの不安定性が増大する。更に、高集
積MOSデバイスにおいてはチャネル長が短かくな9、
前記電界集中によシ空乏層が拡がシショートチャネル効
果が無視できなく々る。
Since the N+ type drain region 5 formed in this manner is a highly doped diffusion layer, an electric field is concentrated in the vicinity thereof, and pairs of holes and electrons are generated. As a result, the substrate potential rises, resulting in bipolar action, and hot electrons are injected into the dirt oxide film 2, causing an abnormality in Vth and increasing the instability of the transistor. Furthermore, in highly integrated MOS devices, the channel length is short9,
The electric field concentration causes the depletion layer to expand, and the short channel effect cannot be ignored.

そこで、ドレイン領域をチャネル領域近傍の低濃度不純
物領域とこれに隣接する高濃度不純物領域とで構成し、
電界集中を抑制したいわゆるLDD (Lightly
 Doped Drain )構造のMOSトランジス
タが提案されている。
Therefore, the drain region is composed of a low concentration impurity region near the channel region and a high concentration impurity region adjacent to this,
The so-called LDD (Lightly
A MOS transistor with a doped drain structure has been proposed.

このLDD構造のMOS )ランジスタは例えば第2′
図(、)〜(c)に示す如き方法によシ製造される。
For example, the MOS) transistor of this LDD structure is
It is manufactured by the method shown in Figures (,) to (c).

まず、P−型シリコン基板lJ上にパターニングにより
ケ゛−ト酸化膜12を介してケ゛−ト電極13を形成し
た後、ダート電極13をマスクとして例えはAsを低ド
ーズ量でイオン注入する(第2図(a)図示)。次に、
ダート電極13を傑うようにホトレジスト・母ターン1
4を形成した後、ホトレジストノリ−ン14をマスクと
してAsを高ドーズ量でイオン注入する(同図(b)図
示〕。
First, a gate electrode 13 is formed on a P-type silicon substrate lJ by patterning via a gate oxide film 12, and then, using the dirt electrode 13 as a mask, ions of, for example, As are implanted at a low dose (first step). Figure 2 (a) shown). next,
Photoresist/mother turn 1 to highlight dirt electrode 13
4, using the photoresist layer 14 as a mask, As is ion-implanted at a high dose (as shown in FIG. 4B).

つづいて、ホトレノストパターン14を除去した後、熱
処理を行ない、チャネル領域近傍の低濃度(N−型)不
純物領域15a、15gとこれらに隣接する高濃度(N
+型)不純物領域15b。
Subsequently, after removing the photorenost pattern 14, heat treatment is performed to form low concentration (N-type) impurity regions 15a and 15g near the channel region and high concentration (N-type) impurity regions 15a and 15g adjacent to these.
+ type) impurity region 15b.

16bとからなるソース、ドレイン領域15゜16を形
成する(同図(c)図示)。
Source and drain regions 15° and 16 made of 16b are formed (as shown in FIG.

しかしながら、上述した従来の方法では通常のMOS 
fロセスに比べて不純物ドーピング工程及びホトリソグ
ラフィ工程がそれぞれ1回づつ加わることになり工程が
煩雑化するという一点がある。
However, in the conventional method described above, the normal MOS
Compared to the f-process, one impurity doping step and one photolithography step are added, making the process more complicated.

9N明の目的〕 本発明は上記欠点を解消するためになされたものであシ
、簡便な工程で少なくともドレイン領域のチャネル領域
近傍の部分が低濃度不純物領域で構成されたMO8半導
体装置を製造し得る方法を提供しようとするものである
9N Ming's Purpose] The present invention has been made in order to eliminate the above-mentioned drawbacks, and is to manufacture an MO8 semiconductor device in which at least a portion of the drain region near the channel region is composed of a low concentration impurity region using a simple process. We are trying to provide a way to obtain it.

〔発明の概要〕[Summary of the invention]

本発明の半導体装置の製造方法は第1導電型(例えばP
型)の半導体基板の素子領域上にダート絶縁膜を介して
ダート電極を形成し、全面に第2導篭型の不純物をドー
プした酸化膜(例えばAs ドーゾト酸化膜)を堆積し
た後、該酸化膜上に部分的に(例えばダート電極側壁の
酸化膜除去後のダート電極側壁の位置あるいはダート電
極の両側方のうちいずれか一方側に)窒化膜を残存させ
、更に酸素雰囲気中で熱処理して酸化膜から基板中に不
純物を拡散させて第2導電型のソース、ドレイン領域を
形成することを特徴とするものである。
The method for manufacturing a semiconductor device according to the present invention includes a method for manufacturing a semiconductor device of a first conductivity type (for example, P
A dirt electrode is formed on the element region of the semiconductor substrate (type) via a dirt insulating film, and an oxide film doped with a second conductive cage type impurity (for example, an As doped oxide film) is deposited on the entire surface, and then the oxide film is A nitride film is left partially on the film (for example, at the position of the dirt electrode side wall after the oxide film on the dart electrode side wall has been removed, or on either side of the dirt electrode), and is further heat-treated in an oxygen atmosphere. This method is characterized in that source and drain regions of the second conductivity type are formed by diffusing impurities from the oxide film into the substrate.

こうした方法によれば、AIは酸素雰囲気中で5− の熱処理の際、窒化膜の残存している箇所ではあまり拡
散しないが、窒化膜の残存していない箇所では酸化膜一
基板界面での新たな酸化膜の生成により効率よく拡散す
るので、セル7アラインでドレイン領域のチャネル領域
近傍の部分を低濃度不純物領域とすることができる。し
たがって、通常のMO8プロセスに比べて少なくともイ
オン注入工程を省略した簡便な工程で、ドレイン領域近
傍のチャネル領域での電界集中を抑制してトランジスタ
の不安定性を減少することができる。
According to this method, during heat treatment in an oxygen atmosphere, AI does not diffuse much in areas where the nitride film remains, but in areas where the nitride film does not remain, new AI diffuses at the oxide film-substrate interface. Since the formation of an oxide film allows efficient diffusion, the portion of the drain region near the channel region can be made into a low concentration impurity region by cell 7 alignment. Therefore, compared to the normal MO8 process, it is possible to suppress electric field concentration in the channel region near the drain region and reduce instability of the transistor with a simpler process that omits at least the ion implantation step.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を第3図(a)〜(f)及び第4
図(a)〜(C) を参照して説明する。
Examples of the present invention will be described below in Figures 3(a) to (f) and 4.
This will be explained with reference to Figures (a) to (C).

実施例1 まず、比抵抗10〜20Ω−鋸のP−型シリコン基板2
1表面に通常の選択酸化技術を用い、厚さ1.0μmの
フィールド酸化膜22を形成する。
Example 1 First, a P-type silicon substrate 2 with a specific resistance of 10 to 20Ω-saw
A field oxide film 22 with a thickness of 1.0 μm is formed on one surface using a conventional selective oxidation technique.

次に、フィールド酸化膜22によって囲まれた素子領域
表面に厚さ500Xの熱酸化膜を形成6− し、全面にρ8=200/口、厚さ0.4μmの多結晶
シリコン膜を堆積した後、これらを反応性イオンエツチ
ング(RIE )法により順次・ぐターニングして素子
領域上にダート酸化膜23を介してダート電極24を形
成する(第3図(、)図示)。
Next, a thermal oxide film with a thickness of 500× is formed on the surface of the element region surrounded by the field oxide film 22, and a polycrystalline silicon film with a thickness of 0.4 μm and ρ8=200/gate is deposited on the entire surface. These are sequentially turned by reactive ion etching (RIE) to form a dirt electrode 24 on the element region via a dirt oxide film 23 (as shown in FIG. 3).

次いで、スノヤッタ法にて全面に厚さ0.25μmのA
8ドーゾト酸化膜(As濃度5 X 10” on−’
 )25を堆積する。この際、r−上電極24の側壁に
おいてはAsドープト酸化膜25の膜厚は約500Xと
薄くなる(同図(b)図示)。つづいて、NH4F’中
に10秒間浸し、前記Aaドープト酸化膜25のケ゛−
ト電極24側壁の薄い部分のみをエツチング除去する。
Next, A with a thickness of 0.25 μm was applied to the entire surface using the Sunoyatta method.
8 dosed oxide film (As concentration 5 x 10"on-'
)25 is deposited. At this time, the thickness of the As-doped oxide film 25 on the side wall of the r- upper electrode 24 becomes as thin as about 500X (as shown in FIG. 2B). Subsequently, the Aa doped oxide film 25 is immersed in NH4F' for 10 seconds.
Only the thin portion of the side wall of the top electrode 24 is removed by etching.

この際、平坦面上には厚さ0.2μmのAsドープト酸
化膜25がそのまま残存する。つづいて、LPCVD法
にて全面に厚さ0.2μmの窒化膜26を堆積する(同
図(c)図示)。
At this time, the As-doped oxide film 25 with a thickness of 0.2 μm remains as it is on the flat surface. Subsequently, a nitride film 26 with a thickness of 0.2 μm is deposited on the entire surface by the LPCVD method (as shown in FIG. 3(c)).

次いで、RIE法により前記窒化膜26をエツチングし
、ダート電極24の側壁にのみ残存窒化膜26’ 、 
26’ f形成する。つづいて、酸素雰囲気中にて10
00℃で30分間熱拡散を行なう。
Next, the nitride film 26 is etched by the RIE method, leaving a nitride film 26' remaining only on the side wall of the dirt electrode 24.
26' f is formed. Subsequently, in an oxygen atmosphere,
Heat diffusion is carried out at 00°C for 30 minutes.

この際、残存窒化膜26’ 、 26’に覆われていな
い部分ではAsドープト酸化膜25と基板2ノとの界面
に新たに酸化膜が形成されることにより、AsがAsド
ープト酸化膜25から基板2ノ中に効率よく拡散される
が残存窒化膜26’ 、 26’に榎われている部分で
はAsはそれほど拡散されない。
At this time, a new oxide film is formed at the interface between the As-doped oxide film 25 and the substrate 2 in the portions not covered by the remaining nitride films 26' and 26', so that As is removed from the As-doped oxide film 25. As is efficiently diffused into the substrate 2, but not so much in the portions covered by the remaining nitride films 26', 26'.

この結果、チャネル領域近傍のρ、=700シロ、xj
 = 0.2 μmのN″″型不純物領域27m 、2
8*とこれらの領域に隣接するρ=300/口、xJ=
0.4μmのN+型不純物領域21b、28bとからな
るソース、ドレイン領域27.28が形成される(同図
(d)図示)。
As a result, ρ near the channel region = 700 siro, xj
= 0.2 μm N″″ type impurity region 27m, 2
8* and ρ = 300/mouth adjacent to these regions, xJ =
Source and drain regions 27 and 28 consisting of N+ type impurity regions 21b and 28b with a thickness of 0.4 μm are formed (as shown in FIG. 4D).

次いで、前記残存嘘化膜26’ 、 26’及びAsド
ドート酸化膜25tl−RTE法あるいはウェットエツ
チングにより順次エツチング除去した後、熱酸化により
ケ゛−ト電極24表面及び露出した基板21表面を厚さ
500Xの熱酸化膜29に変換する(同図(、)図示)
。つづいて、全面に厚さ0.5μmのCVD酸化膜30
を堆積した後、コンタクトホール31,31を開孔する
。つづいて、隼夕面に厚さ1.0μmのAt−81膜を
堆積した後、パターニングしてソース電極32及びドレ
イン電極33を形成し、LDD構造のMOSトランジス
タを製造する(同図(f)図示)。
Next, the remaining deforming films 26', 26' and the As dot oxide film 25tl-RTE or wet etching are sequentially etched away, and then the surface of the gate electrode 24 and the exposed surface of the substrate 21 are etched to a thickness of 500× by thermal oxidation. into a thermal oxide film 29 (shown in (,) in the same figure).
. Next, a CVD oxide film 30 with a thickness of 0.5 μm is placed on the entire surface.
After depositing, contact holes 31, 31 are opened. Subsequently, after depositing an At-81 film with a thickness of 1.0 μm on the Hayabusa surface, it is patterned to form a source electrode 32 and a drain electrode 33, thereby manufacturing an LDD structure MOS transistor (FIG. 3(f)). (Illustrated).

しかして上述した方法によれば、第3図(b)の工程で
ス・母ツタ法により全面にAsドープト酸化膜25を堆
積した後、同図(c)の工程でAsドープト酸化膜25
のゲート電極24側壁の薄い部分のみをエツチング除去
し、更に全面に窒化膜26を堆積し、次いで同図(d)
の工程で反応性イオンエツチング法によF)l’−)電
極24側壁に残存窒化膜26’ 、 26’を形成した
後、酸素雰囲気中で熱処理することによfiN″″型不
純物領域27*、28m1N+型不純物領域27 b、
28bとからなるソース、ドレイン領域27.28を形
成することができる。すなわち、通常のMOSプロセス
にホトリソグラフィ工程及びイオン注入工程を追加する
ことなく、セルファラインでLDD構造を形成すること
ができる。したがって、簡便な工程でドレイン領域28
近傍のチャネル9− 1脩4における電界集中を抑制して、バイポーラアクシ
ョンやvthの変動を防止することによりトランジスタ
の不安定性を減少することができ、素子の微細化を達成
することができる。
According to the method described above, after the As-doped oxide film 25 is deposited on the entire surface by the sulfur ivy method in the step of FIG. 3(b), the As-doped oxide film 25 is deposited in the step of FIG. 3(c).
Only the thin part of the side wall of the gate electrode 24 is removed by etching, and then a nitride film 26 is deposited on the entire surface, and then, as shown in FIG.
After forming the residual nitride films 26', 26' on the side walls of the F)l'-) electrode 24 by reactive ion etching in the step of step 1, the fiN"" type impurity region 27* is formed by heat treatment in an oxygen atmosphere. , 28m1N+ type impurity region 27b,
Source and drain regions 27 and 28 can be formed. That is, the LDD structure can be formed using self-alignment without adding a photolithography process and an ion implantation process to a normal MOS process. Therefore, the drain region 28 can be formed in a simple process.
By suppressing electric field concentration in the neighboring channels 9-1 and 4 and preventing bipolar action and vth fluctuations, instability of the transistor can be reduced and device miniaturization can be achieved.

実施例2 まず、P−型シリコン基板51表面にフィールド酸化膜
52を形成した後、フィールド酸化膜52に囲まれた素
子領域上にダート酸化膜53を介してダート電極54を
形成する。次に、全面にAsドープト酸化膜55を堆積
し、更に全面に窒化膜56を堆積する(第4図(a)図
示)。次いで、ホトリソグラフィにより窒化膜56を選
択的にエツチングし、ダート電極54の両側方のうち一
方側に窒化膜パターン56′を残存させる。つづいて、
酸素雰囲気中で熱処理を行ない、Asドープト酸化膜5
5から基板51中にAs+を拡散させる。この際、窒化
膜/4’ターン56′の存在する箇所ではAaはあまり
拡散しないが、窒化膜パターン56′の存在しない箇所
ではAmは効率よく拡散する。この結果、N+型ソース
領域5710− 及びN−型ドレイン領域58が形成される(同図(b)
図示)。次いで、前記窒化膜パターン56′及びAsド
ープト酸化膜55を順次エツチング除去した後、熱酸化
を行ない、ダート電極54表面及び露出した基板5ノ弐
面を熱酸化膜59に変換する。つづいて、°全面にCV
D酸化gtieo*堆積した後、コンタクトホール61
.61を開孔する。つづいて、全面にAt−8+膜を堆
積した後、A?ターニングしてソース電極62及びドレ
イン電極63を形成し、MOSトランジスタを製造する
(同図(e)図示)。
Example 2 First, a field oxide film 52 is formed on the surface of a P-type silicon substrate 51, and then a dirt electrode 54 is formed on the element region surrounded by the field oxide film 52 via a dirt oxide film 53. Next, an As-doped oxide film 55 is deposited on the entire surface, and a nitride film 56 is further deposited on the entire surface (as shown in FIG. 4(a)). Next, the nitride film 56 is selectively etched by photolithography to leave a nitride film pattern 56' on one of both sides of the dirt electrode 54. Continuing,
Heat treatment is performed in an oxygen atmosphere to form an As-doped oxide film 5.
5, As+ is diffused into the substrate 51. At this time, Aa does not diffuse much in the area where the nitride film/4' turn 56' exists, but Am diffuses efficiently in the area where the nitride film pattern 56' does not exist. As a result, an N+ type source region 5710- and an N- type drain region 58 are formed (FIG. 5(b)).
(Illustrated). Next, after the nitride film pattern 56' and the As-doped oxide film 55 are removed by etching, thermal oxidation is performed to convert the surface of the dirt electrode 54 and the exposed second surface of the substrate 5 into a thermal oxide film 59. Next, °CV on the entire surface
Contact hole 61 after D oxidation gtieo* deposition
.. 61 is drilled. Next, after depositing an At-8+ film on the entire surface, A? Turning is performed to form a source electrode 62 and a drain electrode 63, and a MOS transistor is manufactured (as shown in FIG. 4(e)).

しかして上述した方法によれば、通常のMOSプロセス
に比べてホトリソグラフィ工程は1回増えるものの、イ
オン注入工程を省略した比較的簡便な工程によりセルフ
ァラインでN+型ソース領域57及びN−型ドレイン領
域58を形成することができ、ドレイン領域58近傍の
チャネル領域における電界集中を抑制してトランジスタ
の不安定性を減少することができる。しかも、通常のL
DD構造のMOS )ランジスタと異なりソース領域5
7側には低濃度不純物領域が形成されないのでソース抵
抗を無視することができ、ソース側の増幅率の向上にと
って有利となる。
According to the method described above, although the number of photolithography steps is increased by one compared to the normal MOS process, the N+ type source region 57 and the N- type drain can be formed in the self-line by a relatively simple process that omits the ion implantation process. A region 58 can be formed to suppress electric field concentration in the channel region near the drain region 58 to reduce instability of the transistor. Moreover, normal L
DD structure MOS) Unlike a transistor, the source region 5
Since no low concentration impurity region is formed on the 7 side, the source resistance can be ignored, which is advantageous for improving the amplification factor on the source side.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く本発明の半導体装置の製造方法によれ
ば、簡便な工程で少なくともドレイン領域のチャネル近
傍の部分が低濃度不純物領域で構成されたMOS半導体
装置を製造することができ、トランジスタの不安定性を
減少し、ひいては素子の微細化を達成し得る等顕著な効
果を奏するものである。
As described in detail above, according to the method for manufacturing a semiconductor device of the present invention, it is possible to manufacture a MOS semiconductor device in which at least the portion of the drain region near the channel is formed of a low concentration impurity region through a simple process. This has remarkable effects such as reducing instability and making it possible to miniaturize elements.

【図面の簡単な説明】[Brief explanation of the drawing]

の実施例1におけるLDD構造のMOS トランジスタ
の製造方法を示す断面図、第4図(、)〜(c)は本発
明の実施例2におけるMOS )ランジスタの製造方法
を示す断面図である。 21.51・・・P−型シリコン基板、22 、52・
・・フィールド酸化膜、23.53・・・ダート酸化膜
、24.54・・・ダート電極、25.55・・・A8
ドーゾト酸化膜、26.56・・・窒化膜、26′・・
・残存窒化膜、56′・・・窒化膜・母ターン、27・
・・ソース領域、28・・・ドレイン領域、27 a 
、 28a・・・N−型不純物領域、27b 、28b
・・・N+型不純物領域、29 、59−・・熱酸化膜
、g o 、 60 ・−・CVD酸化膜、3ノ、6ノ
・・・コンタクトホール、32゜62・・・ソース電極
、33.63・・・ドレイン電極、57・・・N+型ソ
ース領域、58・・・N−型ドレイン領域。 出願人代理人 弁理士 鈴 江 武 彦13− 2 づ 0
FIGS. 4(a) to 4(c) are cross-sectional views showing a method of manufacturing a MOS transistor having an LDD structure in Example 2 of the present invention. FIGS. 21.51...P-type silicon substrate, 22, 52.
... Field oxide film, 23.53 ... Dirt oxide film, 24.54 ... Dirt electrode, 25.55 ... A8
Dozot oxide film, 26.56...Nitride film, 26'...
・Residual nitride film, 56′...Nitride film・mother turn, 27・
... Source region, 28... Drain region, 27 a
, 28a...N-type impurity region, 27b, 28b
...N+ type impurity region, 29, 59--Thermal oxide film, go, 60...CVD oxide film, 3 no, 6 no... Contact hole, 32° 62... Source electrode, 33 .63...Drain electrode, 57...N+ type source region, 58...N- type drain region. Applicant's agent Patent attorney Takehiko Suzue 13-2 0

Claims (4)

【特許請求の範囲】[Claims] (1)第1導電型の半導体基板の素子領域上にダート絶
縁膜を介してf−)電極を形成する工程と、全面に第2
導電型の不純物をドープした酸化膜を堆積する工程と、
該酸化膜上に部分的に窒化膜を残存させる工程と、酸素
雰囲気中で熱処理して前記酸化膜から基板中に不純物を
拡散させ、第2導電型のソース、ドレイン領域を形成す
る工程とを具備したことを特徴とする半導体装置の製造
方法。
(1) Step of forming an f-) electrode on the element region of the first conductivity type semiconductor substrate via a dirt insulating film, and forming a second electrode on the entire surface.
Depositing an oxide film doped with conductivity type impurities;
a step of partially leaving a nitride film on the oxide film; and a step of performing heat treatment in an oxygen atmosphere to diffuse impurities from the oxide film into the substrate to form source and drain regions of a second conductivity type. A method for manufacturing a semiconductor device, comprising:
(2) ソノ9ツタ法により全面に第2導電型の不純物
をドープした酸化膜を堆積し、該酸化膜のダート電極側
壁の部分をエツチング除去した後、全面に窒化膜を堆積
し、異方性エツチングにより前記ゲート′電極側壁にお
いて、前記酸化膜上に窒化膜を残存させることを特徴と
する特許請求の範囲第1項記載の半導体装置の製造方法
(2) An oxide film doped with impurities of the second conductivity type is deposited on the entire surface using the Sono-9-Tree method, and after removing the dirt electrode sidewall portion of the oxide film by etching, a nitride film is deposited on the entire surface and anisotropically etched. 2. The method of manufacturing a semiconductor device according to claim 1, wherein a nitride film is left on the oxide film on the side wall of the gate electrode by etching.
(3)全面に第2導電型の不純物をP−グした酸化膜を
堆積し、更に全面に窒化膜を堆積した後、ダート電極の
両側方のうちいずれか一方側の酸化膜上に窒化膜を残存
させることを特徴とする特許請求の範囲第1項記載の半
導体装置の製造方法。
(3) After depositing an oxide film containing impurities of the second conductivity type on the entire surface and further depositing a nitride film on the entire surface, a nitride film is placed on the oxide film on either side of the dirt electrode. 2. The method of manufacturing a semiconductor device according to claim 1, wherein:
(4)第2導電型の不純物をドープした酸化膜がAmド
ープト酸化膜であることを特徴とする特許請求の範囲第
1項乃至第3項いずれか記載の半導体装置の製造方法。
(4) The method of manufacturing a semiconductor device according to any one of claims 1 to 3, wherein the oxide film doped with an impurity of the second conductivity type is an Am-doped oxide film.
JP18270883A 1983-09-30 1983-09-30 Manufacture of semiconductor device Pending JPS6074681A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18270883A JPS6074681A (en) 1983-09-30 1983-09-30 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18270883A JPS6074681A (en) 1983-09-30 1983-09-30 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS6074681A true JPS6074681A (en) 1985-04-26

Family

ID=16123040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18270883A Pending JPS6074681A (en) 1983-09-30 1983-09-30 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS6074681A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0358430A (en) * 1989-07-27 1991-03-13 Toshiba Corp Semiconductor device and manufacture thereof
US5518945A (en) * 1995-05-05 1996-05-21 International Business Machines Corporation Method of making a diffused lightly doped drain device with built in etch stop

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0358430A (en) * 1989-07-27 1991-03-13 Toshiba Corp Semiconductor device and manufacture thereof
US5518945A (en) * 1995-05-05 1996-05-21 International Business Machines Corporation Method of making a diffused lightly doped drain device with built in etch stop

Similar Documents

Publication Publication Date Title
JPS6316673A (en) Manufacture of semiconductor device
US4494304A (en) Forming chan-stops by selectively implanting impurity ions through field-oxide layer during later stage of MOS-device fabrication
JP2984990B2 (en) Method for manufacturing semiconductor device
JPS6074681A (en) Manufacture of semiconductor device
JP3113011B2 (en) Method for manufacturing semiconductor device
JP2002164537A (en) Semiconductor device and its manufacturing method
JPH0471236A (en) Manufacture of semiconductor device
JP2892415B2 (en) Method for manufacturing semiconductor device
JP2741042B2 (en) Semiconductor device and manufacturing method thereof
JPH06216333A (en) Manufacture of semiconductor storage device
JPH06163576A (en) Manufacture of semiconductor device
JPH04255233A (en) Semiconductor device and manufacture thereof
JPH05343419A (en) Semiconductor device
JP3537494B2 (en) Semiconductor device and method of manufacturing semiconductor device
JPS61156883A (en) Manufacture of semiconductor device
JPS6154661A (en) Manufacture of semiconductor device
JPH01125977A (en) Mos semiconductor device
JP3446378B2 (en) Method for manufacturing insulated gate field effect transistor
JPS61154078A (en) Manufacture of mosfet
JPH0230145A (en) Manufacture of semiconductor device
JPS6039868A (en) Manufacture of semiconductor device
JPS6017965A (en) Manufacture of semiconductor device
JPH0226034A (en) Manufacture of semiconductor device
JPH05343672A (en) Semiconductor device
JPH04360539A (en) Manufacture of semiconductor device