JPS6074110A - Thin film magnetic head - Google Patents

Thin film magnetic head

Info

Publication number
JPS6074110A
JPS6074110A JP18027183A JP18027183A JPS6074110A JP S6074110 A JPS6074110 A JP S6074110A JP 18027183 A JP18027183 A JP 18027183A JP 18027183 A JP18027183 A JP 18027183A JP S6074110 A JPS6074110 A JP S6074110A
Authority
JP
Japan
Prior art keywords
magnetic
thin film
head
magnetic permeability
initial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18027183A
Other languages
Japanese (ja)
Inventor
Hiroaki Ono
裕明 小野
Hideo Zama
座間 秀夫
Kiyoshi Ishihara
きよし 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP18027183A priority Critical patent/JPS6074110A/en
Publication of JPS6074110A publication Critical patent/JPS6074110A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3109Details
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/02Recording, reproducing, or erasing methods; Read, write or erase circuits therefor

Landscapes

  • Magnetic Heads (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To obtain a high reproducing output by a high manufacturing yield, by specifying an allowable range of a magnetostrictive constant lambdas of a magnetic thin film consisting of an Fe-Si-Al compound ternary alloy. CONSTITUTION:When a relation of a reproducing output of a magnetic head consisting of an Fe-Si-Al compound ternary alloy, and an initial magnetic permeability in case when a ''Sendust'' film is formed is checked, the reproducing output of the head has a correlation to the initial magnetic permeability in case when a magnetic thin film is formed, and the head reproducing output shows a sudden raise from about 800-1,000 of the initial magnetic permeability, and becomes an almost saturated state in the vicinity of 1,400 of the initial magnetic permeability. When a relation of the initial magnetic permeability in case when the thin film is formed, and its magnetostrictive constant is checked, a correlation is seen between the initial magnetic permeability and the magnetostrictive constant. Therefore, as a result of a fact that the head reproducing outout becomes a saturated state in the vicinity of 1,400 of the initial magnetic permeability, a magnetic head of a high reproducing output can be manufactured by forming a film within a range of ¦lambdas¦<=0.4X10<-6> with regard to a magnetostrictive constant lambdas of the magnetic thin film, and also its manufacturing yield is raised.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、V’ll’f(用の薄膜磁気ヘッドに係わり
、特に、金属磁性体の薄膜に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a thin film magnetic head for V'll'f (V'll'f), and particularly to a thin film of a metal magnetic material.

〔発明の背景〕[Background of the invention]

近年、VTR用・の磁気テープとしてメタルテープが普
及してきており、このメタルテープに対する磁気−・ノ
ドとして、飽和磁束密度が大きくメタルテープにも書き
込むことのできる金属磁性材料の使用が好適とされてい
る。しかし一般ニ 金属磁性材料ばN@比抵抗が小さい
ために渦電流損失が大きく、高周波において実効透磁率
が低下するという欠点を有する。この欠点を除失するた
めに、従来から、鉄(Fe)・シリコン(Si )・ア
ルミニウム(A7り よりなる磁性材料を、スパフタリ
ング等の技術にて非磁性基板−ヒに薄膜として形成し、
この磁性薄膜を非磁性膜と交互に積層してヘッドコア材
とする方法が試みられている。
In recent years, metal tapes have become popular as magnetic tapes for VTRs, and it is considered suitable to use metal magnetic materials as magnetic nodes for these metal tapes because they have a large saturation magnetic flux density and can write on metal tapes. There is. However, since general metal magnetic materials have a small specific resistance, they suffer from large eddy current loss and have the disadvantage that their effective magnetic permeability decreases at high frequencies. In order to eliminate this drawback, conventionally, magnetic materials made of iron (Fe), silicon (Si), and aluminum (A7) have been formed as thin films on non-magnetic substrates using techniques such as sputtering. ,
A method has been attempted in which magnetic thin films are alternately laminated with non-magnetic films to form a head core material.

ところが、こうした方法にて形成された磁性薄膜は、前
記非磁性基板との熱膨張係数の差により生じる応力、お
よび成膜状態に生じる内部応力を受けており、さらに、
この磁性薄膜をヘンドチンブ化する際には加工応力を受
けるため磁歪の影響で磁性薄膜の初透磁率が低下し、場
合によっては高再生出力の磁気−・7ドの製造が困郵と
なることがあり、製造歩留りのうえからも問題とな)て
ぃた。そこで、ヘッド再生出力を決定するために初透磁
率を測定する方法が考えられるが、磁性材料を成膜する
装置の如何によっては、磁性薄膜の初透磁率が大きくて
も高出力ヘッドが得られぬこともあるため、初透磁率の
値を測定してもヘッド再生出力が一律的に決定されると
はいえない。
However, the magnetic thin film formed by such a method is subjected to stress caused by a difference in coefficient of thermal expansion with the non-magnetic substrate and internal stress caused in the film-forming state.
When this magnetic thin film is turned into a magnet, the initial magnetic permeability of the magnetic thin film decreases due to the influence of magnetostriction due to processing stress, which may make it difficult to manufacture magnetic disks with high reproduction output. Yes, it is also a problem in terms of manufacturing yield. Therefore, a method of measuring the initial magnetic permeability to determine the head reproduction output may be considered, but depending on the equipment used to form the magnetic material, a high output head may be obtained even if the initial magnetic permeability of the magnetic thin film is large. Therefore, even if the initial permeability value is measured, it cannot be said that the head reproduction output can be uniformly determined.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記従来技術の欠点を除き高製造歩留
りにて高再生出力が得られる薄膜磁気へ7ドを提供する
にある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for thin film magnetism that eliminates the drawbacks of the prior art described above and provides a high reproduction output with a high manufacturing yield.

〔発明の概要〕[Summary of the invention]

この目的を達成するため、本発明は、Fe−8iAl系
三元合金よりなる磁性薄膜の磁歪定数λSの許容範囲を
1λs l<o4x 1o−6としたことを特徴とする
In order to achieve this object, the present invention is characterized in that the permissible range of the magnetostriction constant λS of the magnetic thin film made of the Fe-8iAl ternary alloy is 1λs l<o4x 1o-6.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例をジj面もでついて説明する0 第1図(a)乃至(d)は、薄膜磁気へ7ドの製造方法
の一例を示す工程図であって、1.4は非磁性基板、2
は磁性薄膜、3は電気絶縁層間膜、5は接着側、6はコ
アブロック、7.8はコア半体、9はスペーサ、10は
へノドヂンプであるまず、非磁性基板1上に、渦電流損
失等の影響を考慮しながらスパッタリンダ等の方法によ
り、pe−si−AIV 系三元合金からなる磁性薄膜
2を1層、もしくは8102等の電気絶縁層間膜3を介
しながら多層、トラック幅相当分まで積層しく第1図(
a))、この積層体と蓋用非磁性基板4とをガラス等の
接着材5により突き合わせ接合して、磁性薄膜2を2枚
の非磁性基板1.4にてサンドイッチ状に挾んだ構造の
コアブロック6を作成する(同図(b))。次いで、こ
のコアブロック6を切断してコア半体7.8を作成し、
切断面を研摩してギャップ突き合わせ面を形成した後、
口のギャップ突き合わせ而に5i02等のスペーサ9を
スパッタする(同図(C) > Oその後、コア半体7
.8を突き合わせ接合し、チップ形状に加工して、ヘッ
ドチップ1oを作成する(同図(d) )Oなお、上記
の工程にはDC4極スパ7り装置を使用している。
Hereinafter, embodiments of the present invention will be explained with reference to the J-plane. Figures 1 (a) to (d) are process diagrams showing an example of a method for manufacturing a thin film magnetic film. is a non-magnetic substrate, 2
3 is a magnetic thin film, 3 is an electrically insulating interlayer film, 5 is an adhesive side, 6 is a core block, 7.8 is a core half, 9 is a spacer, and 10 is a henode dip. First, on a nonmagnetic substrate 1, an eddy current A magnetic thin film 2 made of a pe-si-AIV ternary alloy is formed in one layer, or in multiple layers with an electrically insulating interlayer film 3 such as 8102 interposed therebetween, using a method such as sputtering while taking into account the effects of loss, etc., corresponding to the track width. Figure 1 (
a)) This laminate and a non-magnetic substrate 4 for a lid are butt-bonded using an adhesive 5 such as glass, and the magnetic thin film 2 is sandwiched between two non-magnetic substrates 1.4. A core block 6 is created ((b) in the same figure). Next, this core block 6 is cut to create core halves 7.8,
After polishing the cut surface to form the gap butt surface,
Sputter a spacer 9 such as 5i02 at the gap between the openings (see figure (C) > O. Then, core half 7
.. 8 are butt-jointed and processed into a chip shape to create a head chip 1o (FIG. 4(d)). Note that a DC 4-pole spacing device is used in the above process.

このようにして製造された磁気へノドの再生出力と、セ
ンダスト膜の成膜時における初L8磁率との関係を調べ
た結果、第2図のようになった。第2図によると、磁気
ヘッドの再生出力は磁性薄膜の成膜時の初透磁率と相関
があり、初透磁率が800〜1000あたりからヘッド
再生出力は急激な向上を示し、初透磁率1400付近で
ほぼ飽和状態となる0そして、上記工程によって形成さ
れた磁性薄膜は、成膜状態において109d5=口/d
オーダーの応力を受けており、このような膜では、磁歪
による異方性磁界が膜の初透磁率をほぼ決定しているこ
とが、種々検討した結果判明した。
The relationship between the reproducing output of the magnetic head produced in this way and the initial L8 magnetic coefficient at the time of forming the Sendust film was investigated, and the result was as shown in FIG. 2. According to Figure 2, the reproduction output of the magnetic head is correlated with the initial permeability of the magnetic thin film when it is formed, and the reproduction output of the head shows a rapid improvement when the initial permeability is around 800 to 1000, and when the initial permeability is 1400, The magnetic thin film formed by the above process reaches a saturation state near 0, and the magnetic thin film formed by the above process has a value of 109d5=gate/d.
As a result of various studies, it has been found that in such a film, the anisotropic magnetic field due to magnetostriction almost determines the initial magnetic permeability of the film.

第6図は、上記工程により形成された上記磁性薄膜の成
膜時の初透磁率と、その磁歪定数との関係を調べた結果
であフて、初透磁率と磁歪定数とに相関が見られる。そ
こで、初透磁率1400付近でヘッド再生出力が飽和状
態になるという第2図の結果を、第3図に鑑み、磁性薄
膜の磁歪定数λSをlλs l <0.4 X 10−
6の範囲にて成膜すれば、高再生出力の磁気ヘッドを製
造することができ、かつ、その製造歩留りも向上すると
いうことがわかる。
Figure 6 shows the results of investigating the relationship between the initial magnetic permeability and the magnetostriction constant of the magnetic thin film formed by the above process, and it was found that there is a correlation between the initial magnetic permeability and the magnetostriction constant. It will be done. Therefore, considering the result shown in Fig. 2 that the head reproduction output becomes saturated when the initial magnetic permeability is around 1400 and the result shown in Fig. 3, the magnetostriction constant λS of the magnetic thin film is determined as lλs l <0.4
It can be seen that if the film is formed within the range of 6, it is possible to manufacture a magnetic head with high reproduction output, and the manufacturing yield is also improved.

第4図は、他の実施例について、上記磁性薄膜の成膜時
の初透磁率とその磁歪定数との関係を調べた結果である
。前記実施例はDC4極スパッタ装置で磁性薄膜を形成
したものなので、膜面内に磁歪以外の異方性磁界が生じ
ていないが、この実施例は、DC対向スパッタ装置を使
用して磁性薄膜を形成したものなので、膜面内に磁歪以
外の異方性磁界が生じ、これが初透磁率に影響を与えて
いる。そのため、第4図に示すように、成膜時の初透磁
率と磁歪定数との間に前記実施例の場合はど明確な相関
が見られない0 さらに、DC4極スパッタ装置を使用した前記実施例で
は、成膜時の初透磁率1400程度で高再生出力の磁気
ヘッドが得られたが、J) C対向スパッタ装置を使用
して形成されたこの実施例の磁性薄膜は、成膜時の初透
磁率200oでも高出力ヘッドが得られないことがわか
っており、ヘッド再生出力を初透磁率の鎖から−律的九
決定することはできない。
FIG. 4 shows the results of investigating the relationship between the initial magnetic permeability during film formation of the magnetic thin film and its magnetostriction constant for another example. In the above example, the magnetic thin film was formed using a DC 4-pole sputtering device, so no anisotropic magnetic field other than magnetostriction was generated within the film surface, but in this example, the magnetic thin film was formed using a DC facing sputtering device. Because it is formed, an anisotropic magnetic field other than magnetostriction is generated within the film plane, which affects the initial magnetic permeability. Therefore, as shown in FIG. 4, there is no clear correlation between the initial magnetic permeability and the magnetostriction constant during film formation in the case of the above embodiment. In this example, a magnetic head with high reproduction output was obtained with an initial magnetic permeability of about 1400 during film formation, but the magnetic thin film of this example, which was formed using a J)C facing sputtering device, It is known that a high output head cannot be obtained even with an initial permeability of 200°, and the head reproduction output cannot be determined theoretically from the initial permeability chain.

そこで、DC4極スパ7タ装置およびDC対向スパッタ
装置にておのおの形成きれた磁性薄膜をヘッド化し、そ
れぞれの膜の磁歪定数とヘット再生出力との関係を調べ
た結果が第5図である。第5図に示すように、J)C対
向スパッタ装置を使用した場合でも、DC4極スパッタ
装置を使用した場合と同じく、磁性薄膜の磁歪定数λS
を]λ815:0.4X10〜6とすることにより、再
生出力6dB以上の磁気ヘッドを得ることができる。
Therefore, the magnetic thin films formed in the DC four-pole sputtering apparatus and the DC facing sputtering apparatus were respectively made into heads, and the relationship between the magnetostriction constant of each film and the head reproduction output was investigated. The results are shown in FIG. As shown in Figure 5, even when using the J)C facing sputtering device, the magnetostriction constant λS of the magnetic thin film is the same as when using the DC quadrupole sputtering device.
By setting [lambda]815:0.4X10 to 6, a magnetic head with a reproduction output of 6 dB or more can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、Fe−8i −
AI 系三元合金からなる磁性体の磁性薄膜の磁歪定数
λSを1λ51(0,4X10−6とすることで、高再
生出力の磁気ヘッドを製造することができ、かつ、この
許容範囲内に磁歪定数をそろえることで製造歩留りも向
上し、上記従来技術の欠点を除いて優れた機能の薄膜磁
気ヘッドを提供することができる。
As explained above, according to the present invention, Fe-8i −
By setting the magnetostriction constant λS of a magnetic thin film of a magnetic material made of an AI-based ternary alloy to 1λ51 (0.4X10-6), a magnetic head with high reproduction output can be manufactured, and the magnetostriction By aligning the constants, manufacturing yield can be improved, and a thin film magnetic head with excellent functionality can be provided by eliminating the drawbacks of the prior art described above.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(d)は薄膜磁気ヘッドの製造方法の一
例を示す工程図、第2図はDC4極スパンク装置を使用
した場合のへノド再生出力と磁性薄膜の初透磁率との相
関図、第6図は同装置を使用した場合の磁性薄膜の初透
磁率とその磁歪定数との相関図、第4図はf) C対向
スパッタ装置を使用した場合の磁性薄膜の初透磁率と七
の磁歪定数との相関図、第5図は同装置および上記DC
4極スパンタ装置を使用した場合のヘット”再生出力と
磁性薄膜の磁歪定数との相関図である。 1.2・・・非磁性基板、 ろ・・・磁性薄膜。 お3図 J 躬4居 ? 十 5m
Figures 1 (a) to (d) are process diagrams showing an example of a method for manufacturing a thin-film magnetic head, and Figure 2 shows the relationship between the henode reproduction output and the initial magnetic permeability of the magnetic thin film when using a DC 4-pole spanking device. Correlation diagram, Figure 6 is a correlation diagram between the initial magnetic permeability of a magnetic thin film and its magnetostriction constant when using the same equipment, Figure 4 is f) Initial permeability of a magnetic thin film when using the C facing sputtering equipment Figure 5 shows the correlation diagram between the magnetostriction constant and the magnetostriction constant of
This is a correlation diagram between the head reproduction output and the magnetostriction constant of the magnetic thin film when a 4-pole spanter device is used. 1.2...Nonmagnetic substrate, B...Magnetic thin film. ?15m

Claims (1)

【特許請求の範囲】[Claims] 非磁性基板上にFe−8i−AI系三元合金からなる磁
性体を被着して磁性薄膜を形成し、この磁性薄膜な−・
ノドコ/材に用いた薄膜磁気−・ノドにおいて、前記磁
性薄膜の磁歪定数λSの許容範囲をIλS l <0.
4 X 10〜6としたことを特徴とする薄膜磁気ヘッ
ド。
A magnetic thin film is formed by depositing a magnetic material made of Fe-8i-AI ternary alloy on a non-magnetic substrate, and this magnetic thin film...
In the thin film magnetic node used for the throat/material, the allowable range of the magnetostriction constant λS of the magnetic thin film is set to IλS l <0.
A thin film magnetic head characterized by having a size of 4×10 to 6.
JP18027183A 1983-09-30 1983-09-30 Thin film magnetic head Pending JPS6074110A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18027183A JPS6074110A (en) 1983-09-30 1983-09-30 Thin film magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18027183A JPS6074110A (en) 1983-09-30 1983-09-30 Thin film magnetic head

Publications (1)

Publication Number Publication Date
JPS6074110A true JPS6074110A (en) 1985-04-26

Family

ID=16080308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18027183A Pending JPS6074110A (en) 1983-09-30 1983-09-30 Thin film magnetic head

Country Status (1)

Country Link
JP (1) JPS6074110A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0510690A2 (en) * 1991-04-25 1992-10-28 Nec Corporation Magnetic head

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0510690A2 (en) * 1991-04-25 1992-10-28 Nec Corporation Magnetic head

Similar Documents

Publication Publication Date Title
JPS60163214A (en) Magnetic head and its manufacturing method
JPH05290317A (en) Magnetic head and its production
JPS60175208A (en) Thin film magnetic head
JPS6074110A (en) Thin film magnetic head
JPS598120A (en) Production of magnetic head
JP2529313B2 (en) Magnetic head
JP3036020B2 (en) Manufacturing method of magnetic head
KR100232141B1 (en) Manufacturing method of magnetic head
JPS62262209A (en) Magnetic head
JPH05282619A (en) Magnetic head
JPH0156445B2 (en)
JPH02216604A (en) Magnetic head and its production
JPS632109A (en) Magnetic head
JPS63234404A (en) Magnetic head
JP2002279608A (en) Thin-film magnetic head and its manufacturing method
JPH06223324A (en) Magnetic head and its manufacture
JPH04274006A (en) Production of magnetic head
JPH05290327A (en) Production of magnetic head
JPH02312006A (en) Thin-film magnetic head
JPH11306507A (en) Combined laminated magnetic head and its manufacture
JPS62145523A (en) Thin film magnetic head
JPS6323208A (en) Composite magnetic head
JPS63173215A (en) Magnetic head
JPH0636221A (en) Magnetic head and its manufacture
JPH04195805A (en) Magnetic head