JPS6067610A - Steel making method - Google Patents

Steel making method

Info

Publication number
JPS6067610A
JPS6067610A JP58173960A JP17396083A JPS6067610A JP S6067610 A JPS6067610 A JP S6067610A JP 58173960 A JP58173960 A JP 58173960A JP 17396083 A JP17396083 A JP 17396083A JP S6067610 A JPS6067610 A JP S6067610A
Authority
JP
Japan
Prior art keywords
nozzle
blowing
oxygen
lance
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58173960A
Other languages
Japanese (ja)
Inventor
Hidemasa Nakajima
中島 英雅
Shozo Okamura
岡村 祥三
Masanobu Sueyasu
末安 正信
Sakae Kojo
古城 栄
Masaharu Anezaki
姉崎 正治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP58173960A priority Critical patent/JPS6067610A/en
Publication of JPS6067610A publication Critical patent/JPS6067610A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/30Regulating or controlling the blowing
    • C21C5/32Blowing from above
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)

Abstract

PURPOSE:To make a scrap ratio in raw material to increase markedly and to decrease the cost of raw materials for steel making using converter which provides top-blowing lance having nozzles used for blowing granular carbon materials, oxygen gas and slag forming agents. CONSTITUTION:On refining steel by means of converter, the production cost of steel can be decreased by lowering the ratio of expensive molten steel used and by increasing that of inexpensive steel scrap. To this end, refining is conducted by charging both steel scrap and molten steel into the converter 1, followed by top-blowing using lanch providing nozzles a1, a2 and a3, subsequently pulverised carbon and other carbonaceous raw materials are blown to develop decomposed H2 and CO gas into converter. With this gasification heat, raw materials in the furnace are heated, furthermore heat quantity is increased owing to the development of heat on secondary combustion of H2 and CO, which permits the amount of scrap to increase markedly, resulting in reduced cost of steel making.

Description

【発明の詳細な説明】 この発明は、鉄浴石炭ガス化法を利用しfニー 1Fl
iスクラップ配合の製鋼法に関する。
[Detailed Description of the Invention] This invention utilizes an iron bath coal gasification method to
This article relates to a steel manufacturing method using i-scrap blending.

製鋼技術の中でスクラップ大承溶解プロセスとしては、
LANCAR−FIX 5 ンス(ARBED ) ;
k ハシメとして、脱炭反応を行なうための主精錬用酸
素ノズルとその外側に主として、脱炭反応による生成物
であるCOO20炉内2次燃焼を目的とする酸素ノズル
を有する精錬用ランスを用いて、炉内2次燃焼を行ない
、スクラップ比を増大させる上吹転炉2次燃焼方法があ
る。しかし、この方法では、通常の溶銑を用いた場合の
脱炭量はせいぜい45kq/溶銑トン程度であり、これ
に2次燃焼を付加しても犬[IJなスクラップ比の上昇
は望めない。この発明者らの現在までの大型転炉(1,
00)ン以上)の実績からいえば、炉内転炉ガス2次燃
焼率は、せいぜい20%、スクラップ比で8〜9%の上
昇が限度である。
The scrap melting process in steelmaking technology is
LANCAR-FIX 5th (ARBED);
k As a hook, a refining lance is used, which has a main refining oxygen nozzle for carrying out the decarburization reaction and an oxygen nozzle outside of the main refining oxygen nozzle mainly for the purpose of secondary combustion in the furnace of COO20, which is a product of the decarburization reaction. There is a top-blown converter secondary combustion method that increases the scrap ratio by performing secondary combustion in the furnace. However, in this method, the amount of decarburization when using normal hot metal is about 45 kq/ton of hot metal at most, and even if secondary combustion is added to this, no increase in the scrap ratio can be expected. The inventors have developed a large-scale converter (1,
Based on the experience of 00), the rate of secondary combustion of converter gas in the furnace is at most 20%, and the scrap ratio is limited to an increase of 8 to 9%.

さらに、上記と同様の考え方を酸素上吹転炉のみならず
、底吹転炉に応用したOBMS(高スクラップ配合の酸
素底吹転炉法) /KIviS (高スクラップ配合の
底吹転炉法)がある。この方法は、底吹転炉の底吹酸素
/炭化水素系冷却ガスによるスクラップ比低下の防止対
策として提案され1こもので、全送1ン猷の230〜7
0%を上吹ランスま1こは炉体に設けられtこサイド1
−イヤーから2次燃焼および脱炭j夕゛応を目的として
吹込む方法である。しかし、この方法についても、1j
tI記の上吹転炉2次燃焼プロセスと同様、スクラップ
比の向−ヒは高々8〜9%である。
Furthermore, OBMS (oxygen bottom-blown converter method with high scrap content) / KIviS (bottom-blown converter process with high scrap content) applies the same concept as above to not only oxygen top-blown converters but also bottom-blown converters. There is. This method was proposed as a measure to prevent the scrap ratio from decreasing due to bottom-blown oxygen/hydrocarbon cooling gas in bottom-blown converters.
0% top blowing lance is installed in the furnace body and side 1
- This is a method of blowing from the ear for the purpose of secondary combustion and decarburization. However, regarding this method as well, 1j
Similar to the top-blown converter secondary combustion process described above, the scrap ratio increase is at most 8-9%.

一方、上記の転炉排ガスの炉内2次燃焼プロセスの限界
を越えるべく提案された方法として、微粉炭を底吹羽口
より吹込みガス化しつつ、上吹酸素により2次燃焼を行
なうという鳶え方に基づいた転炉法がいくつか提案され
ている。[7かし、これらは、石炭を炉底より複数本の
ノズルから吹込むため、微粉炭によるノズルの閉塞や配
管の摩耗、炉底耐大物の損耗等の問題点を有している。
On the other hand, as a method proposed to overcome the limitations of the above-mentioned in-furnace secondary combustion process of converter exhaust gas, a method is proposed in which pulverized coal is blown into the bottom blowing tuyere and gasified, while secondary combustion is performed using top-blown oxygen. Several converter methods have been proposed based on this method. [7]However, these methods have problems such as clogging of the nozzles by pulverized coal, wear of the piping, and wear and tear of the heavy-duty materials at the bottom of the hearth, since coal is blown into the furnace from the bottom through multiple nozzles.

また、石炭を底吹きするために転炉トラニオンの改造、
微粉炭分配器の炉底設置といった炉体改造を必要とし、
設備費が高くつく欠点がある。
Also, modification of converter trunnion for bottom blowing of coal,
It is necessary to modify the furnace body, such as installing a pulverized coal distributor at the bottom of the furnace.
The disadvantage is that the equipment costs are high.

これに対して、石炭等の炭素質物質を底吹羽1」、上吹
ランスのいずれからも供給せず、炉頂から粉粒状または
塊状で投入しつつ、上吹ランスにて脱炭および炉内ガス
2次燃焼用の酸素を吹込む方法がある。しかし、この方
法は、炉頂投入方式であるため、炭素質物質が粉粒状で
あると上吹酸素ジェットにより吹飛ばされて排ガス中に
飛1t(シ、炉外に持ち去られてしまい、該炭素質物質
が有効に利用されないというzt点がある。そこで、炭
素質物質の径を大として塊状で投入すると、酸素ジェッ
トによる飛散現色はないものの、一定の吹錬時間中に溶
鋼に溶融し利用できる炭素質物質の投入量が限られてく
るという問題を生じる。従って、大量の塊状炭素質3普
を投入した場合には、終点における該炭素質物質の溶は
残りが溶鋼上に浮遊し、%〔C〕をはじめとする。成分
外れや、炉傾動中にスラグ中(Fed)、(Fe20m
)と、crtら浮遊炭素質物質が急激に反応して溶鋼、
スラグの炉口よりの突出といった問題を引き起こす。こ
のような問題は、揮発成分が多く自発的に亀裂が入る石
炭の場合にも生ずるが、特に著しい傾向は揮発成分の少
ないコークス、チャー等の場合に見られる。
On the other hand, carbonaceous materials such as coal are not supplied from either the bottom blower 1'' or the top blower lance, but are fed in the form of powder or lumps from the top of the furnace, and the top blower lance is used to decarburize and heat the furnace. There is a method of blowing oxygen for secondary combustion of the internal gas. However, since this method uses a method of charging the carbonaceous material to the top of the furnace, if the carbonaceous material is in the form of powder, it will be blown away by the top-blown oxygen jet and carried away into the exhaust gas outside the furnace. There is a zt point at which the carbonaceous material is not used effectively. Therefore, if the diameter of the carbonaceous material is increased and it is introduced in the form of a lump, although there is no discoloration due to scattering due to the oxygen jet, it will melt into the molten steel and be used during a certain blowing time. A problem arises in that the amount of carbonaceous material that can be produced is limited. Therefore, when a large amount of lumpy carbonaceous material is introduced, the remaining carbonaceous material will float on the molten steel at the end point, and the remaining carbonaceous material will float on the molten steel. %[C].When components are removed, during furnace tilting, (Fed), (Fe20m
), CRT and other suspended carbonaceous substances react rapidly to form molten steel,
This causes problems such as slag protruding from the furnace mouth. Such a problem also occurs in the case of coal, which contains many volatile components and spontaneously cracks, but a particularly remarkable tendency is seen in the case of coke, char, etc., which have few volatile components.

ところで、石炭等炭素質物質を高温の溶融鉄浴中に投入
してガス化する方法として、石炭等炭素質物質を上吹ラ
ンスにより微粉状で吹込み、ガス化する方法がある。こ
の方法は、一般に鉄浴石炭ガス化法と呼ばれているもの
で、その特徴とじては、微粉状の炭素質物質とガス化剤
としての酸素を上吹きしているため、底吹ノズル閉塞等
の問題がなく操業が容易でかつ安定するばかりでなく、
炭素質物質の利用効率が98%以上であること、GO,
B を多く含みかつ低Sの清浄な中力1]リーガスがイ
得られる等、多大な利点をイイし、水蒸気7と吹込まな
い場合、ガス化により発生する金利tj’!jをスクラ
ップ溶解に利用することができる。
By the way, as a method of gasifying a carbonaceous substance such as coal into a high-temperature molten iron bath, there is a method of blowing the carbonaceous substance such as coal in the form of fine powder using a top blowing lance and gasifying it. This method is generally called the iron bath coal gasification method, and its characteristics include top-blowing of finely powdered carbonaceous material and oxygen as a gasifying agent, which prevents bottom-blowing nozzles from clogging. Not only is the operation easy and stable without problems such as
The utilization efficiency of carbonaceous materials is 98% or more, GO,
It has great advantages, such as the ability to obtain a clean neutral force containing a large amount of B and low S, and the interest rate generated by gasification is tj'! j can be used for scrap melting.

この発明者らは、かかる点に着目し、上記の鉄浴石炭ガ
ス化法を利用してスクラップを大喰溶Mlし得る方法を
見い出しfこのである。
The inventors have focused on this point and have discovered a method that allows a large amount of molten metal to be produced from scrap by utilizing the above-mentioned iron bath coal gasification method.

この発明の要旨は、高温の溶融鉄浴中に石炭、コークス
、ピッチ、重質油−5の炭素α3而を酸素と共に吹込ん
でガス化すると同時に、スクラップを溶解精錬する方法
であって、中心部に石炭等炭素質物質吹込み用ノズルを
有し、該ノズルの外側に酸素等ガス化’MU吹込み用ノ
ズルと、炉内生成ガス2次燃焼用の酸素等酸化剤吹込み
用ノズルを・有する非浸演上吹多孔ランスを用い、炭し
・:(質物臀のガス化を行なうと同時に、炉内生成ガス
のzl17<燃焼を行なわせつつスクラップを溶解精錬
することを特徴とする製鋼法であり、また、ランスの中
心部に設けた石炭等炭素質物質吹込み用ノズルの外側に
、酸素等ガス止剤吹込み用ノズルと、該ガス化剤吹込み
用ノズルの出口近傍で合流する媒溶剤吹込み用ノズル、
および炉内生成ガス2次燃焼用の酸素等酸化剤吹込み用
ノズルを設けた非浸漬上吹多孔ランスを用い、炭素質物
質のガス化を行なうと同時に、炉内生成ガスを2次燃焼
させ、さらに石灰石等造滓剤を粉粒状でガス化剤吹込み
用ノズルの出口近傍でガス化剤に混入させて吹込むこと
を特徴とする製鋼法にある。
The gist of this invention is to provide a method for blowing coal, coke, pitch, and heavy oil-5 carbon alpha 3 together with oxygen into a high-temperature molten iron bath to gasify it, and at the same time melting and refining scrap. It has a nozzle for injecting carbonaceous substances such as coal, and a nozzle for injecting gasification 'MU' such as oxygen and a nozzle for injecting oxidizers such as oxygen for secondary combustion of the gas produced in the furnace on the outside of this nozzle. A steelmaking method characterized by melting and refining scrap using a non-immersion top-blown porous lance having charcoal. In addition, on the outside of the nozzle for blowing carbonaceous substances such as coal provided in the center of the lance, a nozzle for blowing a gas stopper agent such as oxygen and a nozzle for blowing a gasifying agent are joined near the outlet of the nozzle for blowing a gasifying agent. Nozzle for blowing solvent,
A non-immersed top-blown porous lance equipped with a nozzle for injecting oxidizers such as oxygen for secondary combustion of the gas produced in the furnace is used to gasify the carbonaceous material and at the same time perform secondary combustion of the gas produced in the furnace. Further, there is a steel manufacturing method characterized in that a slag-forming agent such as limestone is mixed with the gasifying agent in the vicinity of the outlet of a gasifying agent injection nozzle and injected in the form of powder.

鉄浴石炭ガス化法は、前記した通り、高温の溶融鉄浴中
に石炭、コークス、ピッチ、重質油等の炭素質物質を酸
素等ガス化剤と共に吹込んでガス化する方法であり、そ
の上吹ランスとしては、中心部に炭素質物質を吹込むノ
ズルがあり、該ノズルの周囲に酸素等ガス化剤を吹込む
ノズルを設けたものが一般的である。しかし、このよう
な非理\/ 漬上吹多孔ランスを用いてガス化スクラップ溶解精錬を
行なう方法では、炭素質物質の性状によりガス組成がほ
ぼ決定されてしまい、生成ガス組成を変化させることに
よりガス化の際の余剰N5’e増大させることが困難で
ある。また、所定のスクラップ溶解のための熱量を得る
ためには、大川の炭素質物質を用いて大量の中カロリー
ガスを発生させる必要があり、精錬に長大な時間を要し
たり、ガスバランスの関係で中カロリーガスが余剰とな
った場合には不必要なガスを発生、放散しなければなら
なかった。
As mentioned above, the iron bath coal gasification method is a method in which carbonaceous materials such as coal, coke, pitch, and heavy oil are injected into a high-temperature molten iron bath together with a gasification agent such as oxygen to gasify them. A top-blowing lance generally has a nozzle in the center for blowing carbonaceous material, and a nozzle for blowing a gasifying agent such as oxygen around the nozzle. However, in this unreasonable method of gasification scrap melting and refining using a dipping porous lance, the gas composition is almost determined by the properties of the carbonaceous material, and the gas composition can be changed by changing the produced gas composition. It is difficult to increase the surplus N5'e at the time of conversion. In addition, in order to obtain the required amount of heat for melting scrap, it is necessary to generate a large amount of medium-calorie gas using Okawa's carbonaceous materials, which requires a long time for refining and has gas balance problems. If there was a surplus of medium-calorie gas, unnecessary gas had to be generated and dissipated.

そこで、この発明者らは種々検討し、同一ランスから石
炭等炭素質物質および酸素等ガス化剤と共に、生成ガス
の炉内2次燃焼用の酸素等酸化剤を吹込むことにより、
通常のガス化に比し大illのガス化余剰熱を発生せし
め、少量の炭素質物質で多量のスクラップを溶解精錬す
ることが可能であることを見い出した。
Therefore, the inventors conducted various studies, and by injecting an oxidizing agent such as oxygen for secondary combustion of the generated gas in the furnace together with a carbonaceous material such as coal and a gasifying agent such as oxygen from the same lance,
It has been discovered that it is possible to generate a large amount of gasification surplus heat compared to normal gasification, and to melt and refine a large amount of scrap with a small amount of carbonaceous material.

すなわち、中心部に石炭等炭素質物質吹込み用ノズルを
有し、該ノズルの外側に酸素等ガス止剤吹込み用ノズル
と、炉内生成ガス2次燃焼用の酸素等酸化剤吹込み用ノ
ズルを有する非浸漬上吹多孔ランスを用いることにより
、転炉排ガスの炉内2次燃焼のみによる限界を、積極的
な微粉状の炭素質物質の吹込みと、該炭素質物質のガス
化による生成ガスの2次燃焼により自在にスクラップ比
を上昇させることが可能である。また、このランスによ
れば、転炉炉体の改造の必要がなく、1本のランスで炭
素質物質の吹込み、脱炭精錬および生成ガス2次燃焼を
行なえることから、設備も非常に簡累化する。さらに、
微粉炭吹込み系が上吹きであるため、ノズル閉塞、漏鋼
といったトラブルも皆無である。また、石炭底吹きの場
合は、底吹ジェットの吹抜け、およびノズル閉塞条件よ
り、一定の範囲に微粉炭供給速度を保たなければならな
いが、本発明のように上吹きの場合にはその必要は全く
なく、微粉炭供給速度を自由に設定することができる。
That is, it has a nozzle for injecting carbonaceous substances such as coal in the center, and a nozzle for injecting a gas stopper such as oxygen on the outside of the nozzle, and a nozzle for injecting an oxidizing agent such as oxygen for secondary combustion of gas produced in the furnace. By using a non-immersed top-blown porous lance with a nozzle, we can overcome the limitations of only secondary combustion of converter exhaust gas in the furnace by actively injecting finely divided carbonaceous material and gasifying the carbonaceous material. It is possible to freely increase the scrap ratio by secondary combustion of the generated gas. Additionally, with this lance, there is no need to modify the converter body, and a single lance can perform injection of carbonaceous materials, decarburization refining, and secondary combustion of the produced gas, making the equipment extremely easy to use. Simplify and accumulate. moreover,
Since the pulverized coal injection system is top-blown, there are no problems such as nozzle clogging or steel leakage. In addition, in the case of coal bottom blowing, the pulverized coal supply rate must be kept within a certain range due to the blow-through of the bottom blowing jet and the nozzle blockage conditions, but in the case of top blowing as in the present invention, this is not necessary. The pulverized coal supply rate can be set freely.

さらにまた、石炭等炭素質物質を微粉状で上吹ランス中
心孔よりキャリアガスで吹込みつつ、その外周のノズル
から主精錬用酸素ジェットを供給するので、石炭の飛散
損失はほとんどなく、炭素質物質の利用効率は98%以
上を期待できる。しかも、石炭を微粉状で主精錬用酸緊
とほぼ化学量論的に添加することができるので、任意の
時点で吹錬を止めても、炭素質物質の溶は残りは全くな
い。また、炭素質物質は微粉状で吹込むので、過剰に吹
込んでも溶は残りはない。
Furthermore, since the main refining oxygen jet is supplied from the nozzle on the outer periphery while finely powdered carbonaceous substances such as coal are blown into the top blowing lance center hole with carrier gas, there is almost no scattering loss of coal, and carbonaceous substances are Material utilization efficiency can be expected to be over 98%. Moreover, since coal can be added in fine powder form to the main refining acid mixture almost stoichiometrically, even if blowing is stopped at any point, no dissolved carbonaceous material remains. Furthermore, since the carbonaceous material is blown in as a fine powder, there will be no residual solution even if it is blown in excessively.

また、中心部に石炭等炭素質物質吹込み用ノズルを有し
、該ノズルの外側に酸素等ガス止剤吹込み用ノズルと、
該ガス化剤吹込み用ノズルの出I」近傍で合流する媒溶
剤吹込み用ノズルと、炉内生成ガス2次燃焼用の酸素等
酸化剤吹込み用ノズルを有する非浸漬上吹多孔ランスを
用いる仁とにより、前記の効果に加えて、精錬中にスラ
グの滓化および脱燐反応の促進等をはかることができる
In addition, it has a nozzle for blowing carbonaceous substances such as coal in the center, and a nozzle for blowing a gas stopper such as oxygen on the outside of the nozzle,
A non-immersed top-blowing porous lance having a nozzle for injecting a solvent that merges near the outlet I of the nozzle for injecting the gasifying agent, and a nozzle for injecting an oxidizing agent such as oxygen for secondary combustion of the gas produced in the furnace. Depending on the grain used, in addition to the above-mentioned effects, it is possible to promote slag formation and dephosphorization reaction during refining.

すなわち、炭素質物質のガス谷(クラップ溶@q精錬中
に、石灰石等造滓剤を粉粒状でガス化剤吹込み用ノズル
の出口近傍でガス化および脱炭精錬用酸素に混入させて
吹込むことにより、該酸素ジェットにより形成される火
点に供給することがiIJ能となるので、ランスノズル
を損耗させることなく、吹錬の制御性を保ったままで、
しかも高価な高圧の粉体供給装置を設置することなく、
スラグの滓化および脱鱗反応の促進、スロッピングの成
域等の効果を得ることができる。
In other words, during the gas valley of carbonaceous materials (clap melting @q refining, slag-forming agents such as limestone are mixed with oxygen for gasification and decarburization refining in the vicinity of the exit of the gasifying agent injection nozzle in powder form and blown into the gas valley). By injecting the oxygen, it becomes possible to supply the oxygen to the spark point formed by the oxygen jet, so the lance nozzle is not worn out and the blowing controllability is maintained.
Moreover, there is no need to install expensive high-pressure powder supply equipment.
It is possible to obtain effects such as promotion of slag formation and descaling reaction, and improvement of slopping area.

以下、この発明の一実施例を図面に基づいて説明する。Hereinafter, one embodiment of the present invention will be described based on the drawings.

この発明法を実施するための装置としては、基本的には
第1図に示すごとく、溶融鉄(!l)を貯える溶解炉(
1)(実際は上吹転炉である)、石炭、コークス2ピツ
チ、重質油等の炭素質物質(7)と酸素等ガス化剤(8
)、2次燃焼用酸素等酸化剤(9)、造滓剤等媒溶剤(
10)を吹込む非浸漬多孔ランス(2)、ガス回収用ス
カート(3)およびフード(4)、副原料投入口(6)
、Ar、 N! p Ox p Cow等の攪拌ガスを
吹込むための底吹ノズル(6)とから溝成されている。
As shown in Fig. 1, the equipment for carrying out the method of this invention is basically a melting furnace (!l) that stores molten iron (!l).
1) (actually a top-blown converter), coal, two pitches of coke, carbonaceous materials such as heavy oil (7) and gasifying agents such as oxygen (8)
), oxidizers such as oxygen for secondary combustion (9), solvents such as slag-forming agents (
10) Non-immersed porous lance (2) for blowing gas, gas recovery skirt (3) and hood (4), auxiliary raw material inlet (6)
, Ar, N! A groove is formed from a bottom blowing nozzle (6) for blowing a stirring gas such as pOxpCow.

この発明における非浸漬上吹多孔ランス(2)は、例え
ば第2図および第3図に示すものを用いる。
As the non-immersed top-blown porous lance (2) in this invention, for example, those shown in FIGS. 2 and 3 are used.

第2図に示す精錬用ランス(L4)は、ランス本体(2
−1)の中心部に粉粒状の炭素質物質等を吹込むことが
できる粉粒体吹込み用ノズル(a8)を有し、このノズ
ル(a8)の周囲にガス化および脱炭精錬用酸素吹込み
ノズル(aりを具備し、さらに酸素吹込み用ノズル−(
a、 )と同一円周上もしくは外側に生成ガスの炉内2
次燃焼を主たる目的とする酸素等酸化剤吹込みノズル(
a、)を有している。
The refining lance (L4) shown in Figure 2 consists of a lance body (2
-1) has a powder injection nozzle (a8) capable of injecting powder and granular carbonaceous substances, etc. into the center, and oxygen for gasification and decarburization refining is provided around this nozzle (a8). A blowing nozzle (equipped with an aperture, and an oxygen blowing nozzle (
Inside the furnace 2 of the generated gas on the same circumference as a, ) or outside
Oxidizer injection nozzle whose main purpose is secondary combustion (
a,).

このランスにおいて、ガス化および脱炭精錬用酸素吹込
みノズル(al)のランス軸に対する傾斜角度θ、は、
通常10°位であるが、2次燃焼用カズル(a、 )は
ランス軸に対する傾斜角度θ2を20〜60°に設定す
る。その理由はこの発明者らの実験結果による。
In this lance, the inclination angle θ of the oxygen injection nozzle (al) for gasification and decarburization with respect to the lance axis is as follows:
The angle of inclination θ2 of the secondary combustion cuzzle (a, ) with respect to the lance axis is set to 20 to 60°, although the angle is normally about 10°. The reason for this is based on the experimental results of the inventors.

すなわち、ノズル(a、)から微粉炭を吹込まずに通常
の転炉精錬を行なった場合、ノズル(a、)の傾斜角θ
1とスクラップ比増大量△SC(%)=【(その条件で
のスクラップ比)−(ベースQ)スクラップ比))との
間には、その他の条件を同一とすれば、次の関係が成立
する。
That is, when normal converter refining is performed without injecting pulverized coal from nozzle (a,), the inclination angle θ of nozzle (a,)
1 and scrap ratio increase △SC (%) = [(scrap ratio under that condition) - (base Q) scrap ratio)), assuming other conditions are the same, the following relationship holds true. do.

θ2が20°以下では、2次燃焼用酸素ジェットはその
ほとんどが脱炭反応に寄与し、2次燃焼効果は小さくな
り、02が60°以上では2次燃焼は起こるが、フレー
ムが浴に到達しないために浴への若熱効果が小さく、さ
らに炉壁の多大な損耗をきたす。かかる理由により、2
次燃焼用ノズル(a、)のランス軸に対する傾斜角度θ
2を20〜60゜に設定した。
When θ2 is 20° or less, most of the oxygen jet for secondary combustion contributes to the decarburization reaction, and the secondary combustion effect becomes small. When θ2 is 60° or more, secondary combustion occurs, but the flame does not reach the bath. Because of this, the effect of young heat on the bath is small, and furthermore, it causes a lot of wear and tear on the furnace walls. For this reason, 2
Inclination angle θ of the next combustion nozzle (a,) with respect to the lance axis
2 was set at 20-60°.

すなわち、上記構造のランス(Ll)は、ノズル(a、
)から微粉炭等の粉粒状炭素質物質を、ノズル(al)
よりガス化および脱炭精錬用酸素をそれぞれ吹込むとと
もに、ノズル(a、)から生成ガスを2次燃焼させるた
めの酸素を吹込む方式である。
That is, the lance (Ll) with the above structure has nozzles (a,
) from the nozzle (al).
In this method, oxygen for gasification and decarburization refining is injected, and oxygen for secondary combustion of the generated gas is injected from the nozzle (a,).

また、第3図に示す精錬用ランス(Lりは、ランス本体
(2−2)の中心部に設けた粉粒体吹込み用ノズル(a
、)、該ノズルの周囲に設け1こガス化および精錬用酸
素吹込みノズル(a□)、該ノズルの同一円周上もしく
は外側にランス軸に対する傾斜角度θ2を20〜60°
に設定した2次燃焼用ノズル(a3)に加えて、ノズル
(aりの出口近傍で合流し、中心部の粉粒体吹込み用ノ
ズル(al)とは別設の粉粒体吹込み用ノズル(b、)
を有している。
In addition, the refining lance (L) shown in Fig. 3 is the powder injection nozzle (a) provided in the center of the lance body (2-2).
), one oxygen blowing nozzle (a□) for gasification and refining is provided around the nozzle, and the inclination angle θ2 with respect to the lance axis is 20 to 60 degrees on the same circumference or outside of the nozzle.
In addition to the secondary combustion nozzle (a3) set to Nozzle (b,)
have.

すなわち、上記構造の精錬用ランス(L2)は、中心部
のノズル(a、)から粉粒状炭素質物質を、ノズル(a
l)からガス化および脱炭精錬用酸素を、ノズル(a、
)から2次燃焼用酸素をそれぞれ吹込むとともに、ノズ
ル(b、)からスラグの滓化、脱燐・脱硫反応の促進の
ための石灰石等造滓剤を吹込む方式である。
That is, the refining lance (L2) having the above structure transports the powdery carbonaceous material from the central nozzle (a) to the nozzle (a).
Oxygen for gasification and decarburization is transferred from the nozzle (a, l) to the nozzle (a,
In this method, oxygen for secondary combustion is injected from the nozzles (b, ), and a slag-forming agent such as limestone is injected from the nozzles (b, ) to turn the slag into slag and promote dephosphorization and desulfurization reactions.

なお、粉粒状の炭素質物質は、Ar、 N、 、 02
. CO□ガスや空気をキャリアガスとして炉内に吹込
まれる。
Note that the powdery carbonaceous material is Ar, N, , 02
.. CO□ gas or air is blown into the furnace as a carrier gas.

第1図に示す装置により、第2図に示す精錬用ランス(
L、)を用いてスクラップを溶解精錬する場合は、溶解
炉ftl内に所定量のスクラップを装入した後、相当量
の溶融鉄(温度約1300’O)を注湯し、ノズル(a
、)およびノズル(a、)から酸素を吹込んで吹錬を開
始する。その後、ランスのノズル(a、)より炭素質物
質の吹込みを開始する。
The refining lance shown in Fig. 2 (
When melting and refining scrap using a nozzle (a
Blowing is started by blowing oxygen from the nozzle (a, ) and the nozzle (a,). Thereafter, the injection of carbonaceous material is started from the nozzle (a,) of the lance.

炉内では、鉄浴中で炭素質物質の分解が起こり、H,、
COガス等が生成するとともに、このガス化反応による
熱により炉内の鉄浴が加熱されると同時に、ノズル(a
、)より吹込まれている酸素により生成ガスの2次燃焼
が行なわれて、炉内の鉄浴はさらに加熱される。その後
、所定時間経過すると炭素質物質の吹込みを停止し、そ
のまま吹錬を続行する。炭素質物質の吹込み停止後は、
ノズル(a、)のスプラッシュによる閉塞を防止するた
めにArガス等を流す。また、精錬開始〜終了まで炉底
に設けた底吹ノズル(6)よりArガス等を吹込んで浴
を撹拌する。
In the furnace, decomposition of carbonaceous materials takes place in an iron bath, producing H,...
While CO gas etc. are generated, the iron bath in the furnace is heated by the heat from this gasification reaction, and at the same time, the nozzle (a
, ) causes secondary combustion of the produced gas, and the iron bath in the furnace is further heated. Thereafter, after a predetermined period of time has elapsed, the blowing of the carbonaceous material is stopped and the blowing is continued. After stopping the injection of carbonaceous material,
Ar gas or the like is supplied to prevent the nozzle (a,) from being blocked by splash. Further, from the start to the end of refining, the bath is stirred by blowing Ar gas or the like from a bottom blowing nozzle (6) provided at the bottom of the furnace.

上記のごとく、炭素質物質の吹込みと、脱炭精蝕および
生成ガス2次燃焼用酸素の吹込みを同一ランスで行なう
ことができる精錬用ランスを用いて、炭素質物質のガス
化と炉内生成ガスの2次燃焼を行なうことにより、上吹
式鉄浴石炭ガス化法によるスクラップ溶解効果と、炉内
生成ガス2次燃焼によるスクラップ溶解効果を利用する
ことができる。
As mentioned above, a refining lance that can perform the injection of carbonaceous materials, the decarburization cleansing, and the injection of oxygen for secondary combustion of the produced gas in the same lance is used to gasify the carbonaceous materials and to inject the oxygen into the furnace. By performing secondary combustion of the internally generated gas, it is possible to utilize the scrap melting effect of the top-blown iron bath coal gasification method and the scrap melting effect of the secondary combustion of the in-furnace gas.

さらに、上記操業において、第3図に示すランス(L2
)を用いた場合には、ノズル(b、)より粉粒状の生石
灰等造滓剤を吹込み、ノズル(aりより吹込まれる酸素
ジェットに混合して火点に供給することが可能となるの
で、ランスノズルをf14FUさせることなく、吹錬の
制御性を保ったままでスラグの滓化促進、脱燐・脱硫−
反応の促進、スロッピングの低減等の効果を得ることが
できる。
Furthermore, in the above operation, the lance (L2
), it is possible to inject granular quicklime or other slag-forming agent from the nozzle (b,), mix it with the oxygen jet blown from the nozzle (a), and supply it to the fire point. Therefore, without setting the lance nozzle to f14FU, it is possible to promote slag slag formation, dephosphorization, and desulfurization while maintaining blowing controllability.
Effects such as acceleration of reaction and reduction of slopping can be obtained.

ナオ、上記の造滓剤効果をランス(L、 )を用いて実
現させる方法としては、ノズル(a、)を微粉状の炭素
質物質のみならず、粉粒状の生石灰等造滓剤の吹込みに
も供する方式を採用すればよい。
Nao, to achieve the above sludge effect using the lance (L, ), the nozzle (a,) can be used to inject not only fine powder carbonaceous material but also granular quicklime or other slag forming agent. It is sufficient to adopt a method that also provides the following information.

次に、この発明の実施例について説明する。Next, embodiments of the invention will be described.

〔実施例1〕 15 トンの純酸素上吹転炉であって、その炉底に内径
5騎φの底吹攪拌用ノズルを2本具備した複合吹錬炉に
より、第2図に示すランス構造であって、中心部の粉粒
体吹込み用ノズル(a、)、主精錬用酸素吹込み用ラバ
ールノズル(a2)、2次燃焼用酸素吹込用ストレート
ノズル(a=) ((’J’J斜角度30°)の径がそ
れぞれ16闘φ、14鰭φ、8,4) rnnφの多孔
5重管ランスを用い、第2表に示す精錬条件により操業
しfこ。
[Example 1] A 15-ton pure oxygen top-blowing converter furnace with a lance structure shown in FIG. A nozzle for blowing powder and granules in the center (a,), a Laval nozzle for blowing oxygen for main refining (a2), a straight nozzle for blowing oxygen for secondary combustion (a=) (('J'J Using porous quintuple tube lances with diameters of 16 mm, 14 fins, and 8 mm, and 4 mm diameter, with an oblique angle of 30°, the operation was carried out under the refining conditions shown in Table 2.

すなわち、該転炉内に所定量のスクラップを装入した後
、所定量の溶銑を注湯し、吹錬を開始した。吹錬開始後
3分経過時点で、上吹ランスのノズル(a、)より微粉
状に粉砕した第1表に示す組成の炭素質物質の吹込みを
開始し1こ。炭素質物質の吹込みは5分間行なって停止
した。この間の該炭素質物質の供給速度は、平均して約
2500kg7Jlrであつ1こ。また、酸素はノズル
(a2)より200ONytt’/fl r、 ノズル
(am)より800 Nnl/Hr吹込んだ。
That is, after charging a predetermined amount of scrap into the converter, a predetermined amount of hot metal was poured and blowing was started. Three minutes after the start of blowing, the blowing of a finely ground carbonaceous material having the composition shown in Table 1 was started through the nozzle (a,) of the top blowing lance. The blowing of the carbonaceous material was continued for 5 minutes and then stopped. The feeding rate of the carbonaceous material during this period was approximately 2,500 kg/7 Jlr on average. Further, oxygen was blown at 200 ONytt'/flr from the nozzle (a2) and 800 Nnl/Hr from the nozzle (am).

そして、炭素質物質の吹込み停止後もそのまま上記と同
じ酸素流量で吹錬を続行した。またこの時、ノズル(a
、)のスプラッシュによる閉塞を防止するためにArガ
スを100 Nn?/Hr流した。また、精錬中は全期
間を通じて、炉底ノズルよりArガスを90 Nnt’
 /l(r吹込んで浴を攪拌した。
Even after the blowing of the carbonaceous material was stopped, blowing was continued at the same oxygen flow rate as above. Also at this time, the nozzle (a
, ) Ar gas was added to 100 Nn? to prevent blockage due to splashing. /Hr flowed. Also, during the entire refining period, 90 Nnt' of Ar gas was supplied from the furnace bottom nozzle.
/l(r) to stir the bath.

〔比較例1〕 実施例1と同じ転炉により、第4図に示す構造であって
、主精錬用酸素を吹込むためのラバールノズル(a′2
)のスロート部径14厘πφ、2次燃焼を目的とする酸
素を吹込むためのストレートノズル(K・)の径8.9
wzφの多孔ランスを用い、第2表に示す精錬条件で吹
錬を実施しtコ。吹錬中の酸素流量はノズル<i、 >
より2000 Nd/Hr、ノズル(a’a )よりs
 o o Nnl/Hrであった。また、吹錬全期間を
通じて炉底ノズルよりArガスを9ONm/Hr吹込ん
で浴を攪拌した。
[Comparative Example 1] Using the same converter as in Example 1, a laval nozzle (a'2
) diameter of the throat part is 14 mm πφ, and the diameter of the straight nozzle (K・) for blowing oxygen for secondary combustion is 8.9 mm.
Using a wzφ porous lance, blowing was carried out under the refining conditions shown in Table 2. The oxygen flow rate during blowing is determined by the nozzle <i, >
2000 Nd/Hr from the nozzle (a'a)
o o Nnl/Hr. Further, throughout the entire blowing period, Ar gas was blown in at 9 ONm/Hr from the furnace bottom nozzle to stir the bath.

〔比較例2〕 実施例1と同じ転炉により、第5図に示す構造であって
、炭素質物質吹込み用ノズル(≦、)孔径16闘φ、酸
素吹込み用ノズル(a、 )のスロート部径14寵φの
多孔ランスを用い、第2表に示す精錬条件によって吹錬
を実施した。このとき、ノズル(K、)からパージ用A
rガスを100 Nが//Hr流しつつ、ノズル(a+
1)から酸素を2800 Nm’/Hr吹込んだ。吹f
k開始3分後、同ランスのノズル(a′、)より第1表
に示す組成の微粉砕した炭素質物質の吹込みを開始した
。炭素質物質の吹込みは、約9分間行なった。この間の
炭素質物質の吹込み足は、平均して約250 okq/
Hr 1N素流量は2800 r’+7f′/r(rの
ままであった。炭素質物質の吹込1ブ停止後も、そのま
まノズル(a′1)からの酸素流量を2800Nm/)
(rとし、吹錬を続行した。炭素質物質を吹込んでいな
い時の吹錬中は、ノズル(a′、)のスプラッシュによ
る閉塞を防止するjこめにArガスを100 Nyp?
/Hr流しtこ。まtこ、吹錬全期間を通じて、炉底ノ
ズルよりArガスを90 Nn?/Hr流した。
[Comparative Example 2] Using the same converter as in Example 1, the structure shown in FIG. Using a porous lance with a throat diameter of 14 mm, blowing was carried out under the refining conditions shown in Table 2. At this time, purge A from the nozzle (K,)
While flowing r gas at 100 N//Hr, the nozzle (a+
1), oxygen was blown in at 2800 Nm'/Hr. Blow f
Three minutes after the start of k, the injection of finely ground carbonaceous material having the composition shown in Table 1 was started from the nozzle (a',) of the same lance. The carbonaceous material was injected for about 9 minutes. During this period, the amount of carbonaceous material injected was approximately 250 okq/
Hr 1N elementary flow rate remained at 2800 r'+7f'/r (r. Even after stopping the blowing of carbonaceous material for one cycle, the oxygen flow rate from nozzle (a'1) was kept at 2800 Nm/r)
(r), and blowing was continued. During blowing when no carbonaceous material was being blown in, Ar gas was injected at 100 Nyp?
/Hr sink tko. During the entire blowing period, Ar gas was supplied from the furnace bottom nozzle at 90Nn? /Hr flowed.

〔比較例3〕 実施例1と同じ転炉により、第4図に示す構造であって
、主精錬用酸漿を吹込む1こめのラバールノズル(a′
2)のスロート部径141mφ、2次燃焼用酸素を吹込
む1こめのストレートノズル(a′、)の孔径8.9朋
φの多孔ランスを用い、第2表に示す精錬条件によって
吹錬を実施した。吹錬中の酸素流量は、ノズ#(as)
より2000 Nrr//Hr、/ズル<a′、)より
800 Nytl/Hrとし、吹錬全期間を通じて炉底
ノズルよりArガスを9ONrti/Hr流した。
[Comparative Example 3] Using the same converter as in Example 1, a laval nozzle (a'
Blowing was carried out under the refining conditions shown in Table 2 using a porous lance with a throat diameter of 141 mφ and a straight nozzle (a',) with a hole diameter of 8.9 mm for blowing oxygen for secondary combustion. carried out. The oxygen flow rate during blowing is the nozzle # (as)
(2000 Nrr//Hr, /zl<a',) to 800 Nytl/Hr, and 9ONrti/Hr of Ar gas was flowed from the furnace bottom nozzle during the entire blowing period.

吹錬開始3分後、吹錬はそのまま継続して、約10分間
かりて炉上部の副原料投入口から第1表に示す組成を有
する炭素質物質(平均粒径20朋)を210に9労役し
た。分段完了後もそのまま吹錬を続行し、所定の操作を
行なった後、吹錬を終了した。
3 minutes after the start of blowing, blowing continues as it is, and for about 10 minutes, carbonaceous material having the composition shown in Table 1 (average particle size 20 mm) is poured into 210 to 9 I worked hard. The blowing was continued even after the completion of the stage division, and after performing the prescribed operations, the blowing was ended.

本比較例の場合、炭素質物質の炭素分の利用効率は80
%と低く、排−ガス中に20%が飛散しtコ。
In the case of this comparative example, the carbon content utilization efficiency of the carbonaceous material is 80
%, and 20% is dispersed in the exhaust gas.

また、吹錬末期にスロッピングが多発しfこ。さらに、
炭素質物質の利用効率が低く、しかもバラツキが大きい
ために、排ガス組成およびサブランスによるダイナミッ
ク制御の連中率が低く、溶鋼中%(C1の吹下げすぎ、
スラグ中%(T−Fe)の上昇といった事態を招いTこ
Also, slopping occurs frequently at the end of blowing. moreover,
Because the utilization efficiency of carbonaceous materials is low and the variation is large, the exhaust gas composition and the dynamic control ratio by sublance are low, and the percentage in molten steel (excessive blowdown of C1,
This may lead to an increase in % (T-Fe) in the slag.

〔比較例4〕 実施例1と同じ転炉により、第6図に示す構造であって
、酸素吹込み用ラバールノズル(a’L)のスロート部
径14朋φの多孔ランスを用い、第2表に示す精錬条件
によって吹錬を実施した。吹91111の酸素流風は2
800 N7d/11rとし、吹錬全期間を通じて炉底
ノズルよりArガスを9ONm/H,r吹込/して浴を
攪拌しtこ。
[Comparative Example 4] Using the same converter as in Example 1, using a porous lance having the structure shown in FIG. 6 and having a throat diameter of 14 mm in the oxygen injection Laval nozzle (a'L), Blowing was carried out under the refining conditions shown below. The oxygen flow of Fuki 91111 is 2
800 N7d/11r, and the bath was stirred by blowing Ar gas at 9ONm/H, r/h from the furnace bottom nozzle throughout the entire blowing period.

なお、上記の実施例1および比較例1〜4のすべての吹
錬において、ランス先端−場面間距離は1.5mであつ
tこ。
In addition, in all the blowings of the above-mentioned Example 1 and Comparative Examples 1 to 4, the lance tip-to-field distance was 1.5 m.

上記の実施例1および比較例1〜4の精錬結果は、第3
表にまとめて示した。
The refining results of Example 1 and Comparative Examples 1 to 4 above are the same as those of the third
They are summarized in the table.

第2表および第3表より、本発明法によりスクラップの
効率的な大量溶解が可能であることがわかる。
Tables 2 and 3 show that the method of the present invention enables efficient mass melting of scrap.

第1S 炭素質物質の組成 第2表 精 錬 条 件 第3表 精錬結果 〔実施例2〕 実施例1と同じ転炉により、第3図に示すランス4.“
1)造であって、中心部の粉粒体吹込み用ノズル(a、
)、主精錬用酸素吹込み用ラバールノズル(al)、2
次燃焼用酸素吹込みストレートノズル(a8)、ノズル
(a2)と出1部で合流する粉Y<14本欠込み用ノズ
ル(b、)の径が、それぞれ16m、fYφ、14關φ
、3.9mφ、5朋φの多孔ランスを用い、第4表に示
す精錬条件で操業した。
1S Composition of carbonaceous material Table 2 Refining conditions Table 3 Refining results [Example 2] Using the same converter as in Example 1, lance 4. “
1), with a nozzle (a,
), main refining oxygen injection Laval nozzle (al), 2
The diameters of the oxygen injection straight nozzle (a8) for the next combustion, the powder Y<14 that joins the nozzle (a2) at the outlet 1, and the notched nozzle (b,) are 16 m, fYφ, and 14 mmφ, respectively.
A porous lance of 3.9 mφ and 5 mmφ was used, and the operation was carried out under the refining conditions shown in Table 4.

すなわち、該転炉内に所定量のスクラップ8装入した後
、所定量の溶銑を注湯し、吹錬を開Di(した。吹錬開
始後3分経過した時点で、ノズル(a、)より微粉状に
粉砕した第1表に示す組成をイエ!1″る炭素質物質の
吹込みを開始した。炭素質物質の吹込みは5分間行なっ
て停止した。この間の該炭素質物質の供給速度は平均し
て約25001g74−■1”であツタ。酸素はノズル
(ax)より2000 Nnf/TIr 、 ノズ#(
am)より800 N77//Hr吹込んだ。炭素yt
物質の吹込み停止段もそのまま上記と同じ酸素流量で吹
錬を続行した。一方、吹錬全期間を通じてノズル(b、
)よりスラグ中計算塩基度が5となるように、200メ
ツシュ以下80%以上の1−1°1度をもつ粉状の生石
灰を吹込んだ。また、精錬中は全期間を通じて炉底ノズ
ルよりArガスを90 Nd/Hr吹込んで浴を攪拌し
た。ノズル(aよ)のスプラッシュによる閉塞を防止す
るために、石炭吹込停止後もArガスを100 Nnl
/(−1r流した。
That is, after charging a predetermined amount of scrap 8 into the converter, a predetermined amount of hot metal was poured into the converter, and the blowing was started.When 3 minutes had passed from the start of the blowing, the nozzle (a) was turned on. Blow-in of the carbonaceous material having the composition shown in Table 1, which has been ground into a finer powder, was started.The blowing of the carbonaceous material was continued for 5 minutes and then stopped.During this period, the supply of the carbonaceous material The average speed is about 25001g74-■1". Oxygen is 2000Nnf/TIr from the nozzle (ax), nozzle # (
800 N77//Hr was injected from am). carbon yt
The material blowing stop stage was also used to continue blowing at the same oxygen flow rate as above. On the other hand, the nozzle (b,
) Powdered quicklime with an angle of 1-1°1 degree of less than 200 mesh and more than 80% was blown into the slag so that the calculated basicity in the slag was 5. Further, during the entire refining period, Ar gas was blown into the bath at 90 Nd/Hr from the furnace bottom nozzle to stir the bath. In order to prevent the nozzle (a) from being blocked by splash, 100 Nnl of Ar gas was added even after the coal injection was stopped.
/(-1r flowed.

なお、溶製”i’1 回は本実施例2および比較例5〜
9を通じて〔C〕二〇、5%の高炭素鋼である。
In addition, melting "i' 1 time" is the present Example 2 and Comparative Examples 5~
9 through [C] 20.5% high carbon steel.

〔比較例5〕 実施例1と同じ転炉により、第2図に示すランス第1?
造であって、中心部の粉粒体吹込み用ノズル(a、)、
主精錬用酸素吹込み用ラバールノズル(al)、2次燃
焼用酸素吹込み用ストレートノズル(a、) (ランス
軸よりの傾斜角度30°)の径がそれぞれ16關φ、1
4iiφ、8,9麿φの多孔5重管ランスを用い、第4
表に示す精錬条件により操業した。
[Comparative Example 5] Using the same converter as in Example 1, lance No. 1 shown in FIG.
The structure includes a nozzle (a,) for blowing powder and granular material in the center,
The diameters of the Laval nozzle (al) for oxygen injection for main refining and the straight nozzle (a,) for oxygen injection for secondary combustion (angle of inclination of 30° from the lance axis) are 16 mm and 1 mm, respectively.
Using a porous quintuple tube lance of 4iiφ, 8,9mmφ, the fourth
The refinery was operated under the refining conditions shown in the table.

すなわち、該転炉内に所一定量のスクラップを装入し1
こ後、所定量の溶銑を注湯し、吹錬を開始しTコ。吹錬
開始後30分経過しtコ時点で上吹ランスのノズル(a
、)より微粉状に粉砕した第1表に示す組成の炭素質物
質の吹込みを開始した。炭素質物質の吹込みは5分間行
なって停止しtこ。この間の該炭素質物質の供給速度は
、平均しC約25 (10kg/Hrであった。まtこ
、酸素はノズル(a2)より2000 N77?/Hr
、ノズル(a8)より800 Nni/T■r吹込んだ
。炭素質物質の吹込み停止段もそのまま上記と同じ酸素
流量で吹錬を続行した。またこの時、ノズル(al)の
スプラッシュによる閉塞を防止するためにArガスを1
00 Nrn’/Hr流した。生石灰はすべて直径20
χ程度の塊状にて、炉頂より投入した。以後の比較例に
おける生石灰はすべて塊状にて投入した。精錬中は全期
間を通じて炉底ノズルよりArガスを90 Nrtt’
/Hr吹込んで浴を攪拌した。
That is, a predetermined amount of scrap is charged into the converter and 1
After this, a predetermined amount of hot metal was poured and blowing started. 30 minutes after the start of blowing, at the time of t, the nozzle (a
Injection of a carbonaceous material having the composition shown in Table 1, which had been pulverized into a fine powder from , ), was started. The injection of carbonaceous material was continued for 5 minutes and then stopped. During this period, the average supply rate of the carbonaceous material was approximately C25 (10 kg/Hr).In addition, oxygen was supplied from the nozzle (a2) at a rate of 2000 N77?/Hr.
, 800 Nni/Tr was injected from the nozzle (a8). Blowing was continued at the carbonaceous material blowing stop stage as well at the same oxygen flow rate as above. At this time, in order to prevent the nozzle (al) from being blocked by splash, 1 liter of Ar gas was added.
00 Nrn'/Hr was flowed. All quicklime has a diameter of 20
It was poured from the top of the furnace in lumps of approximately χ. All the quicklime in the following comparative examples was added in the form of lumps. During refining, Ar gas was supplied at 90 Nrtt' from the furnace bottom nozzle throughout the entire period.
/Hr to stir the bath.

〔比較例6〕 実施例1と同じ転炉により、第4図に示す溝造であって
、主精錬用酸素を吹込むtこめのラバールノズル<a′
、>のスロート部径14間φ、2次燃灼を目的とする酸
素を吹込むjこめのストレートノズル<a′、>の径8
.9mm(6の多孔ランスを用い、第4表に示す精錬条
件で吹錬を実施した。吹ρ1!中の酸素b’lE量はノ
ズル(ム)より2000 Nni/11r、 ノズル(
a’、)より800 Nyyf/I−ITであった。ま
た、吹錬全期間を通じて炉底ノズルよりArガスを9O
Nm/Hr吹込んで浴を攪拌した。
[Comparative Example 6] Using the same converter as in Example 1, a groove-shaped Laval nozzle <a' for blowing oxygen for main refining, as shown in Fig. 4, was used.
The diameter of the throat part of , > is 14 φ, and the diameter of the straight nozzle <a', > that blows oxygen for secondary combustion is 8
.. Blowing was carried out using a porous lance of 9mm (6) under the refining conditions shown in Table 4.The amount of oxygen b'lE in the blowing ρ1!
a',), it was 800 Nyyf/I-IT. Also, during the entire blowing period, Ar gas was supplied at 9O through the furnace bottom nozzle.
The bath was stirred by bubbling Nm/Hr.

〔比較例7〕 実施例1と同じ転炉により、第5図に示す構造であって
、炭素質物質吹込み用ノズル(a′、)孔径16閲φ、
酸素吹込み用ノズル(a′2)のスロート部径144/
ffφの多孔ランスを用い、第4表に示す精錬条件によ
って吹錬を実施した。このとき、ノズル(a′、)カら
パージ用Arガスを100 Ni/Hr流しツツ、ノズ
ル(a’、)から酸素を2800N1yl/Hr吹込ん
だ。吹錬開始3分後、同ランスのノズル(a′・)より
第1表に示す組成の微粉砕した炭素質物質の吹込みを開
始した。炭素質物質の吹込みは、約9分間行なつ1こ。
[Comparative Example 7] Using the same converter as in Example 1, a carbonaceous material injection nozzle (a') having a structure shown in FIG.
Throat diameter of oxygen blowing nozzle (a'2) 144/
Blowing was carried out using a porous lance of ffφ under the refining conditions shown in Table 4. At this time, purge Ar gas was flowed at 100 Ni/Hr from the nozzle (a',), and oxygen was blown at 2800 N1yl/Hr from the nozzle (a',). Three minutes after the start of blowing, blowing of the finely ground carbonaceous material having the composition shown in Table 1 was started from the nozzle (a') of the same lance. The carbonaceous material was injected once for about 9 minutes.

この間の炭素質物質の吹込み量は、平均して約2500
/cり/Hr%酸素流量は280ON帳巾rの才まであ
った。炭素質物質の吹込み停止後も、そのままノズル(
al)からの酸素流量を2800Nnl/IJrとし、
吹錬を続行した。炭素質物質を吹込んでいない時の吹錬
中は、ノズル(a′、)のスプラッシュによる閉塞を防
止するためにArガスを] 011 N77/7Nr流
した。また、吹錬全期間を通じて、炉底ノズルよりAr
ガスを9ON〃〆/Hr流した。
During this period, the amount of carbonaceous material injected was approximately 2,500 on average.
/cc/Hr%Oxygen flow rate was up to 280ON. Even after stopping the injection of carbonaceous material, the nozzle (
The oxygen flow rate from al) is 2800Nnl/IJr,
The blowing process continued. During blowing when no carbonaceous material was being blown into the nozzle (a'), Ar gas was flowed to prevent the nozzle (a',) from being clogged by splash. Also, throughout the entire blowing period, Ar
Gas was flowed at 9ON/Hr.

〔比較例8〕 実施例1と同じ転炉により、第4図に示ずt4.ff 
ill。
[Comparative Example 8] Using the same converter as in Example 1, a temperature of t4. ff
ill.

であって、主精錬用酸素を吹込むためのラバールノズル
(a′l)のスロート部径14ffMφ、2次1a □
i”L m酸素を吹込むためのストレートノズル(a’
、)の孔径8.9酊φの多孔ランスを用い、第4表に示
°σ−精錬条件によって吹錬を実施した。吹錬中の酸素
流量は、ノズル(a′りヨリ2000 Nn(7JIr
 、 ノズル(a−)より800 Ny心巾rとし、吹
錬全期間を通じて炉底ノズルよりArガスを90 Nn
?AJr流しIこ、。
The diameter of the throat part of the Laval nozzle (a'l) for blowing oxygen for main refining is 14ffMφ, and the secondary 1a □
i"L m Straight nozzle for blowing oxygen (a'
Blowing was carried out using a porous lance with a pore diameter of 8.9φ and according to the refining conditions shown in Table 4. The oxygen flow rate during blowing is 2000 Nn (7JIr) from the nozzle (a'
, 800 Ny from the nozzle (a-), and 90 Ny of Ar gas from the furnace bottom nozzle throughout the blowing period.
? AJr Nagashi Iko.

吹錬開始3分後、吹錬はそのまま継続して、約10分間
かけて炉上部の副原料投入口から第1表に示す組成を有
する炭素質物質(平均粒径21) F# )を210k
g分投した0分設完了後もそのまま吹al!を続行し、
所定の操作を行なった後、吹錬を終了した。
Three minutes after the start of blowing, blowing continues as it is, and over a period of approximately 10 minutes, 210 kg of carbonaceous material (average particle size 21 F#) having the composition shown in Table 1 is added from the auxiliary raw material inlet in the upper part of the furnace.
Even after the completion of the 0 minutes of g minutes, it is still blowing! Continue and
After performing the prescribed operations, the blowing was completed.

本比較例の場合、炭素質物質の炭素分の利用効率は80
%と低く、排ガス中に20%が飛散した。
In the case of this comparative example, the carbon content utilization efficiency of the carbonaceous material is 80
%, and 20% was dispersed in the exhaust gas.

濯シ 錬末期にスロッピングが多発した。さらに、炭素質物質
の利用効率が低く、しかもバラツキが大きいために、排
ガス組成およびサブランスによるダイナミック制御の連
中率が低く、溶鋼中%(C)の吹下げすぎ、スラグ中%
(T −Fe)の上昇といった重態を招いた。
Slopping occurred frequently at the end of the washing process. Furthermore, because the utilization efficiency of carbonaceous substances is low and the variation is large, the exhaust gas composition and the dynamic control ratio by sub-lance are low, resulting in excessive blowdown of % (C) in molten steel and % in slag.
This led to serious conditions such as an increase in (T-Fe).

〔比較例9〕 実施例1と同じ転炉により、第6図に示す構造であって
、酸素吹込み用ラバールノズル(a’s)のスロート部
径14ffiffφの多孔ランスを用い、第4表に示す
精錬条件によって吹錬を実施しjこ。吹錬中の酸素流量
は2800 NWf、Airとし、吹錬期間を通じて炉
底ノズルよりAI−ガスを90 Nmン/Hr吹込んで
浴を攪拌した。
[Comparative Example 9] Using the same converter as in Example 1, a porous lance having the structure shown in FIG. 6 and having a throat diameter of 14ffiffφ of the Laval nozzle (a's) for oxygen injection was used, and the structure shown in Table 4 was used. The blowing process is carried out depending on the refining conditions. The oxygen flow rate during blowing was 2800 NWf, Air, and the bath was stirred by blowing AI gas at 90 Nm/Hr from the furnace bottom nozzle throughout the blowing period.

なお、上記の実施例2および比較例5〜9のすべての吹
錬において、ランス先端−湯面間距離は1.5mであっ
た。
In addition, in all the blowings of the above-mentioned Example 2 and Comparative Examples 5 to 9, the distance between the lance tip and the molten metal surface was 1.5 m.

上記の実施例2および比較例5〜9の精錬条件ろ!第4
表に、精錬結果を第5表にそれぞれまとめて示す。
The refining conditions of Example 2 and Comparative Examples 5 to 9 above! Fourth
The refining results are summarized in Table 5.

第4表および第5表から、本発明法によりスクラップの
効率的な大量溶解が可能であるとともに、通常の吹錬で
は成し得なかった巾高炭緊渭の脱炉1精錬が可能である
ことがわかる。
Tables 4 and 5 show that the method of the present invention enables efficient mass melting of scrap, and also enables de-furnacing of high-width coal tension, which cannot be achieved with normal blowing. I understand that.

第4表 精錬条11;Table 4 Refining article 11;

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示す概略ド′1、r;3
2図および第3図は同上(どおける非理)工”く上吹ニ
゛・孔ランスの槽造例を示し、第2図(イ)は同図(ハ
)のイーイ綜上の縦断面図、同図←)は同図(ハ)のロ
ーロ乏゛1コ上の縦断面図、同図(ハ)は同上ランスの
底面1;!J、 i’ji 3図(イ)は同図(ハ)の
イーイ線」二の縦11j!面囚、同[。4 (+−)は
同図(−r)のロー口め“上の横断面図、同「a(ハ)
は同」、ランスの戚面図、第4図〜第6図はこの発1v
jににりる比較例1〜4に用いた多孔ランスを示す11
N、同図である。 1・・・溶解炉、2・・・非浸i5〜多孔ランス、3・
・・カス回収用スカート、4・・・フード、5・・・副
ハ;、ネ・l投入1−1.6・・・庇状ノズル、7・・
・炭素質物質、8・・・酸素店カス化剤、9・・・2次
燃焼用酸禾、1(1−・・造薄剤等O1l′、溶剤、a
、・・・粉粒体吹込み用ノズル、a2・・・ガス化J−
よび脱炭精錬用酸素吹込み用ノズル、a、・・2 v、
、 l:、:: j、?。 用酸素吹込み用ノズル。 出願人 住友金属工業株式会社 代理人 押 1) 良 久:″ 第1
FIG. 1 schematically shows an embodiment of the present invention.
Figures 2 and 3 show an example of the construction of a tank with a top-blown knee and a hole lance, and Figure 2 (a) is a vertical cross-sectional view of the heel in Figure 2 (c). , the same figure ←) is a vertical cross-sectional view of the roller 1 in the same figure (c), and the same figure (c) is the bottom surface 1 of the same lance;!J, i'ji Figure 3 (a) is the same figure ( C)'s Ei line "2 vertical 11j! Face prisoner, same [. 4 (+-) is the cross-sectional view above the low end of the same figure (-r), and the same figure (a)
``is the same'', Rance's relative view, Figures 4 to 6 are from this release 1v
11 showing the porous lance used in Comparative Examples 1 to 4
N. Same figure. 1... Melting furnace, 2... Non-immersion i5~porous lance, 3...
...Skirt for scrap collection, 4...Hood, 5...Vice C;, Ne-l input 1-1.6...Eave-shaped nozzle, 7...
・Carbonaceous material, 8...Oxygen store cassifier, 9...Acidic acid for secondary combustion, 1 (1-...Thinning agent etc. O1l', solvent, a
,... Nozzle for blowing powder and granular material, a2... Gasification J-
and oxygen injection nozzle for decarburization refining, a,...2 v,
, l:,:: j,? . Nozzle for oxygen blowing. Applicant Sumitomo Metal Industries Co., Ltd. Agent Oshi 1) Yoshihisa: ″ 1st

Claims (1)

【特許請求の範囲】 1 高温の溶融鉄浴中に石炭、コークス、ピッチ、重質
油等の炭素質物質を酸素と共に吹込んでガス化すると同
時に、スクラップを溶解精錬する方法であって、中心部
に石炭等炭素質物質吹込み用ノズルを有し、該ノズルの
外側にガス化剤吹込み用ノズルと、ノズル中心線がラン
ス軸に対して外側に20〜60°傾斜した炉内生成ガス
2次燃焼用の酸素等酸化剤吹込み用ノズルを有する非浸
漬上吹多孔ランスを用い、炭素質物質のガス化を行なう
と同時に、炉内生成ガスの2次燃焼を行なわせつつスク
ラップを溶解精錬する仁とを特徴とする製鋼法。 2 高温の溶融鉄浴中に石炭、コークス、ピッチ、重質
油等の炭素質物質を酸素と共に吹込んでガス化すると同
時に、スクラップを投入し溶解精錬する方法であって、
中心部に石炭等炭素質物質吹込み用ノズルを有し、該ノ
ズルの外側に酸素等酸化剤吹込み用ノズルと、該ガス化
剤吹込み用ノズルの出口近傍で合流する媒溶剤吹込み用
ノズルと、該ガス化剤吹込み用ノズルの形成する同心円
上またはその外側にノズル中心線がランス軸に対して外
側に20〜600傾斜した炉内生成ガス2次燃焼用の酸
素等酸化剤吹込み用ノズルを有する非浸漬上吹多孔ラン
スを用い、炭素質物質のガス化を行なうと同時に、炉内
生成ガスを2次燃焼させ、さらに石灰石等造滓剤を粉粒
状でガス化剤吹込み用ノズルの出口近傍でガス化剤に混
入させて吹込むことを特徴とする製鋼法。
[Claims] 1. A method for gasifying carbonaceous materials such as coal, coke, pitch, and heavy oil into a high-temperature molten iron bath together with oxygen, and at the same time melting and refining scrap. The in-furnace generated gas 2 has a nozzle for blowing carbonaceous material such as coal, a nozzle for blowing a gasifying agent on the outside of the nozzle, and a nozzle center line inclined outward by 20 to 60 degrees with respect to the lance axis. Using a non-immersed top-blown porous lance with a nozzle for injecting oxidizers such as oxygen for the next combustion, the carbonaceous material is gasified and at the same time the scrap is melted and refined while performing secondary combustion of the gas produced in the furnace. A steel manufacturing method that is characterized by 2. A method in which carbonaceous materials such as coal, coke, pitch, and heavy oil are blown into a high-temperature molten iron bath together with oxygen to gasify them, and at the same time, scrap is thrown in and melted and refined,
It has a nozzle for blowing carbonaceous substances such as coal in the center, and a nozzle for blowing oxidizers such as oxygen on the outside of the nozzle, and a nozzle for blowing a solvent that merges near the outlet of the nozzle for blowing gasifying agent. A nozzle and an oxidizing agent such as oxygen for secondary combustion of the gas produced in the furnace, with the nozzle center line inclined outward by 20 to 600 degrees with respect to the lance axis, on or outside the concentric circle formed by the gasifying agent injection nozzle. Using a non-immersed top-blown porous lance with a nozzle for immersion, the carbonaceous material is gasified, and at the same time, the gas produced in the furnace is secondaryly combusted, and a gasifying agent such as limestone is injected in the form of powder. A steel manufacturing method characterized by mixing the gasifying agent with the gasifying agent and injecting it near the outlet of the nozzle.
JP58173960A 1983-09-19 1983-09-19 Steel making method Pending JPS6067610A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58173960A JPS6067610A (en) 1983-09-19 1983-09-19 Steel making method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58173960A JPS6067610A (en) 1983-09-19 1983-09-19 Steel making method

Publications (1)

Publication Number Publication Date
JPS6067610A true JPS6067610A (en) 1985-04-18

Family

ID=15970234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58173960A Pending JPS6067610A (en) 1983-09-19 1983-09-19 Steel making method

Country Status (1)

Country Link
JP (1) JPS6067610A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60221511A (en) * 1984-04-17 1985-11-06 Nippon Steel Corp Method for carburizing and melt-refining molten iron
JPS62253708A (en) * 1986-03-08 1987-11-05 クレックナー ツェーエルアー パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング Scrap steel-making method
WO2013057927A1 (en) 2011-10-17 2013-04-25 Jfeスチール株式会社 Powder injection lance and method of refining molten iron using said powder injection lance
CN110306005A (en) * 2018-03-20 2019-10-08 邯郸钢铁集团有限责任公司 A kind of high scrap ratio process for making suitable for 120~260 tons of converters

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60221511A (en) * 1984-04-17 1985-11-06 Nippon Steel Corp Method for carburizing and melt-refining molten iron
JPH0355525B2 (en) * 1984-04-17 1991-08-23
JPS62253708A (en) * 1986-03-08 1987-11-05 クレックナー ツェーエルアー パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング Scrap steel-making method
WO2013057927A1 (en) 2011-10-17 2013-04-25 Jfeスチール株式会社 Powder injection lance and method of refining molten iron using said powder injection lance
US9580764B2 (en) 2011-10-17 2017-02-28 Jfe Steel Corporation Top-blowing lance and method for refining molten iron using the same
CN110306005A (en) * 2018-03-20 2019-10-08 邯郸钢铁集团有限责任公司 A kind of high scrap ratio process for making suitable for 120~260 tons of converters

Similar Documents

Publication Publication Date Title
US4356035A (en) Steelmaking process
JP2735774B2 (en) How to enhance reactions in metallurgical reactors
KR900007783B1 (en) Method for producing iron
JPS62263907A (en) Two-stage melt reduction of iron ore
KR20010099690A (en) A process and an apparatus for producing metals and metal alloys
AU661925B2 (en) A method for protecting the refractory lining in the gas space of a metallurgical reaction vessel
JPH01246311A (en) Production of gas and molten iron in iron bath reactor
JP2012031452A (en) Method of dephosphorizing hot metal
JPS6067610A (en) Steel making method
JP2013163828A (en) Method for producing molten steel
JPS5935407B2 (en) Carbon supply method to iron melt in converter
CA1177252A (en) Steel conversion method
JPS6046349A (en) Refining lance
JP2013028832A (en) Molten iron refining method
JPS5959818A (en) Steel making method
JPS6056009A (en) Steel making method
JPS6058488A (en) Gasification of carbonaceous matter
JPH0471965B2 (en)
JPS6138249B2 (en)
JP6327298B2 (en) Hot metal refining method
JP2023068358A (en) Method of refining hot metal in converter
JPS6050143A (en) Production of ferro alloy
JP2022117935A (en) Molten iron refining method
JPH01283312A (en) Method for melting iron-contained cold material
JPH01205013A (en) Smelting reduction method