JPS6067272A - Four-wheel steering device of car - Google Patents

Four-wheel steering device of car

Info

Publication number
JPS6067272A
JPS6067272A JP58175935A JP17593583A JPS6067272A JP S6067272 A JPS6067272 A JP S6067272A JP 58175935 A JP58175935 A JP 58175935A JP 17593583 A JP17593583 A JP 17593583A JP S6067272 A JPS6067272 A JP S6067272A
Authority
JP
Japan
Prior art keywords
steering
angle
pulse motor
rear wheel
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58175935A
Other languages
Japanese (ja)
Other versions
JPH0431903B2 (en
Inventor
Akihiko Miyoshi
三好 晃彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP58175935A priority Critical patent/JPS6067272A/en
Publication of JPS6067272A publication Critical patent/JPS6067272A/en
Publication of JPH0431903B2 publication Critical patent/JPH0431903B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D7/00Steering linkage; Stub axles or their mountings
    • B62D7/06Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins
    • B62D7/14Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering
    • B62D7/15Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering characterised by means varying the ratio between the steering angles of the steered wheels
    • B62D7/1518Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering characterised by means varying the ratio between the steering angles of the steered wheels comprising a mechanical interconnecting system between the steering control means of the different axles
    • B62D7/1545Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering characterised by means varying the ratio between the steering angles of the steered wheels comprising a mechanical interconnecting system between the steering control means of the different axles provided with electrical assistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D7/00Steering linkage; Stub axles or their mountings
    • B62D7/06Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins
    • B62D7/14Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering
    • B62D7/15Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering characterised by means varying the ratio between the steering angles of the steered wheels

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Steering-Linkage Mechanisms And Four-Wheel Steering (AREA)
  • Power Steering Mechanism (AREA)

Abstract

PURPOSE:To reduce the error ratio and improve followability by moving rear wheels little by little by means of a rear wheel steering device when the front wheel steering speed is low and moving them faster when it is high. CONSTITUTION:A steering device 2 steering front wheels 1 and a rear wheel steering device 4 steering rear wheels 3 are provided, and the rear wheels steering device 4 is driven by a pulse motor 5. The steering angle of the steering handle 6 of the steering device 2 is detected by a steering angle sensor 7, the signal of the steering angle sensor 7 is inputted to a control means, and the control means feeds a control signal in response to the front wheel steering angle to the pulse motor 5. The change status of the speed or acceleration of the signal of the steering angle sensor 7 is detected by a steering judging means, and a step angle setting means outputs a signal decreasing the step angle of the pulse motor 5 when the change quantity of the steering is small and relatively increasing the step angle of the pulse motor 5 when the change quantity of the steering is large to the pulse motor 5 via the control means based on the output of this steering judging means.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、自動車等の車両において前輪の転舵に応じ−
(後輪をも転舵制御するようにした車両の4輪操舵装置
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention is directed to steering the front wheels of a vehicle such as an automobile.
(This relates to a four-wheel steering system for a vehicle that also controls the steering of the rear wheels.)

(従来技術) 従来より、この種の車両の4輪操舵装置として、例えば
特開昭57−11173号公報にOIl示されているよ
うに、前輪を転舵するステアリング装置と、油圧アクチ
ュエータの作動にJ、って後輪を転舵駆動する後輪転舵
装置とを備え、前輪の転舵角および車速に応じて上記油
圧アクチュエータを作動制御することにより、前輪転舵
角に対する後輪転舵角特性を車速に応じて変化させるよ
うにしたものが知られている。この4輪転舵装置によれ
ば、例えば低速時には前輪に対して後輪を逆向き(逆位
相)に転舵することにより旋回性能を向上し、最小回転
半径の低減を可能とりる他、高速時には前輪に対して後
輪を同じ向き(同位相)に転舵づることにより操安性を
向上し、レーンチェンジをスムースに行うことができる
ものである。
(Prior Art) Conventionally, as a four-wheel steering system for this type of vehicle, a steering system for steering the front wheels and a hydraulic actuator are used, as disclosed in Japanese Patent Laid-Open No. 57-11173, for example. J is equipped with a rear wheel steering device that drives the rear wheels to steer the rear wheels, and controls the operation of the hydraulic actuator according to the front wheel steering angle and vehicle speed to control the rear wheel steering angle characteristics relative to the front wheel steering angle. A device that changes the speed according to the vehicle speed is known. According to this four-wheel steering device, for example, at low speeds, the rear wheels are steered in the opposite direction (opposite phase) to the front wheels, thereby improving turning performance and reducing the minimum turning radius. By steering the rear wheels in the same direction (same phase) as the front wheels, steering stability is improved and lane changes can be made smoothly.

しかして、上記の如く4輪操舵を行うについて、従来よ
り工作機やX−Yプロッター等の位置決め用に使用され
、応答性よく高精度の制御11が可能なパルスモータを
前記後輪転舵装置の駆動諒として使用した場合に、この
パルスモータは応答速度に限界があるため、前輪転舵速
度が大きい時に後輪の転舵遅れが発生覆る恐れがある。
In order to perform four-wheel steering as described above, a pulse motor, which has been conventionally used for positioning machine tools, X-Y plotters, etc. and is capable of highly responsive and highly accurate control 11, is used as the rear wheel steering device. When used as a drive shaft, this pulse motor has a limited response speed, so when the front wheel turning speed is high, there is a risk that a delay in turning the rear wheels may occur.

りなわら、通常、上記パルスモータを制御11ツる場合
、ステップ角(例えば、0.9°/5tep)を一定に
して駆動パルス信号のパルス数づなわらステップ数を変
動()て、その移動mの制御を行うようにしているが、
パルスモータは上記のように応答速度に限界があって、
例えば1秒間に1500スデツプ稈瓜が通常使用されC
いるものの限度である。このため、パルスモータの速度
を向、Fりるには、そのステップ角を人ぎくづればよい
が、このステップ角の大ぎなパルスモータ(例えば、3
.6°/5tep>は、操舵の変化量(前輪転舵速度)
が相対的に大きいどきにはパルスモータの回転速度が大
きく後輪転舵遅れの改善が図れるが、操舵の変化量(前
輪転舵速度)が相対的に小さいとぎには、パルスモータ
の1ステツプで移動する後輪転舵角が人きくなって制わ
1)精度が低下し、特に高精度の制御を必要とづる4輪
操舵装置には不適当なものである。しかして、上記問題
を解決りるために、小さいステップ角で1秒当りのステ
ップ数が人ぎい高性能のパルスモータを使用することは
、コストの上昇、重量増加、N’J費電力の増加等の問
題がある。
Normally, when controlling the above-mentioned pulse motor, the step angle (for example, 0.9°/5tep) is kept constant and the number of steps is varied according to the number of pulses of the drive pulse signal. I am trying to control the
As mentioned above, pulse motors have a limited response speed.
For example, 1,500 steps per second is commonly used.
There are limits to what is possible. Therefore, in order to increase the speed of a pulse motor, the step angle can be adjusted sharply, but if a pulse motor with a large step angle (for example, 3
.. 6°/5tep> is the amount of change in steering (front wheel turning speed)
When the rotation speed of the pulse motor is relatively large, the rotational speed of the pulse motor is large and the rear wheel steering delay can be improved. However, when the amount of change in steering (front wheel steering speed) is relatively small, the rotation speed of the pulse motor is large and the rotation speed of the pulse motor is large. The steering angle of the moving rear wheels becomes unnatural and 1) the accuracy decreases, making it particularly unsuitable for a four-wheel steering system that requires highly accurate control. However, in order to solve the above problems, using a high-performance pulse motor with a small step angle and a high number of steps per second increases cost, weight, N'J cost, and power. There are other problems.

(発明の目的) 本発明は上記事情に鑑み、パルスモータは例えばその励
磁方式を変えることにより11j単にステップ角を変更
づることができることに着目し、前輪を転舵づるステア
リング装置の変化♀に対応して、パルスモータの駆動に
4゛i′う後輪転舵装置にJζる後輪の動きを、前輪転
舵速度が小さいどきには小刻みにしてπ;差比率を小さ
くし高精度に目標値に合致させる一方、前輪転舵速度が
大きいどきには速度を高めて追従性を向上して荏れの発
生をM浦−するようにして制御性能を改良した車両の4
輪操舵装置を提供づることを目的とりるものである。
(Object of the Invention) In view of the above circumstances, the present invention focuses on the fact that the step angle of a pulse motor can be simply changed by changing its excitation method, for example, and corresponds to changes in the steering device that steers the front wheels. Then, when the front wheel steering speed is small, the rear wheel movement, which is 4゛i′ driven by the pulse motor and Jζ applied to the rear wheel steering device, is changed in small steps to π; the difference ratio is reduced and the target value is set with high precision. 4 of the vehicle, which improves control performance by increasing the speed when the front wheels are turned at a high speed to improve followability and prevent the occurrence of rollover.
The purpose is to provide a wheel steering device.

(発明の(育成) 第1図番は本発明の偶成を明示するための全体構成図で
ある。
(Development of the Invention) Figure 1 is an overall configuration diagram for clearly showing the constellation of the present invention.

本発明の4輪操舵装置は、前輪1を転舵するステアリン
グ装置2と、後輪3を転舵する後輪転舵装置4どを備え
、後輪転舵装置4Iよパルスモータ5にて駆動される。
The four-wheel steering device of the present invention includes a steering device 2 for steering a front wheel 1, a rear wheel steering device 4 for steering a rear wheel 3, etc., and is driven by a pulse motor 5 by the rear wheel steering device 4I. .

ステアリング装置2のステアリングハンドル6の舵角が
舵角センサ7によって検出され、少なくともこの舵角セ
ンサ7の信号が入力された制御手段は、前輪転舵角に応
じた制御信号を上記パルスモータ5に送出りる。また、
上記舵角センサ7の信号の速度もしくは加速度等の変化
状態を操舵判別手段により検出し、この操舵判別手段の
出力に曇づぎステップ角設定手段は操舵の変化量が大き
いとぎパルスモータ5のステップ角を相対的に人ぎくす
る信号を制御手段を介してパルスモータ5に出力層るも
のである。
The steering angle of the steering wheel 6 of the steering device 2 is detected by the steering angle sensor 7, and the control means to which at least the signal of the steering angle sensor 7 is input sends a control signal to the pulse motor 5 according to the front wheel steering angle. I'll send it out. Also,
A steering discrimination means detects changes in the speed or acceleration of the signal from the steering angle sensor 7, and a step angle setting means detects the step of the pulse motor 5 which has a large amount of change in steering. A signal that makes the corner relatively jerky is outputted to the pulse motor 5 via the control means.

(発明の効果) 又テアリンゲ装買の樽舵の変化量を検出し、この操舵の
変化がが大きいどきにはパルスエータのステップ角を大
きくし、操舵の変化量が小さいときにはパルスモータの
ステップ角を小さくしたことにより、前輪転舵速度が人
ぎいときは後輪の転舵速度も大きくして追従性を向上L
ノ後輪の転舵遅れをM演するとともに、前輪転舵速度が
小さいときには後輪の転舵角を小刻みにして[1標転舵
角どの誤差を小さくηることができ、全領域で高精度な
制御を行って、4輪操舵装置の特性を十分に発揮させる
ことができる。
(Effect of the invention) Also, the amount of change in the barrel rudder of the steering gear is detected, and when the change in steering is large, the step angle of the pulse motor is increased, and when the amount of change in steering is small, the step angle of the pulse motor is increased. By making it smaller, when the front wheel turning speed is too high, the rear wheel turning speed is also increased to improve followability.
In addition to controlling the steering delay of the rear wheels, when the front wheel steering speed is small, the rear wheel steering angle can be reduced in small increments. Accurate control can be performed to fully utilize the characteristics of the four-wheel steering system.

(実施例) 以下、木〉で明の実施例を第2図〜第5図に治って説明
する。
(Embodiment) Hereinafter, an embodiment of the present invention will be explained with reference to FIGS. 2 to 5.

第2図に示′TJJこうに、左右の前輪1,1を転舵す
るステアリング装置2は、ステアリングハンドル6と、
該ステアリングハンドル6の回転運動を直線往復運動に
変換するラックビニA>機構11ど、該ラックビニ2ン
機構11の作動を前輪1゜1に伝達してこれらを転舵さ
Uる/[右のタイロッド12.12およびナックルアー
ム13.13どから構成されている。
As shown in FIG. 2, a steering device 2 for steering the left and right front wheels 1, 1 includes a steering handle 6,
The rack mechanism 11 converts the rotational motion of the steering handle 6 into a linear reciprocating motion, and the operation of the rack mechanism 11 is transmitted to the front wheels 1.1 to steer them. It consists of a knuckle arm 12.12, a knuckle arm 13.13, etc.

一方、左右の後輪3,3を転舵する後輪転舵装置4は、
車体に左右方向に1躍動自在に保持された後輪操作ロッ
ド14と、該後輪操作ロッド14の左右両端にそれぞれ
タイロッド15.15を介して連結された左右のナック
ルアーム16.16とを有し、上記後輪操作ロッド14
の軸方向の移動により、後輪3,3が転舵する。そして
、後輪操作ロッド14にはラック17が形成され、該ラ
ック17に噛合するピニオン1Bがパルスモータ5によ
り一対の傘歯車19,20J5よびピニオン軸21を介
し゛(回転されることにより、上記パルスモータ5の回
転方向、回転量に対応して後輪3゜3を転舵Jる。
On the other hand, the rear wheel steering device 4 that steers the left and right rear wheels 3, 3,
It has a rear wheel operating rod 14 held on the vehicle body so as to be able to move freely in the left and right direction, and left and right knuckle arms 16.16 connected to both left and right ends of the rear wheel operating rod 14 via tie rods 15.15, respectively. and the rear wheel operating rod 14
The rear wheels 3, 3 are steered by the movement in the axial direction. A rack 17 is formed on the rear wheel operating rod 14, and the pinion 1B meshing with the rack 17 is rotated by the pulse motor 5 through a pair of bevel gears 19, 20J5 and a pinion shaft 21. The rear wheels 3.degree. 3 are steered in accordance with the direction and amount of rotation of the pulse motor 5.

また、上記後輪操作ロッド14はパワーシリンダ22を
貫通し、該パワーシリンダ22内を左右の油圧室22a
、22bに仕切るピストン23がこの後輪操作ロッド1
4に固着されると共に、上記油圧室22a、22bには
、ピニオン軸21の周囲に設けられたコントロールバル
ブ24から導かれた油圧通路25a、25bがそれぞれ
接続され、まに上記コントロールバルブ24とAイルポ
ンプ27との間には油圧供給通路28d3よびリターン
通路29が設置)られている。ここで、上記コン1−ロ
ールバルブ24は、パルスモータ5の回転時にビニオン
軸21に加わる回転ノjに応じて作動し、オイルポンプ
27から油圧供給通路2Bを紅で供給される油圧を上記
回転力の方向に応じてパワーシリンダ22のいずれか一
方の油圧ff122aまたは22bに導入し、他方の油
圧室22bまたは22a内の作動油をリターン通路29
を介して上記オイルポンプ27に戻?l J:うに作用
する。したがって、上記パルスモータ5により傘歯車1
9゜20、ピニオン軸21、ビニオン18およびラック
17を介して後輪操作ロッド14が軸り向に移動される
時に、上記パワーシリンダ22内に導入された油J土が
ピストン23を介して後輪操作ロッド14の移動をアシ
ストするしのである。
Further, the rear wheel operating rod 14 passes through the power cylinder 22 and operates inside the power cylinder 22 in left and right hydraulic chambers 22a.
, 22b, the piston 23 is connected to this rear wheel operating rod 1.
At the same time, hydraulic passages 25a and 25b led from a control valve 24 provided around the pinion shaft 21 are connected to the hydraulic chambers 22a and 22b, respectively. A hydraulic pressure supply passage 28d3 and a return passage 29 are installed between the oil pump 27 and the oil pump 27. Here, the control valve 24 operates in response to the rotational pressure j applied to the pinion shaft 21 when the pulse motor 5 rotates, and controls the hydraulic pressure supplied from the oil pump 27 through the hydraulic pressure supply passage 2B to the rotation. Depending on the direction of the force, the hydraulic oil in either one of the hydraulic chambers 22a or 22b of the power cylinder 22 is introduced into the return passage 29.
Return to the oil pump 27 via ? l J: Acts on sea urchins. Therefore, the pulse motor 5 causes the bevel gear 1 to
9.20, when the rear wheel operating rod 14 is moved in the axial direction via the pinion shaft 21, pinion 18 and rack 17, the oil and soil introduced into the power cylinder 22 is transferred to the rear via the piston 23. It assists the movement of the wheel operating rod 14.

上記パルスモータ5はドライバ31を介して、フン1−
〇−ラ30から出力される制御信Hに五つて作動制御さ
れる。該コン1−ローラ30に(ま、97速セン1〕3
2か1う出ツノされる車速信号と、上記ステアリング装
置2にJ5Lプるステアリングツ翫ンドル6の操舵角を
検出づる舵角センサ7からの舵角信号と、後輪転舵量@
4にa3&ノるパルスモータ5の作動量から後輪転舵量
を検出する後輪転舵角セン゛す33からの後輪転舵角信
号と、バッテリ電源13およびイグニッション信号Iり
とが入ツノされる。
The pulse motor 5 is connected to the fan 1 through the driver 31.
The operation is controlled by five control signals H output from the ○-ra 30. To the controller 1-roller 30 (well, 97 speed sensor 1) 3
A vehicle speed signal that is output by 2 or 1, a steering angle signal from a steering angle sensor 7 that detects the steering angle of the steering wheel 6 that is input to the steering device 2, and a rear wheel turning amount @
4, a rear wheel steering angle signal from a rear wheel steering angle sensor 33 that detects the amount of rear wheel steering from the operation amount of the pulse motor 5 (a3 & 2), a battery power source 13, and an ignition signal I are input. .

また、このコントローラ30にはメータ表示器3−4が
接続されて転舵状態が表示される。
Further, a meter display 3-4 is connected to this controller 30 to display the steering state.

次に、コン1〜ローラ30の構成を第3図を参照して説
明りる。
Next, the configuration of the controllers 1 to 30 will be explained with reference to FIG.

前記舵角センv7の検出信号および車速セン→ノ32の
検出信号は後輪転舵角演算部35に入力され、この後輪
転舵角演算部35で目標後輪転舵角θ1゛が演算される
The detection signal of the steering angle sensor v7 and the detection signal of the vehicle speed sensor 32 are input to the rear wheel turning angle calculating section 35, and the rear wheel turning angle calculating section 35 calculates a target rear wheel turning angle θ1'.

1なわち、上記後輪転舵角演算部35で番よ、舵角セン
υ−7の信号によりステアリングノーンドル6の左右方
向への操舵による操舵角θ11をめ、この操舵角θ11
と車速センサ32からの車速信号Vとにより目標後輪転
舵角θ1・をめる。この後輪転舵角θrの’aK’lは
、例えば第4図に示づ如き操舵角θl)と車速Vどに対
する後輪転舵角θ1゛の特性が予め後輪転舵角セン部3
5に記憶されてJ3す、この特性に従って算出される。
1. That is, the rear wheel turning angle calculation section 35 calculates the steering angle θ11 by steering the steering wheel 6 in the left-right direction based on the signal from the steering angle sensor υ-7, and calculates the steering angle θ11.
and the vehicle speed signal V from the vehicle speed sensor 32 to determine the target rear wheel turning angle θ1. 'aK'l of this rear wheel turning angle θr is determined by the characteristics of the rear wheel turning angle θ1゛ with respect to the steering angle θl) and the vehicle speed V as shown in FIG.
5 and calculated according to this characteristic.

ここで、第4図に示づ後輪転舵特性は、低速時には、操
舵角θ11が一定(直を越えると操舵角Ohの増大にし
たかつ〔後輪転舵角θrが大きな転舵比θr/θ11(
゛マイナス方向の逆位相(前後輪が逆方向に転舵づる状
態)に増大する一方、高速時には、操舵角θ11の増大
にしたがって後輪転舵角θ1゛がプラス方向に同位相(
前後輪が同方向に転舵りる状態)でj1人づるとともに
、一定の操舵角θ]1を越えると転舵比θr/θ1)が
略一定となるJ:うに119定されている。これは、低
速時におけるψ両旋回時の最小回転半径を可及的小さく
し、J、た高速時におりるレーンヂ1ンジをスムースに
実現づるためである。
Here, the rear wheel steering characteristics shown in FIG. 4 are such that at low speeds, the steering angle θ11 is constant (beyond straight, the steering angle Oh increases) and [the rear wheel steering angle θr is large, the steering ratio θr/θ11 (
At high speeds, as the steering angle θ11 increases, the rear wheel steering angle θ1 increases in phase in the positive direction (a state in which the front and rear wheels are steered in opposite directions).
When the front and rear wheels are steered in the same direction), the steering ratio θr/θ1) becomes approximately constant when the steering angle θ exceeds a certain steering angle θ]1. This is to make the minimum turning radius as small as possible during both ψ turns at low speeds, and to smoothly realize range 1 turns at high speeds.

上記後輪転舵角セン部35で終用した後輪転舵角θrの
信号は第1の比較器36に人力され、第1の比較器36
はこの後輪転舵角Orの15z号と後輪転舵角レンv3
3からの実測後輪転舵角θr′とを比較して、その偏差
帛に応じた制御爪に相当づる信号を補正パルス発生部3
9に対し”C出力する。
The signal of the rear wheel turning angle θr that has been used by the rear wheel turning angle sensing section 35 is manually inputted to the first comparator 36.
is this rear wheel steering angle No. 15z of Or and rear wheel steering angle Len v3
The correction pulse generator 3 compares the measured rear wheel turning angle θr' from 3 and generates a signal corresponding to the control claw according to the deviation.
Outputs "C" for 9.

また、舵角セン4ノアの検出信号1よ操舵速度演粋部/
10に人力され、この操舵速度演紳部/10で単位時間
当りの操舵の変化毎から操舵速度1」をめ、この信号1
11よ第2の比較器37に人力される。第2の比較器3
7(まこの操舵速度Hと設定信号発生部38からの設定
1fi K−とを比較して、操舵速度1−1が設定値1
(より大きいときに、ドライバ31にハイレベルもしく
はローレベルのステップ角信号を出力し、このドライバ
31からパルスモータ5に出力される駆動パルス信号の
励磁方式を変えて、パルスモータ5のステップ角を操舵
速度1−1の小さいときには小さくく1ステップ0.9
°〉、操舵速度ト1の大きいときには大きく(1ステッ
プ1.8°)切換えて駆動り−るものである。
Also, from the detection signal 1 of the steering angle sensor 4, the steering speed operation part/
10, the steering speed controller/10 calculates the steering speed 1 from each change in steering per unit time, and calculates the steering speed 1 from this steering speed control section/10.
11 and is manually input to the second comparator 37. Second comparator 3
7 (Comparing Mako's steering speed H with the setting 1fi K- from the setting signal generating section 38, the steering speed 1-1 is the setting value 1.
(When the step angle is larger than When the steering speed 1-1 is small, the step is 0.9.
°>, and when the steering speed T1 is high, the driving is performed by switching greatly (1.8° per step).

補正パルス発生部39は、θr−θr′の正負に応じて
パルスモータ5の回転方向に対応した回転方向切換え信
号、および所定の周波数の駆動パルス信号をドライバ3
1に出力し、1〜ライバ31はこの信号J3よび第2の
比較537からの操舵の変化量に応じたステップ角信号
を受()Cパルスモータ5を駆動り−る駆動パルス1n
¥−3に変換してパルス七−夕5に出力し、[]標後後
輪転舵角「どイjるように後輪転舵装置4を駆動りる。
The correction pulse generator 39 sends a rotation direction switching signal corresponding to the rotation direction of the pulse motor 5 and a drive pulse signal of a predetermined frequency to the driver 3 according to the positive or negative of θr-θr'.
1 to the driver 31 receive the step angle signal corresponding to the amount of change in steering from the signal J3 and the second comparison 537.
It is converted to ¥-3 and output to the pulse Tanabata 5, and the rear wheel steering device 4 is driven to determine the rear wheel steering angle.

な+3、上記駆動パルス信号は、操舵の変化量が大きい
低速時に+5いてtiL、ハンドル舵角速度の最大値(
約760’/s)に対応し、これに上記した第4図の特
性に基づき後輪転舵角θrの最大1i0(約20°)の
転舵を、追従遅れを起さないようにパルスモータ5を駆
動リ−るためのパルス数どステップ角の信号がまり、操
舵の変化♀が小さい^速時に+3いてはハンドル舵角速
度J3J、び第4図による後輪転舵角θrのいずれも小
さくなることから、後輪3の転舵に空き時間が生じない
にうに、均等にパルスモータ5を駆動りるためのパルス
数とステップ角の信号がまるものである。
+3, the above drive pulse signal is +5 at low speeds where the amount of change in steering is large, tiL, the maximum value of the steering wheel angular velocity (
760'/s), and based on the characteristics shown in FIG. When the number of pulses required to drive the wheel and the step angle signal are concentrated and the steering change ♀ is small, +3, both the steering wheel steering angular speed J3J and the rear wheel turning angle θr shown in Fig. 4 become small. Therefore, the number of pulses and step angle signals for driving the pulse motor 5 evenly so that there is no idle time in steering the rear wheels 3 are set.

次に、上記実施例のコン1〜ローラ30の作動を第5図
に示すフローヂャ−1〜を用い′C説明りる。
Next, the operation of the controller 1 to the roller 30 of the above embodiment will be explained using the flowchart 1 to 30 shown in FIG.

この第5図の例では、第3図と異なり後輪転舵角セン9
33の実測後輪転舵角信号を入力することなくオープン
制御を行う場合について示している。
In the example shown in Fig. 5, unlike Fig. 3, the rear wheel steering angle sensor 9
The case where open control is performed without inputting the actually measured rear wheel turning angle signal of No. 33 is shown.

第5図Aはメイン処理ルーチンであり、スター1゛シて
、システムイニシIIライズ(第5図に+31)るステ
ップ1〕1)の後、操舵角のメモリ値Mθ11が06か
どうか判断しく1)2>、YEESの場合には後輪転舵
角θrをOoに補正する(P3)一方、Noの場合には
車速レンサ32による車速Vを読み込む(P4)。
FIG. 5A shows the main processing routine, in which it is determined whether the steering angle memory value Mθ11 is 06 or not after the system initialization II (step 1) 1) in which the system is initialized (+31 in FIG. 5). )2>, in the case of YES, the rear wheel turning angle θr is corrected to Oo (P3), while in the case of No, the vehicle speed V from the vehicle speed sensor 32 is read (P4).

また、舵角[ンサ7による操舵角θ11の読み込みは、
第5図Bの割込み処理ルーチンによって行い、数ミリレ
カンドの一定時間(1秒)毎に発生される割込み信号I
RQの入力(+)11)に伴い、舵角ヒンリー7の操舵
角θ11を読み込み()’12)、この検出操舵角θh
の値と前回検出の操舵角θ11のメモリ値Mθ11の値
から操舵速度!−1を算出して(PI3)、上記操舵角
θh (+3よび操舵速度1−1の値をメモリに書き込
み(PI3)、この処理ルーチンを於71 乙 − 上記割込み処理に伴ってメイン処理ルーチン(゛は、メ
モリの操舵角MOII +3よび車速Vに!^づき、第
4図の特性により予め登録しである目標後輪転舵角θr
を算出づる(P5)。そして、操舵速度11が設定値1
〈より大ぎいかどうか判断しく+)G)、この判断がY
ESのとぎにはステップ角を大きく1.8°/ 5te
pとづ゛る信号を出力ηる(F)7)一方、Noのとき
にはステップ角を小さり0.9°/ 5tepとする信
号をドライバ31に出力りる(+)8)。
Furthermore, the reading of the steering angle θ11 by the sensor 7 is as follows:
The interrupt signal I is generated by the interrupt processing routine shown in FIG.
With the RQ input (+)11), the steering angle θ11 of the steering angle Hinley 7 is read ()'12), and this detected steering angle θh
Steering speed from the value of the memory value Mθ11 of the previously detected steering angle θ11! -1 (PI3), write the values of the steering angle θh (+3 and steering speed 1-1) in the memory (PI3), and execute this processing routine at 71B - Along with the above interrupt processing, the main processing routine (゛ is the target rear wheel turning angle θr, which is registered in advance according to the characteristics shown in Fig. 4, based on the steering angle MOII +3 and the vehicle speed V in the memory.
Calculate (P5). Then, the steering speed 11 is set to 1
〈Judging whether it is greater than +)G), this judgment is Y
Increase the step angle to 1.8°/5te for ES sharpening.
On the other hand, when the answer is No, a signal that decreases the step angle by 0.9°/5 tep is output to the driver 31 (+) 8).

続いC、ステップ1〕5による後輪転舵角θrと前回算
出した後輪転舵角01・′とが一致するように、1θr
−〇I゛’ l = Oとなるパルス数、回転方向を4
輝して所定の駆動パルスをドライバ31に出力しくP9
)、今回の後輪転舵角θrを前回の後輪転舵角θr′に
メモリを円込換え(1)10)、上記処理を繰返づ。な
+3、ステップP3に+5いては、後輪転舵角θrをO
oに補正するとどもにメモリの後輪転舵角θ1゛′もO
oとづる。
Continue C, Step 1] Set 1θr so that the rear wheel steering angle θr obtained in step 5 matches the previously calculated rear wheel steering angle 01・′.
−〇I゛' The number of pulses and rotation direction for l = O is 4.
P9 to output a predetermined drive pulse to the driver 31.
), convert the current rear wheel steering angle θr into the previous rear wheel steering angle θr' in the memory (1) 10), and repeat the above process. +3, and +5 in step P3, the rear wheel steering angle θr is set to O.
When corrected to o, the memory rear wheel steering angle θ1゛' also becomes O.
It's spelled o.

上記実施例によれば、操舵速度1−1が人ぎいときには
、パルスモータ5のステップ角を大きくして後輪3の転
舵遅れを解消する一方、操舵速度1〜1が小さいときに
は、ステップ角を小ざくして後輪3の動きを小刻みにし
て、全領域に83いて精度のよい後輪転舵制御を行うこ
とができる。
According to the above embodiment, when the steering speed 1-1 is high, the step angle of the pulse motor 5 is increased to eliminate the steering delay of the rear wheels 3, while when the steering speed 1-1 is low, the step angle By reducing the movement of the rear wheels 3 in small increments, accurate rear wheel steering control can be performed over the entire range 83.

また、上記第5図に示1実施例では、後輪転舵角θ1゛
の実測検出によるフィードバック制御は行っていないが
、これはフィードバック制御を全領域で行うと操舵の変
化量の大きい時には、フィードバック制御を実行してい
る時間だ【プ応答遅れやハンチングが発生ずることにな
るためであるが、本発明は、例えば、ハンドルヒンタ時
のみ後輪3の基準位置を修正し−C1制御誤差の蓄積を
解消覆るようにしてもJ、く、また、常に後輪の転舵角
をフィードバック制御するようにしたものにも適用可能
である。
In addition, in the first embodiment shown in FIG. 5, feedback control based on actual measurement detection of the rear wheel turning angle θ1 is not performed, but this means that if feedback control is performed in the entire range, when the amount of change in steering is large, feedback control is not performed. [This is because a delay in response or hunting will occur, but the present invention corrects the reference position of the rear wheel 3 only when the steering wheel is hinted. It is also possible to apply feedback control to the steering angle of the rear wheels at all times.

一方、上記実施例では後輪転舵装置4に油圧によって後
輪3の転舵をアシストリ゛るいわゆるパワーステアリン
グ機構を採用しで、パルスモータ5による転舵動作を確
実にしているが、パルスモータ5のみにJ:る転舵もし
くは他のアシストfill構を採用してもよい。
On the other hand, in the above embodiment, a so-called power steering mechanism is adopted in the rear wheel steering device 4 to assist steering of the rear wheels 3 using hydraulic pressure, and the steering operation by the pulse motor 5 is ensured. Only J: steering or other assist fill mechanism may be adopted.

また、上記のように操舵の変化量に応じて相対的にステ
ップ角を変化させる−とともに、この操舵の変化量に対
応してパルスモータ5の駆動パルス周波数を可変として
もよく、操舵の変化量が大きいときにパルスモータ5の
ステップ角を大きくりるど同面に、駆動パルス周波数を
高くりるようにづ゛ると、より良好な制御を行うことが
できる。
In addition, as described above, the step angle may be changed relatively according to the amount of change in steering, and the drive pulse frequency of the pulse motor 5 may also be made variable in accordance with the amount of change in steering. Better control can be achieved by increasing the step angle of the pulse motor 5 and at the same time increasing the drive pulse frequency when the value is large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の構成を明示するための車両の4輪操舵
装置の全体構成図、 第2図は本発明の一実施例にJ、る車両の4輪操舵装置
の具体的構造例を示4−仝体構成図、第3図はコントロ
ーラのブロック図、 第4図はコントローラに設定される後輪転舵特性の一例
、を示ず特性図、 第5図Δ、Bは上記実施例にa31:Jる後輪転舵制御
の流れを示り゛フローヂ17−1〜である。 1・・・・・・前輪 2・・・・・・ステアリング装置
3・・・・・・後輪 4・・・・・・後輪転舵装置5・
・・・・・パルスモータ 6・・・・・・ステアリングハンドル 7・・・・・・舵角レンサ 30・・・・・・コン1〜
口−ラ第 1 図 第−2図
Fig. 1 is an overall configuration diagram of a four-wheel steering system for a vehicle to clearly demonstrate the structure of the present invention, and Fig. 2 is a specific structural example of a four-wheel steering system for a vehicle according to an embodiment of the present invention. Figure 4 is a block diagram of the controller; Figure 4 is an example of the rear wheel steering characteristics set in the controller; Figure 5 is a characteristic diagram (not shown); Figure 5 is a diagram of the above embodiment. a31: Flow 17-1~ shows the flow of rear wheel steering control. 1... Front wheel 2... Steering device 3... Rear wheel 4... Rear wheel steering device 5.
...Pulse motor 6 ... Steering handle 7 ... Steering angle sensor 30 ... Controller 1 ~
Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] (1) 前輪を転舵゛す゛るステアリング装置と、後輪
を転舵づる後輪転舵装置と、後輪転舵装置を駆動するパ
ルスモータと、上記ステアリング装置のステアリングハ
ンドルの舵角を検出する舵角センサと、少なくとも上記
舵角センサの信号が入力され前輪転舵角に応じた制御信
号をパルスモータに送出する制御手段と、上記舵角セン
サの信号の変化状態を検出する操舵判別手段と、この操
舵判別手段の出力に基づき、操舵の変化mが大きいとき
パルスモータのステップ角を相対的に大きくするステッ
プ角設定手段どが設【プられたことを特徴とづる車両の
4輪操舵装置。
(1) A steering device that steers the front wheels, a rear wheel steering device that steers the rear wheels, a pulse motor that drives the rear wheel steering device, and a steering angle that detects the steering angle of the steering wheel of the steering device. a sensor, a control means that receives at least a signal from the steering angle sensor and sends a control signal corresponding to the front wheel turning angle to the pulse motor, a steering determination means that detects a change state of the signal from the steering angle sensor; A four-wheel steering system for a vehicle, characterized in that a step angle setting means is provided for relatively increasing the step angle of the pulse motor when the steering change m is large based on the output of the steering determining means.
JP58175935A 1983-09-22 1983-09-22 Four-wheel steering device of car Granted JPS6067272A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58175935A JPS6067272A (en) 1983-09-22 1983-09-22 Four-wheel steering device of car

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58175935A JPS6067272A (en) 1983-09-22 1983-09-22 Four-wheel steering device of car

Publications (2)

Publication Number Publication Date
JPS6067272A true JPS6067272A (en) 1985-04-17
JPH0431903B2 JPH0431903B2 (en) 1992-05-27

Family

ID=16004821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58175935A Granted JPS6067272A (en) 1983-09-22 1983-09-22 Four-wheel steering device of car

Country Status (1)

Country Link
JP (1) JPS6067272A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61241274A (en) * 1985-04-19 1986-10-27 Kayaba Ind Co Ltd Rear wheel steering device
JPH01215674A (en) * 1988-02-25 1989-08-29 Fuji Heavy Ind Ltd Method of controlling rear wheel steering of automobile
US4943758A (en) * 1987-09-17 1990-07-24 Honda Giken Kogyo Kabushiki Kaisha Steering control apparatus for a motor vehicle with steerable front and rear wheels
US5083627A (en) * 1988-03-28 1992-01-28 Honda Giken Kogyo Kabushiki Kaisha Steering system for motor vehicle with steerable front and rear wheels
CN104527780A (en) * 2014-12-08 2015-04-22 上海理工大学 Steering control method for four-wheeled independent steering vehicle

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61241274A (en) * 1985-04-19 1986-10-27 Kayaba Ind Co Ltd Rear wheel steering device
JPH0523986B2 (en) * 1985-04-19 1993-04-06 Kayaba Industry Co Ltd
US4943758A (en) * 1987-09-17 1990-07-24 Honda Giken Kogyo Kabushiki Kaisha Steering control apparatus for a motor vehicle with steerable front and rear wheels
JPH01215674A (en) * 1988-02-25 1989-08-29 Fuji Heavy Ind Ltd Method of controlling rear wheel steering of automobile
US5083627A (en) * 1988-03-28 1992-01-28 Honda Giken Kogyo Kabushiki Kaisha Steering system for motor vehicle with steerable front and rear wheels
CN104527780A (en) * 2014-12-08 2015-04-22 上海理工大学 Steering control method for four-wheeled independent steering vehicle

Also Published As

Publication number Publication date
JPH0431903B2 (en) 1992-05-27

Similar Documents

Publication Publication Date Title
JP2002096751A (en) Front and rear wheel steering angle controller for vehicle
CN115605393A (en) Steer-by-wire system with artificial position hysteresis for modifying steering wheel angle
JPS6067272A (en) Four-wheel steering device of car
JPS61295175A (en) Four-wheel steering gear of vehicle
JPH05278626A (en) Rear wheel steering device for vehicle
JPS59143770A (en) Four wheel steering device of car
JP2717100B2 (en) Rear wheel steering device
JPH0453751B2 (en)
JPH0523987B2 (en)
JPH0431905B2 (en)
JPH0431906B2 (en)
JPH0366187B2 (en)
JPH04349068A (en) Motor control device of four-wheel steering car
JPH0431904B2 (en)
JPS59227564A (en) Four wheel steering system
JPS59128053A (en) Four-wheel steering gear of vehicle
JPH0453749B2 (en)
JP2943450B2 (en) Electric control for rear wheel steering
JPH03135873A (en) Rear-wheel steering device
JP2870844B2 (en) Rear wheel steering device
JPH0446794B2 (en)
JPH06217597A (en) Step motor controller
JPH0585385A (en) Rear wheel steering control device for four-wheel steering vehicle
JPH05330444A (en) Four-wheel steering device for vehicle
JPS6328767A (en) Four-wheel steering device for vehicle