JPS60221511A - Method for carburizing and melt-refining molten iron - Google Patents

Method for carburizing and melt-refining molten iron

Info

Publication number
JPS60221511A
JPS60221511A JP7588384A JP7588384A JPS60221511A JP S60221511 A JPS60221511 A JP S60221511A JP 7588384 A JP7588384 A JP 7588384A JP 7588384 A JP7588384 A JP 7588384A JP S60221511 A JPS60221511 A JP S60221511A
Authority
JP
Japan
Prior art keywords
molten iron
refining
carbon
carbon source
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7588384A
Other languages
Japanese (ja)
Other versions
JPH0355525B2 (en
Inventor
Yozo Takemura
竹村 洋三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP7588384A priority Critical patent/JPS60221511A/en
Publication of JPS60221511A publication Critical patent/JPS60221511A/en
Publication of JPH0355525B2 publication Critical patent/JPH0355525B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE:To maximize the thermal efficiency of a carbon source added by specifying the grain size of a substance contg. carbon and a method for blowing the substance when the substance is added to a composite refining apparatus to increase thermal tolerance. CONSTITUTION:A substance contg. C is blown on the surface of molten iron in a vessel from a position above the surface of the molten iron through a lance while blowing a gas generating substance from the bottom of the vessel and gaseous O2 from the top to carry out composite refining. Grains of 1-10mm. grain size account for >=70% of all the grains of the substance contg. C, and this C cource is blown on the surface of the central part of the molten iron from the central part of the lance so that the blowing region does not overlap the fire spot of a jet of O2 for refining by >=30%. In carburization and decarburization periods, the ratio of the area (m<2>) of the fire spot of gaseous O2 for refining to the surface area (m<2>) of the bath is kept at >0.4.

Description

【発明の詳細な説明】 (利用分野) 本発明は溶鉄の加炭溶解精錬法に関するものである。[Detailed description of the invention] (Application field) The present invention relates to a method for carburizing, melting, and refining molten iron.

(従来技術) 複合精錬容器にて容器上方又は上方精錬用ランスから、
炭素含有物質を添加する方法によって、搏枯惣肥由1/
鋪嶺ル祈4萌1赴酬炊面シ宜払 ブカラップを多量使用
する方法が、例えば特開昭58−11710号公報で知
られている。
(Prior art) From the upper part of the container or the upper refining lance in the composite refining container,
Depending on the method of adding carbon-containing substances, it is possible to
A method of using a large amount of Bucharap is known, for example, from Japanese Patent Application Laid-Open No. 11710/1983.

ところで本発明者の検討によると、容器の上方から炭素
源を散布装入する方式では、上方から装入された炭素含
有物質は、溶銑と直接反応し、溶鉄中に加炭されるチャ
ンスが極めて少なく、大半かスラグ表層部に浮上した状
態となり、スラグ表;一部で、上方から吹製される敵累
カスによって、燃焼反応をおこすため、添加された炭素
源の燃焼による熱が溶鉄に伝わりにくく、大半が排ガス
中に逃げていく結果となる。即ち、添ガi1した炭素源
の;?j(効率が極めて悪い。且つバラツキが太き見゛
ため、:雨銖炉の吹止割物1上も問題となる。
However, according to the inventor's study, in the method of scattering and charging the carbon source from above the container, the carbon-containing material charged from above has a very high chance of directly reacting with the molten iron and being carburized into the molten iron. Most of the slag floats on the surface of the slag; a part of the slag surface is blown from above, causing a combustion reaction, so the heat from the combustion of the added carbon source is transferred to the molten iron. The result is that most of it escapes into the exhaust gas. That is, the carbon source added with i1; (Efficiency is extremely low. Also, the dispersion is large.) The blow-stop part 1 of the rain furnace also becomes a problem.

又容器の上方からランスによって圧力下に吹き込む方式
は、精錬用1波素ガスと同じ上方から炭素類を吹き込む
為、炭素Wは吹込みランスの先端かしく4銑表面にとど
くまでに、極めて高温で且つ酸系ガス気流中を通過する
必要があり、一般的には(谷銑面までに炭素源が到達す
るまでに、相当量の炭素が溶銑面上1Nllを間で燃焼
してしまうため、充分な効率を得られない。
In addition, in the method of blowing under pressure from above the container with a lance, carbon is injected from above in the same way as the first-wave elementary gas for refining, so the carbon W reaches an extremely high temperature before reaching the tip of the blowing lance and the surface of the pig iron. In addition, it is necessary to pass through an acidic gas stream, and generally (by the time the carbon source reaches the valley surface, a considerable amount of carbon burns 1 Nll above the hot metal surface, so efficiency cannot be obtained.

(発明の目的) 本発明は上述の課題を解決するものであって、その目的
は複合精錬装置において炭素含有物質を添加して、熱的
裕度な高めるに際し・添加した炭素源の熱効率を最高に
する加炭溶解;fげ錬法を提供するものである。
(Object of the invention) The present invention solves the above-mentioned problems, and its purpose is to increase the thermal margin by adding a carbon-containing substance in a complex refining device, and to maximize the thermal efficiency of the added carbon source. The present invention provides a carburizing and melting method to produce carbon.

(発明の構成、作用、効果) 本発明の要旨は、容器下部からガス元生物質を吠き込み
、上方から醒累ガスを吹製し、倫鉄面上刃からランスに
より炭素含有物質を俗)じ面に吠き込む複合相線法にお
℃・て、炭素含有′+/i質の粒径が111ii11−
 I Q l1llilの範囲のものを少くとも70%
以上占める炭素源を、鞘゛錬ば素ンエツトの火点面と3
0%以上交叉しない領域に、ランス中央部より溶鉄中央
部表面に吹き込み、かつ加炭期間及び脱炭期間は梢錬酸
素カス火点面積(i)/浴衣面積(m゛)>0.4に維
持することを特徴とする。
(Structure, operation, and effects of the invention) The gist of the present invention is to inject a gaseous substance from the lower part of the container, blow a liquid gas from above, and release a carbon-containing substance by a lance from an upper blade of a metal surface. ) According to the composite phase line method in the same plane, the particle size of carbon-containing '+/i is 111ii11- at °C.
IQ at least 70% in the l1llil range
The carbon source that occupies more than
The molten iron is blown from the center of the lance to the surface of the center of the molten iron in an area where there is no intersection of 0% or more, and during the carburization and decarburization periods, the treetop wrought oxygen gas ignition point area (i)/Yukata area (m゛)>0.4. It is characterized by maintaining.

以下本発明について詳述する。The present invention will be explained in detail below.

本発明は、炭素含有物質の粒径が1111111 1 
Q +II++1の・碩−コを少(とも70%以上占め
る炭素源を、精に’+i ’#素ジェットの火点面と、
30%以上交叉しない領域に加圧下で吹込むものである
が、これは次により理解される。
In the present invention, the particle size of the carbon-containing substance is 1111111 1
Q +II++1's ・Sek-ko (carbon source that accounts for more than 70%) is precisely '+i'
This is to be blown under pressure into a region that does not intersect by more than 30%, which is understood as follows.

即し、吹き込みランスで炭素源を吹き込む場合、戻索ω
j)か高温炉内で、精錬用酸素ガスと接触すると、急速
な燃焼がその場でおこるため、溶銑には炭素源のC十0
2→Coの燃焼熱の30〜40%程度か、反射伝熱とし
て伝わる程度であり、極めて熱効率の恋いものとなって
しまう。これを避ける方、去を(・ろいろテストの1貼
果、この解決は、吹き込み炭素′m、粒子径と、炭素源
の吠き込まれる位置が」1/も重要な事が判った。
Therefore, when blowing the carbon source with a blowing lance, the return cable ω
j) When hot metal comes into contact with oxygen gas for refining in a high-temperature furnace, rapid combustion occurs on the spot, so hot metal contains carbon source C10.
Only about 30 to 40% of the combustion heat of 2→Co is transmitted as reflected heat, resulting in extremely poor thermal efficiency. To avoid this, it was found that the solution to this problem is the injected carbon, the particle size, and the location where the carbon source is injected.

まず、炭素源の吹き込まれる位置と、吠き込まれた炭素
源の熱効率を第1図に示す。即ち第1図に示す通り、炭
素源の吹き込みガスの溶鉄表面での投影面が、精錬酸素
ガスの投影面と交叉する部分a1、a2が、20%近傍
になると急激に炭素源のスクラップ#屏能力(熱効率)
が低下することが第1図は、吠込み炭素源として4−6
m径の無煙炭を用いた。又火点面積率(精錬酸素ガスの
浴表面上への投影面積/精錬容器の静止浴表面積)を0
65に維持した。
First, Figure 1 shows the position where the carbon source is injected and the thermal efficiency of the injected carbon source. That is, as shown in Fig. 1, when the portions a1 and a2 where the projected plane of the blown carbon source gas on the molten iron surface intersects the projected plane of the refined oxygen gas reach around 20%, the scrap # screen of the carbon source suddenly decreases. Capacity (thermal efficiency)
Figure 1 shows that 4-6 as a barking carbon source
Anthracite coal with a diameter of m was used. In addition, the firing point area ratio (projection area of refined oxygen gas onto the bath surface/stationary bath surface area of the refining vessel) is set to 0.
It was maintained at 65.

第2図は、溶鉄表面における炭素伏込み衝突面(S)が
、酸素ガス衝突面(S′)と交叉する面積率を示す模式
図である。
FIG. 2 is a schematic diagram showing the area ratio where the carbon sinking collision surface (S) intersects with the oxygen gas collision surface (S') on the molten iron surface.

さらに第3図に精錬酸素ガスの投影面をさけた炉壁側に
、炭素源を吹き込んだ結果を示す。即ち楕釧販素ガス投
影面と、炭素源吹込ガス投影面と交叉しなくても、炉壁
側にはスラグが押しよせられた相当厚いスラグ層かある
ため、炭素源を溶銑の中まで浸入することが出来ず、ス
ラグ層の上で燃焼するため、熱効率が低いことが判った
Furthermore, FIG. 3 shows the results of injecting a carbon source into the furnace wall side, avoiding the projected plane of the refined oxygen gas. In other words, even if the elliptical slag gas projection plane and the carbon source injection gas projection plane do not intersect, there is a fairly thick slag layer on the furnace wall side where the slag is pushed, so the carbon source can penetrate deep into the hot metal. It was found that the thermal efficiency was low because the combustion occurred on top of the slag layer.

第4図は炭素源吹込みランスと精錬用ば累ランスとの距
離Xを示す模式図である。
FIG. 4 is a schematic diagram showing the distance X between the carbon source injection lance and the refining lance.

本発明における上述の溶鉄面上の炭素源吹込みガス衝突
面及び酸素ガス衝突面における各面積の計算は、次の式
によって与えられる。
In the present invention, calculation of each area of the carbon source injected gas impingement surface and oxygen gas impingement surface on the molten iron surface is given by the following formula.

1m jlE ;Ii Vf Q 、2− ifF *
 W+ 踏1ql = (’I)半T、 −T”Q n
 7) )胚F> 構成−(盲酸素カス衝突面積(S′
)−r+L−Tan(α+β)径の面積−■又(S)の
中心点0と(S′)の点Pとの距離X= a+L4an
(α−β)−■ 前記1.2及び3式の谷諸元を、第5図に示す。
1m jlE ; Ii Vf Q , 2-ifF *
W+ step 1ql = ('I) half T, -T”Q n
7)) Embryo F> Composition - (blind oxygen sludge collision area (S'
)-r+L-Tan(α+β) diameter area-■Also, distance between center point 0 of (S) and point P of (S') X= a+L4an
(α-β)-■ The valley dimensions of equations 1.2 and 3 are shown in FIG.

図中20はランス、21は精錬酸素ノズル、Lはランス
湯面距離である。
In the figure, 20 is a lance, 21 is a refining oxygen nozzle, and L is a lance surface distance.

次に炭素源の粒子の大きさと、スクラップ溶解11g力
との相関を第6図により明らかにする。
Next, the correlation between the particle size of the carbon source and the scrap melting force of 11g is clarified using FIG.

第6図に示す様に、炭素源吹き込みガスと、精珠用戚素
ガスを交叉し1よい様に吹き込んでも、1+jan以下
の微粉炭素源が増加すると、吹き込みノズル先端部に1
置き状況が発生し、微粉炭素源と、酸素ガスの混合状態
がランス先端部分で発生し、その糺果、相当上部で炭素
源は燃焼してしまい、熱〃j率が悪い結果となる。
As shown in Fig. 6, even if the carbon source blowing gas and the spermatozoal relative gas are mixed and blown in at a rate of 1, if the fine carbon source of 1+jan or less increases, 1
When a situation occurs, a mixed state of the fine carbon source and oxygen gas occurs at the tip of the lance, and the carbon source burns at the top of the lance, resulting in a poor heat rate.

又] Q 11311以上の大きい径のものは、粉体輸
送が困難で芙操業に適しない。
Also, those with a large diameter of Q 11311 or more are difficult to transport as powder and are not suitable for fowl operation.

従って本発明における炭素含有物質の粒径を1−101
11+11の範囲とする方が好ましい。
Therefore, the particle size of the carbon-containing material in the present invention is 1-101
A range of 11+11 is preferable.

次に本発明においては、加炭期間及び脱炭期間は、精錬
酸素ガス火点面積(rrt )/浴面積(m2) > 
0.4に維持する。経験によると、吹込み炭素源を溶銑
上方で燃焼させないで、いかに効率的に溶銑中に炭素源
を侵入させるかという点と、更に熱効率の向上を計るも
う一つの手段として、炭素源の燃焼を、CO2状態まで
実施させる事によって、CO状態までの時より約3倍の
発生熱を期待出来るので、いかに炉内でCO2まで燃焼
させるか検討されなければならない。
Next, in the present invention, the carburization period and the decarburization period are calculated as follows: Refined oxygen gas firing point area (rrt)/bath area (m2)>
Maintain at 0.4. According to experience, it is important to know how to efficiently infiltrate the carbon source into the hot metal without burning the injected carbon source above the hot metal, and as another means of improving thermal efficiency, combustion of the carbon source has been studied. By running the process up to the CO2 state, approximately three times as much heat can be expected to be generated as compared to when the CO2 state is reached, so consideration must be given to how to burn up to the CO2 state in the furnace.

本発明者はさきに溶銑の加炭溶解精錬方法(特願昭57
−231232号)を提起して、溶銑浴深さくL)/溶
銑浴径(D)別に、排ガス中Co/CO2+COと火点
面積/浴衣面積の相関々係を明らかにしたが、本発明に
おいては、精錬用酸素ガスの火点面!/浴浴面面積比を
、04以上にすることによって、充分なCO2燃焼を期
待出来ることが判った。
The present inventor has previously described a method for carburizing, melting and refining hot metal (patent application filed in 1983).
-231232) and clarified the correlation between Co/CO2+CO in exhaust gas and hot metal bath area/yukata area for each hot metal bath depth L)/hot metal bath diameter (D), but in the present invention, , the flash point of oxygen gas for refining! It was found that sufficient CO2 combustion can be expected by setting the /bath surface area ratio to 04 or more.

第7図にこの図衣を示す。Figure 7 shows this costume.

前述して来た様に本発明の特徴は、炭素源を溶銑表層上
部で燃焼させないで、一度溶鉄中に溶解させた後、N錬
用酸素で脱炭反応をさせ、その時光生ずるCOガスをさ
らにC02まで燃焼させ熱効率を向上させる点に%徴が
ある。
As mentioned above, the feature of the present invention is that the carbon source is not combusted in the upper surface layer of the molten metal, but is once dissolved in the molten iron, and then subjected to a decarburization reaction with N-smelting oxygen, and the CO gas produced at that time is removed. Furthermore, it is notable that it burns up to CO2 and improves thermal efficiency.

よって当然−鉄中に加炭している時期に、溶鉄中炭素製
置が比相溶解度以上になると、吹き込まれる炭素源は溶
鉄中に溶解することなく、スラグ層等の溶鉄面上部で燃
焼することとなり熱効率が低下する。よって、加炭祠錬
中の精錬用酸素ガス(Ni/ Fir ) /炭素添加
速度(Ky/ Hr ) 〉1. Oが望ましい。
Therefore, it is natural that during carburization of iron, if the carbon in the molten iron exceeds the relative phase solubility, the injected carbon source will not dissolve in the molten iron, but will burn in the upper part of the molten iron surface, such as in the slag layer. As a result, thermal efficiency decreases. Therefore, the refining oxygen gas (Ni/Fir)/carbon addition rate (Ky/Hr) during carburization>1. O is desirable.

又前述した休に、スラグは少ない程、溶銑内に1ン(き
込まれる炭素源は効率良(加炭されるので、;lIi疎
前の溶銃に、あらかじめ脱砂処理を施し、結球容器内で
のスラグ発生を、70Kg/を以下に押えることは、極
めて効果的な方法である。
In addition, as mentioned above, the less slag is injected into the hot metal, the more efficient the carbon source (because it is carburized); It is an extremely effective method to suppress the generation of slag within 70 kg/or less.

又この脱砂処理は、祠銖炉以外の所で実施することも出
来るが、精錬を中断してN錬炉で発生したスラグを排滓
する事によっても可能である。
Further, this desanding treatment can be carried out at a place other than the slag furnace, but it is also possible by interrupting the smelting and discharging the slag generated in the N smelting furnace.

当然スラグ量を低下する手段として、脱砂処理だけにと
どまらず、脱燐、脱蝋処理まで実施すれば、さらに効率
が同上する事は言を待たない。
Of course, as a means of reducing the amount of slag, it goes without saying that the efficiency will be further improved if not only desanding treatment but also dephosphorization and dewaxing treatment are carried out.

又酸素の火点面積率を向上させる手段として、2次燃焼
促進ランスがある。第8図はそのランスの部分図と投影
浴面積の模式図を示し、第9図は第8図の端面を示す模
式図である。
A secondary combustion promotion lance is also available as a means for improving the oxygen flash point area ratio. FIG. 8 shows a partial view of the lance and a schematic diagram of the area of the projection bath, and FIG. 9 is a schematic diagram showing the end face of FIG.

図において炭素供給系として炭素源吹込孔10と、その
外周近傍の鎖1鍍素供給系11(以下主孔という)及び
炭素供給系から距離tをもつ第2酸素供給系12(以下
副孔という)を所望数設ける。第2酸素供給系は同一ラ
ンスに内設した例を示したが、必ずしもこれに限定され
ない。
In the figure, the carbon supply system includes a carbon source blowing hole 10, a chain 1 carbon supply system 11 (hereinafter referred to as the main hole) near its outer periphery, and a second oxygen supply system 12 (hereinafter referred to as the subhole) located at a distance t from the carbon supply system. ) are provided in the desired number. Although an example has been shown in which the second oxygen supply system is installed inside the same lance, the second oxygen supply system is not necessarily limited to this.

実験によるとランス中央部より炭素源を吠ぎ込む場合に
は、主孔、副孔の酸系ガスを独立に制御出来る特徴をい
かし、少なくても炭素源伏込み中の主孔の酸素を極力低
下させ、副孔側の酸系を増大させる事によって、ランス
先端からの溶銑表面までの間での炭素源の燃焼を防止し
、効率的に炭素源を添加出来る事が判った。
Experiments have shown that when injecting a carbon source from the center of the lance, the ability to independently control the acid gas in the main and sub-pores is utilized to minimize the amount of oxygen in the main pore during the carbon source insertion. It was found that by reducing the amount of carbon and increasing the acid system on the sub-hole side, combustion of the carbon source between the tip of the lance and the surface of the hot metal can be prevented and the carbon source can be added efficiently.

その試験結果を第10図に示すが、 なお炉壁煉瓦の居損を考属すると、1.0−3.0 M
、1氾囲が好まし℃・。図は無煙炭(l ffdil 
4 Qチ、1−・・+jil 60%を使用した例を示
した。
The test results are shown in Figure 10, and if the loss of the furnace wall bricks is taken into account, it is 1.0-3.0 M.
, 1°C is preferred. The figure shows anthracite (l ffdil)
An example using 4 Qchi, 1-...+jil 60% was shown.

゛実施例1 200 t i複合棺銑炉において、浴銑(C4,,2
%、SiO,5%、Mn0.5%、PO,1%、80.
02%)120tとスクラップ80tを装入し、無煙炭
(FixC85%)サイズl mn l Q +1lI
Il ’ij’4囲80%cもの乞、)1・有涙用酸紫
ガス用ランスの中央部より、ストレートノズルで、火点
面と交叉しない様N2カスで吠込んだ。
゛Example 1 In a 200 ti composite coffin pig furnace, bath pig iron (C4, 2
%, SiO, 5%, Mn0.5%, PO, 1%, 80.
02%) 120t and 80t of scrap were charged, and anthracite (FixC85%) size l mn l Q +1lI
1. From the center of the lacrimal acid purple gas lance, use a straight nozzle to inject N2 scum so as not to intersect the flash point surface.

無煙炭の吹込みは、0□吹吹回開始後2に開始し、10
分で終り、02吠課は20分で吹止めた。
The injection of anthracite started at 0□2 after the start of the blowing cycle, and at 10
It was over in 20 minutes, and the 2nd division was able to stop blowing in 20 minutes.

、1・1J諌用1ン2素ガスは400001’Jffi
/ kirであつtコ。
, 1N gas for 1.1J is 400001'Jffi
/ Kir de Atsutko.

帰;煙炭吹き込み速度は500 Kg/分(20にり/
l→久);ii’を疎用酸素ガスηX/ Hr /炭系
吹込速度Ky/Hrを15、:i’Ff錬離糸ガス火点
面積率0.7を維持した。
Return: Charcoal blowing speed is 500 Kg/min (20 kg/min)
l→Ku); ii' was used sparingly, oxygen gas ηX/Hr/charcoal system blowing rate Ky/Hr was 15, and :i'Ff was maintained at a firing point area ratio of 0.7.

lz止酸成分Temp 1650℃、0208%、5i
=t)、01、胤二0.15、P=0.020. S 
= 0.020の軟銅を、屑鉄配合率40%と言う高い
レベルで達成することか出来た。
lz acid stopper component Temp 1650℃, 0208%, 5i
=t), 01, Taneji 0.15, P=0.020. S
= 0.020 annealed copper with a high scrap iron content of 40%.

実施例2 混銑車にスケールをインジェクションして、脱砂処理を
施した。溶k (Si 0.15%、Mn 0.15 
%P0.10%、30.03%)を2oot′g合精錬
炉に、140tとスクラップ60tを装入し、コークス
粉を成形し、1 rmn −6tznz囲に75%入る
ものを、精錬用酸素ランスの中央部よりN2ガスにて、
火点面と交叉しない様吠き込んだ。
Example 2 Scale was injected into a pig iron mixer car to perform sand removal treatment. Molten k (Si 0.15%, Mn 0.15
%P0.10%, 30.03%) was charged into a 2oot'g refining furnace, 140 tons and 60 tons of scrap were charged, and coke powder was formed. With N2 gas from the center of the lance,
I yelled so as not to cross the ignition surface.

尚この操業においては、精錬用1v紫ノズルとして主孔
の他に、主孔の外側に副孔をもうけ、炉内での二次燃焼
(CO→C02)を推進した。
In this operation, in addition to the main hole, a sub-hole was provided outside the main hole as a 1V violet nozzle for refining to promote secondary combustion (CO→C02) in the furnace.

原形コークス粉の吹込みは、02吹疎開始から3分後に
始め、8分に終り、02吹殊は18分で吹止めた。
The blowing of the original coke powder started 3 minutes after the start of the 02 blowout and ended in 8 minutes, and the blowing of the 02 blowout was stopped in 18 minutes.

頴錬用酸素ガスは(主孔より2.500 Ont/ H
r副孔より15000m’/Hr )であった。
Oxygen gas for tempering (2.500 Ont/H from the main hole)
15,000 m'/Hr from the r subhole).

コークス粉成形品伏込迎度は4oOKr/分(10Kg
/を一装入) 精錬用酸素ガスml/Hr/炭素吹込速度に9/′Hr
を17、精錬用酸素ガス火点面積系を0.85、主孔酸
素供給速度/副孔酸系供給速度を全期間1.6に維持し
た。
Coke powder molded product sinking rate is 4oOKr/min (10Kg
/ one charge) Refining oxygen gas ml/Hr/carbon injection rate 9/'Hr
was maintained at 17, the refining oxygen gas firing point area system was maintained at 0.85, and the main hole oxygen supply rate/subhole acid system supply rate was maintained at 1.6 throughout the period.

1次市成分、Temp1630℃、C020%、Si 
0.01係、IVfn 0110%、P O,015%
、So、015%の中炭素鋼を、屑鉄配合率30%と言
う高いレベルで1°、)る事が出来た。
Primary city component, Temp1630℃, CO20%, Si
0.01 section, IVfn 0110%, P O, 015%
, So, 015% medium carbon steel was able to be heated by 1°) at a high level of scrap iron content of 30%.

実力用例3 200 を複合荀錬炉において、溶銑(C4,5%、S
i 1.5 %、1VInO,6%、Po、15%、8
0.030%)100を装入し、散索カスを2分間(3
5000フイ/Hr)供給し、脱S1反応をさせた後、
精錬を中断し、炉内の脱Siスラグを排滓截で昨去した
後、スクラップを100 を装入し、褐炭(FixC,
80饅)サイズ1)囮−10+脂の範囲90%のものを
、二次燃焼用ランスの中央部から、火点面積と交叉しな
い様にN2ガスで吹込んだ。
Practical use example 3 200 ml of hot metal (C4.5%, S
i 1.5%, 1VInO, 6%, Po, 15%, 8
0.030%) 100 and soaked for 2 minutes (3
After supplying (5000 ft/Hr) and carrying out S1 removal reaction,
After stopping the refining and removing the Si-free slag in the furnace, 100% of scrap was charged and lignite (FixC,
80 rice cakes) Size 1) Decoy - 10 + Fat range 90% was blown in with N2 gas from the center of the secondary combustion lance so as not to cross the flame spot area.

褐炭の吹込みは、02吹錬開始後5分に始め、20分に
終り、02吠錬は30分で吹止めた。
Injection of lignite started 5 minutes after the start of the 02 blowing process and ended in 20 minutes, and the blowing of the 02 blow process was stopped in 30 minutes.

1銖用酸素ガス:褐炭吹込み中(主孔20000赫任)
それ以外期間(主孔35,000シ皆 副孔15,00 (bn3/Hr) 褐炭吹き込速度:400Ky/分(30K9/ ’t−
装入)精錬用酸素ガス/炭素吹込速度−20 精錬用酸素ガス火点面積率−0,75 吹止成分で、Temp 1650℃、COO105φ、
S10.01%、胤:O,OS%、P:0.020%、
S:0.025%の低炭素鋼を屑鉄配合率50%と言う
高いレベルで得る事が出来た。
Oxygen gas for 1 bolt: During lignite injection (main hole 20,000 holes)
Other periods (35,000 main holes, 15,00 secondary holes (bn3/Hr) Lignite injection rate: 400Ky/min (30K9/'t-
Charge) Refining oxygen gas/carbon injection rate -20 Refining oxygen gas hot spot area ratio -0.75 With blow-off component, Temp 1650°C, COO105φ,
S10.01%, Seed: O, OS%, P: 0.020%,
S:0.025% low carbon steel could be obtained at a high level of scrap iron content of 50%.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は交叉面積率とスクラップ溶解能力の図表、第2
図は浴面投影面積の模式図、第3図は浴面とスクラップ
溶解能力の図表、第4図は浴面投影面積の模式図、第5
図はランスと投影面相の恨式図、第6図は炭素粒径とス
クラップ溶解能力の図表、第7図は排ガスと火点面積比
の図表、第8図はノズルと投影面積との模式図、第9図
はランス端面の模式図、第10図はランス或素友とスク
ラツ第 1 図 第2 闇 第3図 第4図 θつ 第5図ど 7へ 炭尭才立/mm以千の倉屓1 灯限V浴敦面積 第8 図 rt−3 第10図 主…畳@す夕囁11□、厭N努→
Figure 1 is a diagram of the cross area ratio and scrap melting capacity, Figure 2
The figure is a schematic diagram of the projected area of the bath surface, Figure 3 is a diagram of the bath surface and scrap melting capacity, Figure 4 is a schematic diagram of the projected area of the bath surface, and Figure 5 is a diagram of the projected area of the bath surface.
Figure 6 is a diagram of the lance and projected surface phase, Figure 6 is a diagram of carbon particle size and scrap melting ability, Figure 7 is a diagram of exhaust gas and spark spot area ratio, and Figure 8 is a schematic diagram of the nozzle and projected area. , Fig. 9 is a schematic diagram of the end face of the lance, Fig. 10 is a schematic diagram of the lance end face, and Fig. 10 shows the lance. Kurama 1 Lamp limit V bath Atsushi area 8 Figure rt-3 Figure 10 Main...Tatami @Suyusa 11□, Tsunami N Tsutomu →

Claims (1)

【特許請求の範囲】 1 容器下部からガス発生物質を吹き込み、上方から酸
素カスを吹製し、溶鉄面上方からランスにより炭素含有
物質を溶鉄面に吹き込む複合梢課法において、炭素含有
物質の粒径がI n1111−I Q jjunの範囲
のものを少くとも70%以上占める炭素源を、梢錬酸素
ジェットの火点面と30係以−ヒ交叉しない領域に、ラ
ンス中央部より溶鉄中央部表面に吹き込み、かつ加炭期
間及び脱炭期間は、精錬酸素カス火点面積(nX )/
浴表面償(m”) > 0.4に維持することを特徴と
する溶鉄加炭溶解精錬法。 2 予め溶銑を脱硫、脱燐、脱硫処理して、精練容器内
に発生するスラグな704/l−s以下に制御する特許
請求の範囲第1項記載の溶鉄加炭3 炭素含有物質添加
前に精錬を中断して容器内スラグを排滓し、精錬容器内
で発生するスラグを70Kg/l−s以下に制御する特
許請求の範囲第1項記載の溶鉄加炭溶解精錬法。 4 加炭精錬の期間中、精錬酸素ガス(Nも)/炭素含
有物添加速度(KVh)〉10に維持する特許請求の範
囲第1項記載の溶鉄加炭溶解精錬1去。 5 加炭精錬の炭素源吹込み期間中、炭素供給系の外周
近傍に設ける酸素供給系の酸素供比箪(ctn′/h 
) /炭素供給系から距離tをもつ酸素供給系の酸素供
給量(crt?/ h ) < 3.0に維持する特許
請求の範囲第1項記載の溶鉄加炭溶解精錬法。
[Scope of Claims] 1. In a composite spraying method in which a gas-generating substance is blown from the bottom of the container, oxygen scum is blown from above, and a carbon-containing substance is blown onto the molten iron surface using a lance from above the molten iron surface, particles of the carbon-containing substance are A carbon source with a diameter in the range of I n1111-I Q jjun that accounts for at least 70% of the carbon source is placed in an area that does not intersect the firing point of the oxygen jet for more than 30 minutes, from the center of the lance to the surface of the center of the molten iron. and during the carburization period and decarburization period, the refining oxygen sludge firing point area (nX)/
A molten iron carburization melting and refining method characterized by maintaining bath surface reparation (m") > 0.4. 2. Hot metal is desulfurized, dephosphorized, and desulfurized in advance to eliminate slag generated in the scouring vessel. Molten iron carburization 3 according to claim 1, in which the slag generated in the smelting container is controlled to 70 Kg/l by interrupting the smelting process and draining the slag in the container before adding the carbon-containing substance. The molten iron carburizing melting and refining method according to claim 1, wherein the molten iron carburization melting and refining method is controlled to be less than or equal to -s.4 During the carburizing and refining period, the refining oxygen gas (N also)/carbon-containing material addition rate (KVh) is maintained at 10. 5. During the carbon source injection period of carburization and refining, the oxygen supply system (ctn'/ h
2. The molten iron carburization melting and refining method according to claim 1, wherein the oxygen supply amount (crt?/h) of the oxygen supply system having a distance t from the carbon supply system is maintained at <3.0.
JP7588384A 1984-04-17 1984-04-17 Method for carburizing and melt-refining molten iron Granted JPS60221511A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7588384A JPS60221511A (en) 1984-04-17 1984-04-17 Method for carburizing and melt-refining molten iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7588384A JPS60221511A (en) 1984-04-17 1984-04-17 Method for carburizing and melt-refining molten iron

Publications (2)

Publication Number Publication Date
JPS60221511A true JPS60221511A (en) 1985-11-06
JPH0355525B2 JPH0355525B2 (en) 1991-08-23

Family

ID=13589128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7588384A Granted JPS60221511A (en) 1984-04-17 1984-04-17 Method for carburizing and melt-refining molten iron

Country Status (1)

Country Link
JP (1) JPS60221511A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003029498A1 (en) * 2001-09-27 2003-04-10 Nippon Steel Corporation Method for pretreatment of molten iron and method for refining
JP2005213602A (en) * 2004-01-30 2005-08-11 Jfe Steel Kk Dephosphorizing treatment method for molten iron

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6067610A (en) * 1983-09-19 1985-04-18 Sumitomo Metal Ind Ltd Steel making method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6067610A (en) * 1983-09-19 1985-04-18 Sumitomo Metal Ind Ltd Steel making method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003029498A1 (en) * 2001-09-27 2003-04-10 Nippon Steel Corporation Method for pretreatment of molten iron and method for refining
JP2005213602A (en) * 2004-01-30 2005-08-11 Jfe Steel Kk Dephosphorizing treatment method for molten iron
JP4513340B2 (en) * 2004-01-30 2010-07-28 Jfeスチール株式会社 Hot metal dephosphorization method

Also Published As

Publication number Publication date
JPH0355525B2 (en) 1991-08-23

Similar Documents

Publication Publication Date Title
KR101684378B1 (en) Method for refining hot metal in converter
KR870002182B1 (en) Process of making molten metal in cupola
JP6597332B2 (en) Phosphate fertilizer manufacturing method and phosphate fertilizer manufacturing apparatus
JP5031977B2 (en) Hot metal dephosphorization method
JP6357104B2 (en) Starting the smelting process
JPS60221511A (en) Method for carburizing and melt-refining molten iron
JP2019119906A (en) Converter refining method
JP5928094B2 (en) Method for refining molten iron
JP5870584B2 (en) Hot metal dephosphorization method
JP6291998B2 (en) How to remove hot metal
JP5585633B2 (en) Method of refining hot metal in converter
JP6544531B2 (en) How to smelt molten metal
JP2018127654A (en) Method for desulfurizing molten iron
JP4423927B2 (en) Hot metal dephosphorization method
JP6760399B2 (en) Hot metal dephosphorization method and refining agent
JP5870868B2 (en) Method of refining hot metal in converter
US3030202A (en) Iron refining process
US1743561A (en) Converter
JP5949627B2 (en) Method of refining hot metal in converter
US730142A (en) Process of purifying iron.
JP6327298B2 (en) Hot metal refining method
JP4513340B2 (en) Hot metal dephosphorization method
JPH0512407B2 (en)
JPH08225823A (en) Refining of molten metal
JPS5937324B2 (en) Method for promoting dephosphorization in bottom-blown converter refining

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees