JPS6067838A - Method and apparatus for diagnosing damage to structural member used at high temperature - Google Patents

Method and apparatus for diagnosing damage to structural member used at high temperature

Info

Publication number
JPS6067838A
JPS6067838A JP17574883A JP17574883A JPS6067838A JP S6067838 A JPS6067838 A JP S6067838A JP 17574883 A JP17574883 A JP 17574883A JP 17574883 A JP17574883 A JP 17574883A JP S6067838 A JPS6067838 A JP S6067838A
Authority
JP
Japan
Prior art keywords
damage
calculator
structural member
hardness
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17574883A
Other languages
Japanese (ja)
Other versions
JPH0127378B2 (en
Inventor
Kazunari Fujiyama
一成 藤山
Kazunari Kimura
和成 木村
Kiyoshi Saito
潔 斎藤
Takao Inukai
隆夫 犬飼
Eiji Tsunoda
角田 英治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP17574883A priority Critical patent/JPS6067838A/en
Publication of JPS6067838A publication Critical patent/JPS6067838A/en
Publication of JPH0127378B2 publication Critical patent/JPH0127378B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/32Investigating strength properties of solid materials by application of mechanical stress by applying repeated or pulsating forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/022Environment of the test
    • G01N2203/0222Temperature
    • G01N2203/0226High temperature; Heating means

Abstract

PURPOSE:To predictively judge the time when a cracking develops in a structural member accurately by calculating temperature and stress from the service status value thereof and also material characteristics from the hardness thereof to compute the accumulation of damage generated therein with the correction according to the operation history. CONSTITUTION:A detector 1 detects the service status value indicating the service condition of a structural member used at a high temperature and a calculator 2 calculates temperature and stress thereof. A measuring device 3 measures the material status value indicating the hardness of the structural member and changes therein and a calculator 4 calculates material characteristics pertaining to the accumulation of damage. A damage computing unit 5 adds the level of damage to the structural member with a condition setter 9 to the output of the calculator 2 as correction value according to the operation history of equipment. A diagnosing unit 7 compares the output of the computing unit 5 with the output of an allowable value calculator 6 to predictively diagnose the period until a cracking develops in the structural member.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は高温で使用される構造部材の損傷診断方法およ
び装置に係り、高温で使用さnる構造部材のき裂の発生
に起因する材料特性の劣化に着目して損傷を診断する方
法およびその装置に関する。
Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to a method and apparatus for diagnosing damage to structural members used at high temperatures, and relates to a method and apparatus for diagnosing damage to structural members used at high temperatures. The present invention relates to a method and apparatus for diagnosing damage by focusing on deterioration of the material.

〔発明の技術的背景と問題点〕・ 一般に発電プラントや化学プラントを構成する各種機器
は高温で10年以上の長期間にわたって使用されるもの
が多い。これらの熱機器を構成する構造部材には機器の
起動停止や負荷変動等の非定常運転の繰り返しにより部
材を構成する金属結晶の結晶粒内にすべり線が発生増加
してすペリ帯を形成した後にすべり帝に沿って金属結晶
粒オーダの寸法の微小き裂が発生することが知られてい
る。
[Technical Background and Problems of the Invention] Generally, various types of equipment that constitute power plants and chemical plants are often used at high temperatures for long periods of 10 years or more. In the structural members that make up these thermal devices, slip lines increase and form within the crystal grains of the metal crystals that make up the members due to repeated unsteady operation such as starting and stopping the equipment and load fluctuations, forming periphery bands. It is known that micro-cracks with dimensions on the order of metal grains later occur along the slip axis.

一方、定常運転の継続中にはクリープにより部材を構成
する金属結晶の結晶粒界で空孔が発生し、それらが互い
に連結する等により微小き裂が発生し、材料が受ける損
傷は蓄積さ几る。このように微小き裂が発生するまでの
間、材料は損傷を受け、その損傷量は材料内に蓄積され
ると考えられる。
On the other hand, during steady operation, pores are generated at the grain boundaries of the metal crystals that make up the component due to creep, and as these pores connect with each other, microcracks occur, and the damage to the material accumulates. Ru. It is thought that the material is damaged until microcracks occur in this way, and the amount of damage is accumulated within the material.

さらに高温で使用される機器の構造部材には高温強度の
優れた耐熱鋼が用いられているが、耐熱鋼の上記疲労や
クリープに関する各種材料特性は高温に長時間さらされ
るというだけで徐々に変化して初期の強度的特性は徐々
に失ゎ几てぃく。
Furthermore, heat-resistant steel with excellent high-temperature strength is used for structural members of equipment used at high temperatures, but the various material properties of heat-resistant steel related to fatigue and creep gradually change due to prolonged exposure to high temperatures. The initial strength properties gradually disappear.

このように高温で使用される構造部材には、機器の運転
状態と部材の材料特性とが係りあって、微小き裂が発生
するまでの間種々の損傷が材料内に蓄積され−この損傷
の蓄積が放置された場合には部材にき裂が発生して伝播
し、部材の破壊という致命的かつ影響の大きい事態に至
る。元来、これらの高温部材は裕度のある設計をし製作
さ扛ているが、例えば火力発電プラントの使用期間の長
いものでは近年電力需要にあわせて起動停止等の非定常
運転が頻繁に繰り返されるものが多くなり、当初の予想
以上に損傷量の蓄積が速(なる場合がある。特に高温で
長期間にわたって使用される火力発電プラント等の機器
の構造部材について損傷量の蓄積を正確に把握して支障
な(使用できる期間を予知診断する技術の開発が強く望
まnでいる。
For structural members used at high temperatures, various types of damage accumulate within the material until microcracks occur due to the relationship between the operating conditions of the equipment and the material properties of the member. If the accumulation is left unchecked, cracks will develop and propagate in the component, leading to the destruction of the component, which is a fatal and highly impactful situation. Originally, these high-temperature components were designed and manufactured with a certain margin, but in recent years, for example, in thermal power plants that are used for a long time, unsteady operation such as starting and stopping has been repeated frequently in response to power demand. In some cases, the amount of damage accumulates more quickly than initially expected.In particular, it is necessary to accurately grasp the amount of damage accumulated for structural members of equipment such as thermal power plants that are used at high temperatures for long periods of time. There is a strong desire to develop a technology that can predict and diagnose the period of use.

特にき裂の発生を予知し診断する技術は機器の予防保全
上きわめてM要である。
In particular, techniques for predicting and diagnosing the occurrence of cracks are extremely important for preventive maintenance of equipment.

しかるに、従来の構造部材の損傷診断方法は、高温で使
用される機器の使用状態を表わす温度や圧力の状態量か
ら構造部材の損傷の度合いや寿命を予知するものにすぎ
ず、構造部材を構成する材料個有の特性とその変化を表
わす状態量については全(考慮されていなかった。また
、既に設置さiて数年にわたって稼動して(ζる熱機器
については、過去の運転モードや履歴に応じて材料特性
が初期状態から変化しているはずであるから、材料特性
の初期状態からの変化を定量的に算出して修正してやら
ない限り構造部材の正確な損傷の度合や寿命を予知する
ことはできない。
However, conventional methods for diagnosing damage to structural members only predict the degree of damage and service life of structural members based on state quantities of temperature and pressure that represent the operating conditions of equipment used at high temperatures. The unique characteristics of the materials used in the process and the state quantities that represent their changes were not fully taken into consideration.In addition, for thermal equipment that has already been installed and has been in operation for several years, past operating modes and history are not considered. Since the material properties must have changed from the initial state depending on the changes in the material properties, it is impossible to predict the exact degree of damage or service life of structural members unless the changes in material properties from the initial state are quantitatively calculated and corrected. It is not possible.

〔発明の目的〕[Purpose of the invention]

そこで本発明の目的は、これら従来未解決であった諸問
題を解決し、高温で使用される構造部材の使用状態を表
わす使用状態量と、構造部材を構成する材料固有の特性
およびその変化を表わす材料状態量と、構造部材を使用
した機器の運転履歴を考慮して構造部材中にき裂が発生
するまでの損傷量の蓄積を正確に把握できるようにした
高温で使用される構造部材の損傷診断方法およびその装
置を提供することにある。
Therefore, the purpose of the present invention is to solve these conventionally unsolved problems, and to analyze the usage state quantity that represents the usage state of structural members used at high temperatures, and the characteristics inherent to the materials that make up the structural members and their changes. It is possible to accurately grasp the amount of damage accumulated until a crack occurs in a structural member by considering the material state quantity expressed and the operating history of the equipment using the structural member. An object of the present invention is to provide a damage diagnosis method and device.

〔発明の概要〕[Summary of the invention]

上記目的を達成するために、本発明は高温で使用さnる
構造部材の使用状態を表わす使用状態量を検出して、構
造部材の温度および作用応力を算出し、一方、構造部材
の硬さとその変化を表わす材料状態量を計測して損傷の
蓄積に関係する材料特性を算出し、機器の運転履歴に応
じて構造部材が受けた損傷量を修正量として加算して損
傷量を演算し、その結果を許容値と比較して構造部材中
にき裂が発生するまでの期間を予知診断できるようにし
たものである。
To achieve the above object, the present invention detects usage state quantities representing the usage state of a structural member used at high temperatures, calculates the temperature and acting stress of the structural member, and calculates the hardness and stress of the structural member. The material state quantity that represents the change is measured to calculate the material properties related to the accumulation of damage, and the amount of damage is calculated by adding the amount of damage sustained by the structural member as a correction amount according to the operating history of the equipment. By comparing the results with allowable values, it is possible to predict and diagnose the period until cracks occur in the structural member.

〔発明の実施例〕[Embodiments of the invention]

以下本発明による高温で使用される構造部材の損傷診断
方法およびその装置の実施例を図面を参照して説明する
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of a method and apparatus for diagnosing damage to structural members used at high temperatures according to the present invention will be described with reference to the drawings.

第1図は本発明による構造部材の損傷診断方法の原理を
ブロック線図で示したものであり、符号1は検出装置を
示し、この検出装置1は高温部材の使用状態量である高
温流体温度、高温流体圧力。
FIG. 1 is a block diagram showing the principle of the method for diagnosing damage to structural members according to the present invention. Reference numeral 1 indicates a detection device, and this detection device 1 detects the high-temperature fluid temperature, which is a state quantity in use of the high-temperature member. , high temperature fluid pressure.

部材温度、回転数、負荷、振動の検出装置であり、実際
には熱電対、圧力計、回転計の5ち1個もしくは複数個
が使用される。符号2は温度・応力算出器を示し、これ
は検出装置1によって検出された使用状態量から損傷診
断をすべき部材の温度と作用応力を算出するものである
It is a device for detecting member temperature, rotation speed, load, and vibration, and in reality, one or more of the following five components are used: a thermocouple, a pressure gauge, and a tachometer. Reference numeral 2 denotes a temperature/stress calculator, which calculates the temperature and acting stress of the member to be subjected to damage diagnosis from the usage state quantities detected by the detection device 1.

符号3は計測装置を示し、これは材料状態量として材料
の硬さ、金属組織、分極特性、欠陥、1磁気特性;音響
特性を計測する装置である。この装置として具体的には
硬さ計、腐食装置、分極試験装膜、非破壊検査装置等が
予定さn、必要な数だけ機器の被測定場所にセットする
Reference numeral 3 indicates a measuring device, which measures material state quantities such as hardness, metallographic structure, polarization characteristics, defects, magnetic characteristics, and acoustic characteristics. Specifically, a hardness meter, a corrosion device, a polarization test membrane, a non-destructive testing device, etc. are planned as this device, and the required number is set at the location of the device to be measured.

符号4は材料特性算出器を示し、上記材料状態量の計測
結果に基づいて、計測時点における材料特性を算出する
ものであり、材料特性としては引張特性(引張強さ、耐
力)、低サイクル疲労特性(ひずみ−破損回数関係式)
、クリープラブチャ特性(応力一温度破断時間パラメー
タ関係式)である。
Reference numeral 4 indicates a material property calculator, which calculates material properties at the time of measurement based on the measurement results of the above-mentioned material state quantities.The material properties include tensile properties (tensile strength, yield strength), low cycle fatigue, etc. Characteristics (strain-failure frequency relationship)
, is the creep-loveture characteristic (stress-temperature-rupture time parameter relationship).

前記温度応力算出器2と材料特性算出器4との出力は損
傷演算器5に加えられ、この損傷演算器5は非定常運転
の繰り返しによる疲労損傷量や定常運転の継続によるク
リープ損傷量の蓄積を演算する。
The outputs of the temperature stress calculator 2 and material property calculator 4 are applied to a damage calculator 5, which calculates the amount of fatigue damage due to repeated unsteady operation and the amount of creep damage due to continued steady operation. Calculate.

また、前記温度応力算出器2と材料特性算出器4との出
力は許容値算出器6にも加えられ、この許容値算出器6
は、作用応力や損傷量の蓄積に対する許容値を算出する
もので、作用応力に対する許容値である許容応力値は、
材料特性算出器4の出力のうち、引張強さ、耐力、クリ
ープラブチャ強度、疲労強度を基に適切な安全率を設け
て算出する。疲労・クリープ損傷量の蓄積および疲労ク
リープ組合せ損傷量の蓄積に対する許容値であるき裂発
生限界損傷値は許容値算出器6に予め設定さnている。
Further, the outputs of the temperature stress calculator 2 and material property calculator 4 are also applied to the tolerance calculator 6.
calculates the allowable value for the accumulation of acting stress and damage amount, and the allowable stress value, which is the allowable value for acting stress, is
Out of the outputs of the material property calculator 4, the calculation is performed by setting an appropriate safety factor based on the tensile strength, yield strength, creep rapture strength, and fatigue strength. A crack initiation limit damage value, which is a tolerance value for the accumulation of fatigue/creep damage amount and fatigue creep combined damage amount, is set in advance in the tolerance value calculator 6.

符号7は診断装置を示し、診断装置7は損傷演算器5と
許容値算出器6との出力を比較して構造部材中にき裂が
発生するまでの期間の予知診断を行なう装置であり、そ
の結果は表示警報装置8に伝えら几、診断装置7の出力
に応じて診断結果の表示または必要な警報を発するもの
である。
Reference numeral 7 indicates a diagnostic device, and the diagnostic device 7 is a device that compares the outputs of the damage calculator 5 and the allowable value calculator 6 to perform predictive diagnosis of the period until a crack occurs in the structural member. The results are transmitted to the display/warning device 8, which displays the diagnostic results or issues a necessary warning depending on the output of the diagnostic device 7.

ところで、上述した検出装置1から表示警報装置8に至
る各装置を既に設置されて稼動している熱機器の構造部
材に設置した場合、設置以降のデータを採取することは
もちろんできるが、設置以前のデータについては採板不
能である。そのために、設置以前の構造部材に加わった
損傷量の蓄積が未知のま瓦でそれによる修正が行われな
いと精度の高い損傷診断は出来ないことになる。そこで
、本発明では、機器の設置以前の損傷量の蓄積を修正加
えて損傷の蓄積量を正確に把握するための条件設定器9
が設けられている。この条件設定器9は、本発明装置の
設置以前の機器の運転履歴と代表的な運転パターンでの
温度応力状態と各非定常運転回数、定常運転時間等の損
傷量の蓄積の演算に必要な全てのパラメータを設定する
ものである。
By the way, if each of the devices from the detection device 1 to the display/alarm device 8 described above is installed on a structural member of a thermal device that has already been installed and is in operation, it is of course possible to collect data after installation, but it is possible to collect data from before installation. Data cannot be collected. For this reason, highly accurate damage diagnosis will not be possible unless the amount of damage accumulated on structural members prior to installation is unknown and corrections are made accordingly. Therefore, in the present invention, a condition setting device 9 is provided that corrects the accumulated amount of damage before installing the equipment and accurately grasps the accumulated amount of damage.
is provided. This condition setter 9 is used to calculate the operating history of the equipment before installation of the device of the present invention, the temperature stress state in typical operating patterns, the number of unsteady operations, the amount of damage accumulated such as steady operation time, etc. This is for setting all parameters.

又、条件設定器9は、今後予想される運転履歴と、代表
的な運転パターンでの温度・応力状態と各非定常運転回
数、定常運転時間等、損傷量の蓄積の演算に必要なパラ
メータも設定するもので、これらのパラメータを通して
損傷演算器5は、本発明の装置設置以前の損傷量蓄積状
態、設置後の実稼動中の損傷量蓄積状態、更に、今後に
予想される運転履歴での損傷量蓄積状態の全てを演算す
ることができる。従って5診断装置7により、構造部材
が支障なく使用できる期間を適切に予知診断することが
できる。
In addition, the condition setter 9 also stores parameters necessary for calculating the amount of damage, such as expected operating history, temperature and stress conditions in typical operating patterns, the number of unsteady operations, and steady operation time. Through these parameters, the damage calculator 5 can determine the damage amount accumulation state before the installation of the device of the present invention, the damage amount accumulation state during actual operation after installation, and the expected future operation history. All damage amount accumulation states can be calculated. Therefore, the diagnostic device 7 can appropriately predict and diagnose the period during which the structural member can be used without any trouble.

なお実稼状態での温度・応力を精度よ(算出するために
は検出器1による使用状態の検出が望ましいが、構造部
材によっては形状の複雑さ等から検出器1の設置が困難
か、あるいは設置することによって応力集中が生じる等
、構造部材に悪影響を及ぼすことが懸念さ几るものもあ
る。そこで、このような場合には、損傷量の蓄積の演算
に必要な全てのパラメータを設定する条件設定器9で代
行することもできる。
In addition, in order to accurately calculate temperature and stress under actual operating conditions, it is desirable to detect the operating conditions with detector 1, but depending on the structural member, it may be difficult to install detector 1 due to the complexity of the shape, etc. There are concerns that installation may have a negative impact on structural members, such as stress concentration.Therefore, in such cases, it is necessary to set all parameters necessary for calculating the amount of damage accumulation. It is also possible to use the condition setter 9 instead.

次に本発明を蒸気タービンの高温部ケーシングの損傷診
断装置に適用した実施例について説明する。
Next, a description will be given of an embodiment in which the present invention is applied to a damage diagnosis device for a high temperature part casing of a steam turbine.

第2図は高中圧蒸気タービンの断面図を示し、外部ケー
シング11内には第1内部ケーシング12および第2内
部ケーシング13が軸方向に離間して配設されている。
FIG. 2 shows a cross-sectional view of the high-intermediate pressure steam turbine, in which a first inner casing 12 and a second inner casing 13 are disposed within the outer casing 11 and spaced apart from each other in the axial direction.

さらに両内部り−シング12 、13内にはロータ14
が貫挿さ牡、外部ケーシング11の両端部に設けられた
グランドパツキンヘッド15 、16および第1内部ケ
ーシング12の一端に設けらnたグランドパツキンヘッ
ド171Cよって上記ロータ14に沿う蒸気洩扛を防止
するようにしである。
Furthermore, a rotor 14 is provided in both inner housings 12 and 13.
The gland packing heads 15 and 16 provided at both ends of the outer casing 11 and the gland packing head 171C provided at one end of the first inner casing 12 prevent steam leakage along the rotor 14. That's how it is.

しかして、高温高圧の蒸気は蒸気供給口18から伸縮可
能な連通管19を経て第1内部ケーシング12内にある
ノズルボックス加に供給される。蒸気はこ匁から高速流
となってロータ14に植設された羽根21に当りロータ
14に運動エネルギを与えた後、再びノズルダイアフラ
ム乙にあるノズルを通り高速流となって次の羽根に当る
。このようにして順次羽根およびノズルを通過する毎に
蒸気は圧力および温度が低下し、高圧タービン出口部n
に到り、そこでは蒸気供給口18部の17.〜1/8程
度の圧力となる。高圧タービン出口部るの蒸気は、一旦
蒸気タービン出口nより外部に導き出され、ボイラの再
熱器(図示省略)を通って再熱され、再び高温蒸気とな
って中圧タービン入口部24Ilc供給すnる。そこで
、この中圧タービン入口部Uに供給された蒸気は再びノ
ズルおよび羽根を通りロータ14に回転エネルギを与え
て中圧タービン出口部δから排出さnる。
Thus, high-temperature, high-pressure steam is supplied from the steam supply port 18 to the nozzle box inside the first inner casing 12 via the expandable and retractable communication pipe 19. The steam becomes a high-speed flow from the momme and hits the blade 21 installed in the rotor 14, imparting kinetic energy to the rotor 14, and then passes through the nozzle in the nozzle diaphragm A again to become a high-speed flow and hits the next blade. . In this way, as the steam passes successively through the blades and nozzles, its pressure and temperature decrease, and the pressure and temperature of the steam decreases at the high-pressure turbine outlet n.
17 of the 18 steam supply ports. The pressure will be about ~1/8. The steam at the high-pressure turbine outlet is once led outside from the steam turbine outlet n, is reheated through the boiler reheater (not shown), becomes high-temperature steam again, and is supplied to the intermediate-pressure turbine inlet 24Ilc. nru. Then, the steam supplied to the intermediate pressure turbine inlet portion U passes through the nozzle and the blade again, imparts rotational energy to the rotor 14, and is discharged from the intermediate pressure turbine outlet portion δ.

タービンの運転中、外部ケーシング11、wJ1内部ケ
ーシング12および第2内部ケーシング13は高温高圧
蒸気により高温蒸気にさらさ几内圧応力を受ける。また
、タービン起動停止等の非定常運転中には各ケーシング
11 、12 、13の内外面の温度差圧よる非定常熱
応力が発生し、定常運転中にはケーシング長手方向の温
度差による定常熱応力が発生する。特に形状の複雑な部
位、例えば主蒸気管付根部29等には高い応力が発生し
やすい状態にある。このように、高中圧ケーシングは、
定常運転の継続および非定常運転の繰り返しによりクリ
ープや疲労の損傷が蓄積する。と同時に高温下で長期間
使用される間に材料特性に変化が生じ上記損傷量の蓄積
が促進さ扛ることになる。
During operation of the turbine, the outer casing 11, the wJ1 inner casing 12, and the second inner casing 13 are exposed to high-temperature and high-pressure steam and are subjected to internal pressure stress. In addition, during unsteady operation such as starting and stopping the turbine, unsteady thermal stress occurs due to the temperature difference between the inner and outer surfaces of each casing 11, 12, and 13, and during steady operation, steady heat stress occurs due to the temperature difference in the longitudinal direction of the casing. Stress occurs. In particular, high stress is likely to occur in parts with complicated shapes, such as the main steam pipe root 29. In this way, the high-medium pressure casing
Damage due to creep and fatigue accumulates due to continuous steady operation and repeated unsteady operation. At the same time, during long-term use at high temperatures, material properties change, accelerating the accumulation of the damage described above.

このように構成さ几たタービン高温部ケーシングの診断
に本発明を適用する際、予知診断の基礎となるケーシン
グの使用状態量の検出と材料状態量の計測を次のように
行なう。ケーシングの使用状態量は、主蒸気温度、主蒸
気圧力、ケーシング内面温度であり、これらは、第シ図
に示したようにケーシングに埋設された圧力計(資)お
よび温度計31によって連続的に検出することができ、
これらの検出結果はケーシング温度および応力の算出に
使用さr7る。
When the present invention is applied to the diagnosis of the turbine high-temperature part casing constructed as described above, the detection of the usage state quantity of the casing and the measurement of the material state quantity, which are the basis of the predictive diagnosis, are carried out as follows. The operating state quantities of the casing are the main steam temperature, main steam pressure, and casing inner surface temperature, and these are continuously measured by a pressure gauge (equipment) and a thermometer 31 embedded in the casing, as shown in Fig. can be detected,
These detection results are used to calculate the casing temperature and stress.

一方、ケーシングの材料状態量は硬さであってタービン
停止時に計測されるものであり、具体的には第3図に示
したように、硬さ計34を被測定部に挿入することによ
って計測する。その計測位置は高温低応力部位としての
ケーシングフランジ32が対象となり、特に内部ケーシ
ング]2のフランジ32が選定される。硬さ計34は外
部ケーシング11に設けら扛た測定孔33を通して挿入
され、この硬さ計Mは圧子あを油圧配管36により一定
圧力で測定面に押し付け、このときの変位を差動 トラ
ンス37によって電気信号あに変換し、さら罠演算装置
39によって硬さに換算できるように構成されている。
On the other hand, the material state quantity of the casing is hardness, which is measured when the turbine is stopped. Specifically, as shown in Fig. 3, it is measured by inserting a hardness meter 34 into the part to be measured. do. The measurement position is the casing flange 32, which is a high-temperature, low-stress area, and the flange 32 of the internal casing]2 is selected in particular. The hardness meter 34 is inserted through the measurement hole 33 formed in the outer casing 11, and this hardness meter M presses the indenter against the measurement surface with a constant pressure by the hydraulic piping 36, and the displacement at this time is measured by the differential transformer 37. It is configured so that it can be converted into an electrical signal by the , and converted into hardness by the Saratra calculation device 39 .

なお、タービン運転中、前記測定孔おはグラブによって
密閉しておけばよい。この硬さの計測結果を基にして後
述するように損傷演算に必要な材料特性および許容値を
算出する。
Note that during turbine operation, the measurement hole may be sealed with a glove. Based on the hardness measurement results, material properties and tolerances required for damage calculation are calculated as described later.

次に上記使用状態量の検出結果と材料状態量の計測結果
を基にしてケーシングが支障を来たすことな(使用でき
る期間の予知診断方法および装置を第3図を参照して説
明する。
Next, a method and apparatus for predicting the period during which the casing can be used without causing any trouble will be explained with reference to FIG. 3 based on the detection results of the usage state quantities and the measurement results of the material state quantities.

第4図中、圧力計30により検出された使用状態量であ
る主蒸気圧力40は、内圧応力算出器41において内圧
応力に変換される。ケーシングの様に形状の被雑な構造
物の応力分布は、光弾性または有限要素法によってめる
ことができ、内圧応力算出器41にはこの計算結果にも
とづいた各部の応力の基準圧力に対する係数が記憶さt
て0る。従って主蒸気圧力40の検出値に係数を掛ける
ことにより各部の内圧応力がただちに計算さルる。
In FIG. 4, a main steam pressure 40, which is a usage state quantity detected by a pressure gauge 30, is converted into an internal pressure stress by an internal pressure stress calculator 41. The stress distribution of a structure with a complicated shape, such as a casing, can be determined by photoelasticity or the finite element method, and the internal pressure stress calculator 41 calculates coefficients of stress in each part relative to the reference pressure based on the calculation results. is memorized
te 0ru. Therefore, by multiplying the detected value of the main steam pressure 40 by a coefficient, the internal pressure stress of each part can be immediately calculated.

次に、温度計(熱電対)31により検出さ肚た使用状態
量である主蒸気温度またはケーシング内外面メタル温度
42は、温度算出器43および熱応力算出器43′に入
力され、熱応力の算出に用いられる。
Next, the main steam temperature or the casing inner and outer metal temperatures 42, which are operating state quantities detected by the thermometer (thermocouple) 31, are input to the temperature calculator 43 and the thermal stress calculator 43', and the thermal stress Used for calculations.

主蒸気温度42は主蒸気圧力40と共圧、内部ケーシン
グ12の内面メタル温度の推定に用いられるが、内面近
傍のメタル温度が直接測定できる場合はこの推定は必要
ない。
The main steam temperature 42 is used to estimate the co-pressure of the main steam pressure 40 and the inner surface metal temperature of the inner casing 12, but this estimation is not necessary if the metal temperature near the inner surface can be directly measured.

これらの温度検出結果からケーシングの温度、応力が温
度算出器43および熱応力算出器43′において次のよ
うに算出さnる。
From these temperature detection results, the temperature and stress of the casing are calculated by the temperature calculator 43 and the thermal stress calculator 43' as follows.

まず、ケーシングを中空円筒と見倣し、ケーシング内外
面メタル温度42の時間変化から(1)式に示す熱伝導
の微分方程式を解くことによって温度分布が算出さnる
First, assuming that the casing is a hollow cylinder, the temperature distribution is calculated by solving the differential equation of heat conduction shown in equation (1) based on the temporal change in the metal temperature 42 of the inner and outer surfaces of the casing.

ここでλ;熱伝導率、θ;温度、t;時間・r;半径 (1)式は差分法による数値計算で解くことができる。where λ: thermal conductivity, θ: temperature, t: time/r: radius Equation (1) can be solved by numerical calculation using the difference method.

これにより体積平均温度Tave 、内表面温度T1お
よび外表面温度Toがまり、(2) 、 (31式から
内表面および外表面の熱応力σiおよ・びσ。がまる。
As a result, the volume average temperature Tave, the inner surface temperature T1, and the outer surface temperature To are reduced, and (2) (From equation 31, the thermal stresses σi and σ on the inner and outer surfaces are determined.

ここで、E;ヤング率、シ;ポアソン比、α;線膨張係
数 この様にしてめたσ1.σ0は有限要素法解析をもとに
、ケーシングの形状に応じた局所応力に換算される。有
限要素法では基準となる一定昇温条件のもとで各部の熱
応力が計算され、応力集中係数に1 が決定される。熱
応力算出器43′は、内外表面応力σi、σ0に応力集
中係数KT を掛は局所応力を算出する。
Here, E: Young's modulus, C: Poisson's ratio, α: linear expansion coefficient σ1. σ0 is converted into local stress according to the shape of the casing based on finite element analysis. In the finite element method, the thermal stress of each part is calculated under a constant temperature increase condition, which is the standard, and a stress concentration factor of 1 is determined. The thermal stress calculator 43' calculates the local stress by multiplying the internal and external surface stresses σi and σ0 by the stress concentration coefficient KT.

応力加算器44は内圧応力算出器41の出力と熱応力算
出器43′の出力を加算し、ケーシング内外表面の各部
の合成応力を算出する。
The stress adder 44 adds the output of the internal pressure stress calculator 41 and the output of the thermal stress calculator 43' to calculate the combined stress of each part of the inner and outer surfaces of the casing.

次に本発明の最も大きな特徴である硬さ計あによって計
測されたケーシングの材料状態量である、高温低応力部
位すなわち、7ランク部32等の硬さ45から材料特性
算出器46によるケーシングの硬さ計測時の引張特性、
低サイクル疲労特性、クリープラブチャ特性等き裂の発
生に対する損傷量の蓄積の演算と作用応力の許容値の算
出のための材料特性の算出について説明する。
Next, the material property calculator 46 calculates the hardness of the casing using the hardness 45 of high-temperature and low-stress parts, such as the 7-rank part 32, which is the material state quantity of the casing measured by the hardness meter, which is the most important feature of the present invention. Tensile properties during hardness measurement,
We will explain how to calculate material properties such as low-cycle fatigue properties and creep-rupture properties to calculate the amount of damage accumulated in response to crack occurrence and to calculate the allowable value of applied stress.

第5図は材料特性算出器46の機能手順を引張特性算出
部分について示したものであり、硬さと耐力σア、また
は引張強さσBとの間には温度をパラメータにした次式
で表わされる関係がある。
FIG. 5 shows the functional procedure of the material property calculator 46 for the tensile property calculation part, and the relationship between hardness and yield strength σa or tensile strength σB is expressed by the following equation using temperature as a parameter. There is a relationship.

σ7.二f1(温度、硬さ) ・・・・・・・(4)σ
、=f2(温度、硬さ) ・・・・・・・・(5)(4
) 、 (51式は硬さをビッカース硬さHv にとり
、温度をTとするとき、次の形に書くことができる。
σ7. 2f1 (temperature, hardness) ・・・・・・(4)σ
, = f2 (temperature, hardness) ・・・・・・・・・(5)(4
), (Formula 51 can be written in the following form, where the hardness is Vickers hardness Hv and the temperature is T.

σys = Cp、(刀Hv+Dp1(Tl =−=−
・−(61σn=cpj刀H,+Dp2(刀 ・・・・
・・・(7)たyし、Cpl(′11.Cp2(刀、 
D、1(馬り、2(刀は温度Tに関する一次式またはそ
n以上の次数の多項式で表わされる。第5図中の■は(
6)(7)式を図示したものであり、第5図のσ、σB
、σ、5とHvの関係図■で温度T1〈T2〈T3の順
に温度が高いことを示している。
σys = Cp, (sword Hv+Dp1(Tl =-=-
・-(61σn=cpj sword H, +Dp2(sword ・・・
...(7) Try, Cpl('11.Cp2(sword,
D.
6) This is an illustration of equation (7), and σ, σB in Figure 5
, σ, 5 and Hv (■) shows that the temperature increases in the order of T1<T2<T3.

材料特性算出器46は、硬さ計測結果と(6)(7)式
とから耐力σ、5および引張強さσB を温度の関数と
して与える。? 次に第6図は材料特性算出器46の機能手順を低サイク
ル疲労特性算出部分について示す゛ものであり、第6図
中■に示すように弾性ひずみ範囲△Eeと硬さとの間に
破損繰返し数をパラメータにした次式で表わされる関係
がある。
The material property calculator 46 provides proof stress σ,5 and tensile strength σB as a function of temperature from the hardness measurement results and equations (6) and (7). ? Next, FIG. 6 shows the functional procedure of the material property calculator 46 for the low cycle fatigue property calculation part, and as shown in ■ in FIG. There is a relationship expressed by the following equation using numbers as parameters.

△(e=f3(硬さ、Nf)・・川・・・・(8)(8
)式は硬さをビッカース硬さHvにとり、次の形に書く
ことができる。
△(e=f3(hardness, Nf)...River...(8)(8
) can be written in the following form, taking the hardness as Vickers hardness Hv.

△Ce二〇、1(Hv)N、Dfl(HV) ・旧=−
−−−(9まただし、Cf1(Hv)、Dfl(Hv)
は硬さHvに関する1次又はそれ以上の次数の多項式で
表わされる。
△Ce 20, 1 (Hv) N, Dfl (HV) ・Old = -
---(9 squares, Cf1 (Hv), Dfl (Hv)
is expressed by a polynomial of first or higher degree regarding the hardness Hv.

第6図中■はCf1とDflのI(、依存性を示す。な
お第6図の△CeとHv との関係図■でNfl <N
f2 <Nf3の順に破損繰返し数が大きいことを示す
In Fig. 6, ■ indicates the dependence of Cf1 and Dfl on I(,
The number of repeated failures increases in the order of f2 <Nf3.

又、塑性ひずみ範囲ΔEpと破損繰返し数Nfの間には
、次式 %式%(]) で表わされる関係がある。Cf2およびDf2は材料に
より選択される定数である。
Furthermore, there is a relationship between the plastic strain range ΔEp and the number of repeated failures Nf as expressed by the following formula % (%). Cf2 and Df2 are material-selected constants.

以上の様にしてめた(9) 、 (10)式を合成する
と、全ひずみ範囲△Epと破損繰返し数Nfの関係は(
11)式で表わされる。
Combining equations (9) and (10) obtained above, the relationship between the total strain range △Ep and the number of repeated failures Nf is (
11) It is expressed by the formula.

Δft−△Ee+△Ep Dfx(Hy) =Cf1(Hv)Nf十Cf2NfDf2・・・・・・
(1工) 材料特性算出器46は、(11)式と硬さ計測結果とか
ら低サイクル疲労特性 Nf=f5(△〔1) ・・・・・・・・・(12)を
算出する。
Δft−ΔEe+ΔEp Dfx(Hy) =Cf1(Hv)Nf×Cf2NfDf2・・・・・・
(1st step) The material property calculator 46 calculates the low cycle fatigue property Nf=f5(Δ[1) (12) from equation (11) and the hardness measurement results.

第7図は材料特性算出器46の機能手順をクリープラプ
チャ特性算出部分について示したものであり、第7図中
■に示すように硬さと絶対温度Tと破断時間Trとの関
係を表わすラーメンミラーパラメータP P =T(C+IogT ) −(33)ここで、Cは
材料定数 との間に次式で表わされる関係がある。
FIG. 7 shows the functional procedure of the material property calculator 46 for the creep-rupture characteristic calculation part, and as shown in (■) in FIG. Parameter P P =T(C+IogT)-(33) Here, C has a relationship with the material constant expressed by the following equation.

P = gl (硬さ) ・・・・・・・・・(14)
(14)式は硬さをビッカース硬さHvにとり、次の形
に書くことができる。
P = gl (hardness) ・・・・・・・・・(14)
Equation (14) can be written in the following form, taking the hardness as Vickers hardness Hv.

P = C,(σ)Hv+Dg□(σ)・・・−(15
)こ〜でCg□とDglは第7図中■で示すよ5IC応
力σに関する2次多項式またはそれ以上の次数の多項式
で表わさ扛る。なお、第7図のPとHvの関係図■でσ
1〈σ2くσ3 の順に応力が犬ぎいことを示している
P = C, (σ) Hv + Dg□ (σ)...-(15
) Here, Cg□ and Dgl are expressed by a quadratic polynomial or a polynomial of higher order regarding the IC stress σ, as shown by ■ in FIG. In addition, in the relationship diagram ■ between P and Hv in Figure 7, σ
It shows that the stress increases in the order of 1〈σ2 σ3.

材料特性算出器46は(15)式と硬さの計測結果とか
ら温度、応力、破断時間の関係を算出する。
The material property calculator 46 calculates the relationship among temperature, stress, and rupture time from equation (15) and the hardness measurement results.

上述した材料状態量の計測をもとに引張特性、低サイク
ル疲労特性およびクリーンラブチャ特性の算出により、
従来未解決であったケーシングの高温長時間使用による
材料特性の変化を定量的に算出することができ損傷の蓄
積量を高い精度で演算することができる。
By calculating the tensile properties, low cycle fatigue properties, and clean Labutture properties based on the measurement of the material state quantities described above,
It is possible to quantitatively calculate changes in material properties of casings due to long-term use at high temperatures, which has not been solved in the past, and the amount of accumulated damage can be calculated with high accuracy.

次に第4図を参照しながらき裂発生に至る損傷の蓄積量
の演算について説明する。
Next, with reference to FIG. 4, calculation of the amount of damage accumulated leading to crack generation will be explained.

き裂発生に対する損傷蓄積のひとつである疲労損傷量の
蓄積は、応力が変動する非定常運転の繰り返しによるも
のであるが、非定常運転1回当りで蓄積される疲労損傷
量△φfは(16)式で算出さ扛る。
Accumulation of fatigue damage, which is one type of damage accumulation due to crack initiation, is due to repeated unsteady operation in which stress fluctuates, and the amount of fatigue damage △φf accumulated per unsteady operation is (16 ) is calculated by the formula.

ここでNfは、非定常運転時の温度での応力の繰り返し
く低サイクル疲労)による破損くり返し数である。従っ
て、非定常運転1回当りに蓄積される疲労損傷量△φf
は破損くり返し数N、をめることと、(16)式の演算
を行なうことによって成される。第4図において、材料
特性算出器46により、前記した様に、ケーシングフラ
ンジ部32の硬さ計測からケーシングの高温長時間使用
による特性の変化を考慮した低サイクル疲労特性が(1
2)式で算出されているので、損傷量演算器47は、温
度算出器43と応力加算器44の出力を使用して、前記
した(12)式より破損(り返し数N、を亮出しく16
)式の演算を実行して非定常運転1回当つで蓄積さnる
疲労損傷量△φfを算出する。損傷量加算器48は非定
常運転毎に損傷量演算器47の出力を加算するものであ
る。第8図は、以上、述べた第4図の損傷量演算器47
と損傷量加算器48の機能手順を疲労損傷量蓄積演算部
について示したものである。
Here, Nf is the number of repetitions of failure due to repeated stress (low cycle fatigue) at a temperature during unsteady operation. Therefore, the amount of fatigue damage △φf accumulated per unsteady operation
is achieved by finding the number of damage repetitions N, and performing the calculation of equation (16). In FIG. 4, the material property calculator 46 calculates the low cycle fatigue properties (1
2), the damage amount calculator 47 uses the outputs of the temperature calculator 43 and the stress adder 44 to calculate the damage (the number of repetitions N) from the equation (12). Shiku 16
) is executed to calculate the amount of fatigue damage △φf accumulated per unsteady operation. The damage amount adder 48 adds the output of the damage amount calculator 47 for each unsteady operation. FIG. 8 shows the damage amount calculator 47 of FIG. 4 described above.
The functional procedure of the damage amount adder 48 is shown for the fatigue damage amount accumulation calculation section.

次に、き裂発生に対する損傷蓄積のもうひとつのもので
あるクリープ損傷量の蓄積は、高温一定応力の定常運転
が継続されることによるもので、定常運転の継続中の単
位時間当りに蓄積されるクリープ損傷量△φ0は(17
)式で算出される。
Next, the accumulation of creep damage, which is another type of damage accumulation due to crack initiation, is due to continued steady operation at high temperature and constant stress, and the amount of creep damage is accumulated per unit time during continuous steady operation. The amount of creep damage △φ0 is (17
) is calculated using the formula.

ここで、Trは定常運転時の温度および、その時の応力
の作用によるクリープ破損時間である。従って、定常運
転単位時間当り蓄積されるクリープ損傷量△φ。はクリ
ープ破断時間Trをめることと(17)式の演算を実行
することによって成さnる。
Here, Tr is the temperature during steady operation and the creep failure time due to the action of stress at that time. Therefore, the amount of creep damage △φ accumulated per unit time of steady operation. is obtained by calculating the creep rupture time Tr and calculating the equation (17).

第4図において、材料特性演算器46により前記した様
にケーシングフランジ部32の硬さからケーシングの高
温長時間使用による特性の変化を考慮したクリープラブ
チャ特性が算出さ扛ているので損傷量演算器47は応力
加算器44の定常運転時の出力を使用し、ラーソンミラ
ーノくラメータPを(15)式より算出し、次に、温度
熱応力算出器43の定常運転時の出力を使用して(13
)式のラーメン・ミラーパラメータP、温度T、クリー
プ破損時間Trの関係から の演算を実行しクリープ破損時間子、を算出し、(17
)式の演算を実行して定常運転中単位時間当りに蓄積さ
れるクリープ損傷量△φ。を算出する。損傷量加算器4
8は定常運転中に逐次、損傷量演算器47の出力を加算
するものである。第9図は損傷量演算器47と損傷量加
算器48の機能手順をクリープ損傷量蓄積演算部につい
て示したものである。
In FIG. 4, the material property calculator 46 calculates the creep damage property based on the hardness of the casing flange portion 32, taking into account the change in properties due to long-term use of the casing at high temperatures, so the amount of damage is calculated. The device 47 uses the output of the stress adder 44 during steady operation to calculate the Larson-Milano parameter P from equation (15), and then uses the output of the temperature thermal stress calculator 43 during steady operation to calculate (13
), the creep failure time factor is calculated by performing calculations based on the relationship between the Ramen mirror parameter P, temperature T, and creep failure time Tr in the equation (17
) The amount of creep damage △φ accumulated per unit time during steady operation. Calculate. Damage amount adder 4
8 is for adding the output of the damage amount calculator 47 sequentially during steady operation. FIG. 9 shows the functional procedure of the damage amount calculator 47 and the damage amount adder 48 for the creep damage amount accumulation calculation section.

しかして、上述したように材料特性を基に演算された損
傷蓄積量は逐次診断装置49に転送され、診断装置49
は許容値算出器間の出力結果と損傷量加算器48の出力
結果とを比較しながら診断を行なう。
As described above, the damage accumulation amount calculated based on the material properties is sequentially transferred to the diagnostic device 49.
The diagnosis is performed while comparing the output results between the allowable value calculators and the output results of the damage amount adder 48.

次に許容値の算出と診断について説明する。Next, calculation and diagnosis of allowable values will be explained.

高温で使用されるケーシング等の構造部材の許容値は部
材の高温強度特性である各種材料特性をもとに決めら扛
る。それらの材料特性は引張強さ、耐力、クリープラブ
チャ特性である。許容値は通常材料特性の未使用状態で
のデータバンドの中央値又は下限値に安全率を設けて設
定さ扛ているが、前述したように高温長時間使用により
これらの材料特性は変化するので許容値もその変化を考
慮する必要がある。材料特性の内引張強さ、耐力、クリ
ープラブチャ特性は前述したように部材の硬さを計測す
ることにより算出できる。
Tolerable values for structural members such as casings used at high temperatures are determined based on various material properties that are the high temperature strength characteristics of the member. Their material properties are tensile strength, yield strength, and creep-rubber properties. Tolerance values are usually set by setting a safety factor at the median or lower limit of the data band of material properties in an unused state, but as mentioned above, these material properties change due to long-term use at high temperatures. It is also necessary to consider changes in tolerance values. The material properties such as internal tensile strength, yield strength, and creep rubber properties can be calculated by measuring the hardness of the member as described above.

第4図において、許容値算出器Iは材料特性算出器46
が、硬さ計測値をもとに算出した引張強さ、耐力、クリ
ープラブチャ特性に温度算出器43との出力と合わせて
も必要な安全率を設けて作用応力に対する許容値を決定
する。また、疲労損傷量、クリープ損傷量の夫々、およ
びその組合せに対しては必要な安全率を設けた許容値を
内蔵している。
In FIG. 4, the tolerance calculator I is a material property calculator 46.
However, by combining the tensile strength, yield strength, and creep rubber characteristics calculated based on the measured hardness values with the output from the temperature calculator 43, a necessary safety factor is provided to determine the allowable value for the applied stress. Furthermore, tolerance values with necessary safety factors are built in for each of fatigue damage amount, creep damage amount, and their combination.

次に診断装置49について説明する。診断装置49は、
応力加算器44および損傷量加算器48の出力と許容値
算出器50の出力とを比較しながら、高温で長時間使用
さ几た部材の作用応力および損傷蓄積量の状態を判定し
、必要に応じて、表示警報装置51に出力を与える。表
示警報装置51は、診断装置49の診断結果にもとづく
出力結果に応じて、高温部材の作用応力および損傷蓄積
量の状態を表示する。更に今後の運転計画に基づき、条
件設定器52から入力される今後の想定運転履歴のもと
で演算される損傷蓄積量の損傷演算器47、損傷量加算
器48の出力結果をもとにした診断装置48による診断
結果の表示と必要な場合には警報も発生する。
Next, the diagnostic device 49 will be explained. The diagnostic device 49 is
While comparing the outputs of the stress adder 44 and damage amount adder 48 with the output of the allowable value calculator 50, the state of the applied stress and damage accumulation amount of the member that has been used at high temperature for a long time is determined, and the amount of accumulated damage is determined as necessary. Accordingly, an output is given to the display/alarm device 51. The display/warning device 51 displays the state of the applied stress and damage accumulation amount of the high-temperature member in accordance with the output result based on the diagnosis result of the diagnostic device 49. Furthermore, based on the future operation plan, the output results of the damage calculator 47 and the damage amount adder 48 are calculated based on the expected future operation history inputted from the condition setter 52. Diagnostic results are displayed by the diagnostic device 48, and an alarm is also generated if necessary.

最後に条件設定器51の機能について説明する。Finally, the function of the condition setter 51 will be explained.

上述した本発明による装置を既存の熱機器に設置した場
合、設置以前の運転による損傷量の蓄積は不明のま又で
あり、その後の損傷量の蓄積を演算しても精度の高い損
傷診断はできない。そこで、この点を解決するため、本
発明の装置を設置以前の運転履歴での代表的な運転パタ
ーンでの温度・応力状態と、各非定常運転回数、定常運
転時間等本発明装置を設置する以前の運転履歴による損
傷量の蓄積の演算に必要な全てのパラメータの設定もで
きる様になっている。したがって、既存の熱機器に対し
て本発明装置を設置しても機器の運転開始からの損傷量
の蓄積の把握と支障な(使用できる期間の予知診断が可
能となる。
When the above-mentioned device according to the present invention is installed in an existing thermal equipment, the amount of damage accumulated due to operation before installation remains unknown, and even if the amount of damage accumulated after that is calculated, highly accurate damage diagnosis is not possible. Can not. Therefore, in order to solve this problem, we installed the device of the present invention, including the temperature and stress conditions in typical operation patterns in the operating history before installing the device of the present invention, the number of unsteady operations, and the steady operation time. It is also possible to set all the parameters necessary to calculate the accumulated amount of damage based on previous driving history. Therefore, even if the device of the present invention is installed in an existing thermal device, it is possible to grasp the amount of damage accumulated from the start of operation of the device and to perform predictive diagnosis of the period during which the device can be used.

なお、条件設定器51の他の使い方として、今後想定さ
nる運転履歴にもとづ(損傷量の蓄積や進行の演算に必
要な全てのパラメータを予め設定し、実際の機器の使用
状態量と材料状態量とを実測することな(損傷量の蓄積
や進行の演算を行なうことができる。
In addition, another way to use the condition setter 51 is to set all the parameters necessary for calculating the accumulation and progression of damage in advance based on the operation history that will be assumed in the future. It is possible to calculate the accumulation and progress of damage without actually measuring the amount of damage and the state quantity of the material.

なお、上述した例は蒸気タービンのロータに適用した場
合について説明したが、本発明はこnに限らず高温で使
用される機器の一服に対して適用できるものである。
In addition, although the above-mentioned example explained the case where it was applied to the rotor of a steam turbine, the present invention is not limited to this and can be applied to a portion of equipment used at high temperatures.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明によれば、高温
で使用される構造部材の使用状態量から温度・応力を算
出する一万、構造部材の硬さから材料特性を算出し、さ
らに条件設定器によって運転履歴に応じた修正を加えて
構造部材に生じた損傷蓄積量を演算し、許容値と比較す
るようにしたから、構造部材にき裂が発生する時期を正
確に予知判断することができる。
As is clear from the above description, according to the present invention, the temperature and stress are calculated from the usage state quantities of structural members used at high temperatures, the material properties are calculated from the hardness of the structural members, and the Since the setting device calculates the amount of damage accumulated in structural members by making corrections according to the operating history and compares it with the allowable value, it is possible to accurately predict and judge when cracks will occur in structural members. I can do it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の装置を示したブロック図、第2図は本
発明の損傷診断に適用できる機器の−例である蒸気ター
ビン高温部を示した半断面図、第3図は、本発明の蒸気
タービン高温部ケーシングへの硬さ計の設置状況を示し
た断面図、第4図は本発明の蒸気タービン高温部ケーシ
ングの損傷診断への適用例の装置を示したブロック図、
第5図は、第4図のブロック図中、材料特性算出器の機
能手順を示したフローチャート、第6図は同じ(低サイ
クル疲労特性について示したフローチャート、第7図は
同じくクリープラブチャ特性について示したフローチャ
ート、第8図は、第4図のブロック図中、損傷量演算器
と損傷量加算器の機能手順を示したフローチャート、第
9図は同じくクリープ損傷量蓄積演算部について示した
フローチャートである。 1・・・検出装置、2・・・温度一応力算出器、3・・
・計測装置、4・・・材料特性算出器、5・・・損傷演
算器、6・・・許容値算出器、7・・・診断装置、8・
・・表示警報装置。 出願人代理人 猪 股 清 弗 7 図 第 8 図 第1頁の続き ■発明者角1)英治 横浜市鶴見区末広町2丁目の4 東京芝浦電気株式会社
京浜事業所内
FIG. 1 is a block diagram showing an apparatus according to the present invention, FIG. 2 is a half-sectional view showing a high temperature section of a steam turbine, which is an example of equipment applicable to damage diagnosis according to the present invention, and FIG. 3 is a block diagram showing an apparatus according to the present invention. FIG. 4 is a cross-sectional view showing how a hardness tester is installed in the casing of the high-temperature part of a steam turbine; FIG.
Figure 5 is a flowchart showing the functional procedure of the material property calculator in the block diagram of Figure 4, Figure 6 is the same flowchart (showing the low cycle fatigue characteristics), and Figure 7 is the same flowchart showing the creep-rubber characteristics. The shown flowchart, FIG. 8, is a flowchart showing the functional procedure of the damage amount calculator and damage amount adder in the block diagram of FIG. 4, and FIG. 9 is a flowchart also showing the creep damage amount accumulation calculation section. There are 1...detection device, 2...temperature-stress calculator, 3...
-Measuring device, 4...Material property calculator, 5...Damage calculator, 6...Tolerance value calculator, 7...Diagnostic device, 8.
...Display warning device. Applicant's agent Kiyohiro Inomata 7 Figure 8 Continuation of Figure 1 Page 1 ■ Inventor Kaku 1) Eiji 2-4 Suehirocho, Tsurumi-ku, Yokohama City, Tokyo Shibaura Electric Co., Ltd. Keihin Office

Claims (1)

【特許請求の範囲】 1、高温で使用される構造部材の使用状態を表わす使用
状態量を検出し、これを基間構造部材に作用する温度と
応力を算出する一方、上記構造部材の硬さとその変化を
表わす材料状態量を計測し、こ几をもとに材料特性を算
出し、それらの算出値をもとに上記構造部材が使われて
いる機器の運転履歴に応じて非定常運転のくり返しによ
って蓄積される疲労損傷tと定常運転の継続によって蓄
積されるクリープ損傷量とからなるき裂発生までの構造
部材の損傷量を算出し、許容値と比較することによりき
裂が発生するまでの期間を予知診断できるようにしたこ
とを特徴とする、高温で使用される構造部材の損傷診断
方法。 2、前記疲労損傷量は材料の硬さから算出される低サイ
クル疲労特性に基いて算出し、クリープ損傷量は材料の
硬さから算出されるクリープラブチャ特性に基いて算出
するようにしたことを特徴とする特許請求の範囲第1項
に記載の損傷診断方法。 3、前記構造部材の材料の硬さから、高温長時間使用に
より変化した後の材料特性である引張特性、低サイクル
疲労特性、クリープラブチャ特性を算出するようにした
ことを特徴とする特許請求の範囲第1項に記載の損傷診
断方法。 4、前記引張特性である引張強さと耐力は温度の関数で
ある2個の係数を含むビッカース硬さの一次式により算
出するようにしたことを特徴とする特許請求の範囲第3
項に記載の損傷診断方法。 5、前記低サイクル疲労特性は、ビッカース硬さの関数
である係数と指数を含む弾性歪範囲と破損繰り返し数と
の関係式とビッカース硬さによらない係数と指数を含む
塑性歪範囲と破損繰り返し数との関係式とから算出する
ようにしたことを特徴とする特許請求の範囲第3項に記
載の損傷診断方法。 6、前記クリープラブチャ特性は、温度と破断時間の関
係を示すラーンンミラ・−パラメータを応。 力の関数である2個の係数を含むビッカース硬さの一次
式で表わすことにより算出するようにしたことを特徴と
する特許請求の範囲第3項眞記載の損傷診断方法。 7、前記許容値は、作用応力に対1゛る許容応力値と、
き裂発生知対する疲労損傷量、クリープ損傷量および疲
労・クリープ組み合せ損傷量のき裂発生限界損傷値であ
ることを特徴とする特許請求の範囲第1項に記載の損傷
診断方法。 8前記許容応力値は、材料の硬さから算出される引張強
さ、クリープラブチャ特性から算出し、き裂発生限界損
傷値はあらかじめ設定しておくようにしたことを特徴と
する特許請求の範囲第7項に記載の損傷診断方法。 9、高温で使用さ扛る構造部材の使用状態を表ゎす使用
状態量を検出する検出装置と、構造部材の材料の硬さと
その変化を表わす材料状態量を計測する硬さ計測装置と
;前記検相装置により検出された使用状態量から構造部
材に発生する温度と応力を算出する温度応力算出器と、
前記硬さ計測装置によって計測された材料の硬さから材
料特性を算出する材料特性算出器と、構造部材の損傷量
演算に必要な運転履歴や運転状態を表わすパラメータを
設定する条件設定器と、前記温度応力算出器と材料特性
算出器からの出力と条件設定器によって設定さルた設定
値をもとに損傷の蓄積葉を演算する損傷演算器と、前記
温度応力算出器と材料特性算出器の出力から構造部材の
許容値を算出する許容値算出器と、前記損傷演算器と許
容値算出器との出力を比較して構造部材にき裂が発生す
るまでの期間を予知診断する診断装置と、診断データを
表示し異常の発生が予知さnた場合に警報を発する表示
轡報装置とを備えてなる構造部材の損傷診断装置濯。 10、前記条件設定器は、機器の運転開始時から本装置
が設置されるまでの期間中の運転履歴や運転状態の損傷
値の蓄積の演算に必要な全てのパラメータを設定するこ
とができるようにしたことを特徴とする特許請求の範囲
第9項記載の構造部材の損傷診断装置。 】1.前記硬さ計測装置は圧子と、この圧子を駆動する
油圧シリンダ装置と圧子の変位量を検出する検出器とを
有し、測定面に一定圧力で圧子を押しつけたときの変位
信号により硬さを算出するようにしたことを特徴とする
特許請求の範囲第9項記載の構造部材の損傷診断装置。
[Claims] 1. Detecting the usage state quantity representing the usage state of a structural member used at high temperatures, and using this to calculate the temperature and stress acting on the base structural member, and calculating the hardness and stress of the structural member. The material state quantities that represent these changes are measured, material properties are calculated based on this method, and based on these calculated values, unsteady operation is determined according to the operating history of the equipment in which the above structural members are used. Calculate the amount of damage to a structural member until a crack occurs, which is composed of the fatigue damage t accumulated due to repeated operations and the amount of creep damage accumulated due to continued steady operation, and compare it with the allowable value to calculate the amount of damage until a crack occurs. 1. A method for diagnosing damage to structural members used at high temperatures, the method being characterized by being able to predict and diagnose the period of . 2. The amount of fatigue damage is calculated based on the low cycle fatigue characteristics calculated from the hardness of the material, and the amount of creep damage is calculated based on the creep stability characteristics calculated from the hardness of the material. A damage diagnosis method according to claim 1, characterized in that: 3. A patent claim characterized in that, from the hardness of the material of the structural member, tensile properties, low-cycle fatigue properties, and creep-rubber properties, which are material properties after changes due to long-term use at high temperatures, are calculated. The damage diagnosis method according to item 1. 4. The tensile strength and yield strength, which are the tensile properties, are calculated by a linear formula of Vickers hardness that includes two coefficients that are a function of temperature.
Damage diagnosis method described in section. 5. The above-mentioned low-cycle fatigue characteristics are determined by the relationship between the elastic strain range and the number of failure cycles, including coefficients and indexes that are a function of Vickers hardness, and the plastic strain range and failure repetition rate, including coefficients and indexes that are not dependent on Vickers hardness. The damage diagnosis method according to claim 3, characterized in that the damage diagnosis method is calculated from a relational expression with a number. 6. The creep rupture characteristics are based on the learning mirror parameter that indicates the relationship between temperature and rupture time. 3. The damage diagnosis method according to claim 3, wherein the damage diagnosis method is calculated by expressing a Vickers hardness by a linear equation including two coefficients that are a function of force. 7. The allowable value is an allowable stress value that is 1° relative to the applied stress;
2. The damage diagnosis method according to claim 1, wherein the crack initiation limit damage value of fatigue damage amount, creep damage amount, and fatigue/creep combination damage amount is used for crack initiation detection. 8. The allowable stress value is calculated from the tensile strength calculated from the hardness of the material and the creep rubber property, and the crack initiation limit damage value is set in advance. Damage diagnosis method according to scope item 7. 9. A detection device for detecting a usage state quantity representing the usage state of a structural member used at high temperatures, and a hardness measuring device for measuring a material state quantity representing the hardness of the material of the structural member and changes thereof; a temperature stress calculator that calculates the temperature and stress generated in the structural member from the usage state quantity detected by the phase detection device;
a material property calculator that calculates material properties from the hardness of the material measured by the hardness measuring device; a condition setter that sets parameters representing the operating history and operating state necessary for calculating the amount of damage to the structural member; a damage calculator that calculates the accumulated amount of damage based on the outputs from the temperature stress calculator and the material property calculator and the set values set by the condition setter; and the temperature stress calculator and the material property calculator. an allowable value calculator that calculates an allowable value of a structural member from the output of the above, and a diagnostic device that compares the outputs of the damage calculator and the allowable value calculator to predict and diagnose a period until a crack occurs in the structural member. and a display/alarm device that displays diagnostic data and issues an alarm when the occurrence of an abnormality is predicted. 10. The condition setting device is capable of setting all parameters necessary for calculating the operation history and accumulation of damage values of operating conditions during the period from the start of operation of the equipment until the installation of this device. A damage diagnosis device for a structural member according to claim 9, characterized in that: ]1. The hardness measuring device has an indenter, a hydraulic cylinder device that drives the indenter, and a detector that detects the amount of displacement of the indenter, and measures the hardness based on a displacement signal when the indenter is pressed against a measurement surface with a constant pressure. 10. The structural member damage diagnosis device according to claim 9, characterized in that the damage diagnosis device for structural members is configured to calculate the damage.
JP17574883A 1983-09-22 1983-09-22 Method and apparatus for diagnosing damage to structural member used at high temperature Granted JPS6067838A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17574883A JPS6067838A (en) 1983-09-22 1983-09-22 Method and apparatus for diagnosing damage to structural member used at high temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17574883A JPS6067838A (en) 1983-09-22 1983-09-22 Method and apparatus for diagnosing damage to structural member used at high temperature

Publications (2)

Publication Number Publication Date
JPS6067838A true JPS6067838A (en) 1985-04-18
JPH0127378B2 JPH0127378B2 (en) 1989-05-29

Family

ID=16001558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17574883A Granted JPS6067838A (en) 1983-09-22 1983-09-22 Method and apparatus for diagnosing damage to structural member used at high temperature

Country Status (1)

Country Link
JP (1) JPS6067838A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63167299U (en) * 1987-04-21 1988-10-31
JP2005134115A (en) * 2003-10-28 2005-05-26 Babcock Hitachi Kk Diagnostic method and risk evaluation method for tendency of low-cycle fatigue damage of equipement
JP2020003373A (en) * 2018-06-29 2020-01-09 東芝エネルギーシステムズ株式会社 Lifetime prediction method, lifetime prediction device, and lifetime prediction device program

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU752024B2 (en) * 2000-04-14 2002-09-05 Kabushiki Kaisha Toshiba Method and equipment for assessing the life of members put under high in-service temperature environment for long period

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63167299U (en) * 1987-04-21 1988-10-31
JP2005134115A (en) * 2003-10-28 2005-05-26 Babcock Hitachi Kk Diagnostic method and risk evaluation method for tendency of low-cycle fatigue damage of equipement
JP2020003373A (en) * 2018-06-29 2020-01-09 東芝エネルギーシステムズ株式会社 Lifetime prediction method, lifetime prediction device, and lifetime prediction device program

Also Published As

Publication number Publication date
JPH0127378B2 (en) 1989-05-29

Similar Documents

Publication Publication Date Title
RU2617720C2 (en) Device and method for forecasting and optimization of gas turbine service life
US6568254B2 (en) Method for monitoring the creep behavior of rotating components of a compressor stage or turbine stage
EP0430857A2 (en) Method for extending the useful life of boiler tubes
JP2003303014A (en) Maintenance management method for plant equipment and device
US8746049B2 (en) Creep indication system and method for determining creep amount
CN109783972B (en) Method for monitoring leakage flow in check valve based on fluid-solid coupling analysis and calculation
JPS6067838A (en) Method and apparatus for diagnosing damage to structural member used at high temperature
US8784056B2 (en) System and turbine including creep indicating member
JP3652418B2 (en) Corrosion fatigue damage diagnosis prediction method for boiler water wall pipe
CN111222277B (en) Vibration evaluation method for inlet and outlet pipelines of booster pump of gas transmission station
JP2003106947A (en) Method for evaluating creep remaining service life
JP3458271B2 (en) Heat transfer tube remaining life evaluation device
JPS6067837A (en) Method and apparatus for diagnosing damage to structural member used at high temperature
JPH04282455A (en) Method and apparatus for maintenance control of structure part
JPS58211625A (en) Method for estimating life of high temperature fluid container
JP2015190950A (en) Life evaluation method and life evaluation device
RU2571018C2 (en) Method to determine pipeline service life
JP2002156325A (en) Surface crack depth analytical method of metal member
Kristensen et al. Full-scale validation of axial carcass loads in flexible pipe structure from cyclic pressure and temperature
JPS60196657A (en) Apparatus for damage diagnosis of structural member used at high temperature
JPS61140838A (en) Method for diagnosing structural member
JPS61140839A (en) Method and device for diagnosing thermal fatigue of structural member
JP5543954B2 (en) Creep strain inspection method and inspection apparatus
JPS60182305A (en) Damage judging device of steam turbine
JP3533517B2 (en) Life prediction method for high temperature parts