JPS6066437A - Forming method of heat-resistant resin film - Google Patents

Forming method of heat-resistant resin film

Info

Publication number
JPS6066437A
JPS6066437A JP17410583A JP17410583A JPS6066437A JP S6066437 A JPS6066437 A JP S6066437A JP 17410583 A JP17410583 A JP 17410583A JP 17410583 A JP17410583 A JP 17410583A JP S6066437 A JPS6066437 A JP S6066437A
Authority
JP
Japan
Prior art keywords
heat
resin film
solution
silicon
resistant resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17410583A
Other languages
Japanese (ja)
Other versions
JPH0120531B2 (en
Inventor
Ken Ogura
謙 小椋
Yasushi Nakabo
中坊 康司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP17410583A priority Critical patent/JPS6066437A/en
Priority to US06/581,365 priority patent/US4528216A/en
Publication of JPS6066437A publication Critical patent/JPS6066437A/en
Publication of JPH0120531B2 publication Critical patent/JPH0120531B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1057Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain
    • C08G73/106Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain containing silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Formation Of Insulating Films (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

PURPOSE:To obtain a resin film having excellent heat-resisting properties and superior characteristics in sufficient film thickness by applying a mixed liquid of a specific polyimide resin precursor solution and a silicon compound solution onto a silicon substrate and heating the substrate. CONSTITUTION:A polyimide resin precursor solution consisting of a solution containing reactants of pyromellitic dianhydride, 3,3', 4,4'-benzophenyl tetracarboxylic acid dianhydride, 4,4'-diaminodiphenyl ether and 4,4'-diaminodiphenyl ether-3- carboxylic amide and an organic silicon compound solution are mixed, applied on a silicon substrate and heated. Accordingly, a resin film containing both components of Si-O-Si components and a polyimide component is formed in an obtained film, and heat-resisting properties are improved and high cracking resistance is acquired.

Description

【発明の詳細な説明】 (技術分野) 本発明は半導体集積回路1−用いる耐熱性樹脂膜の形成
方法に関し、特に約500℃程度の比較的高温に耐える
高耐熱性の樹脂膜の形成方法に関するものである。
Detailed Description of the Invention (Technical Field) The present invention relates to a method for forming a heat-resistant resin film used in a semiconductor integrated circuit 1, and particularly relates to a method for forming a highly heat-resistant resin film that can withstand relatively high temperatures of about 500°C. It is something.

(従来技術) 従来かかる高耐熱性樹脂膜としてはポリイミド樹脂、耐
熱性ホトレノスト、ラダーシリコン、あるいは有機シリ
コン材料等が用いられエレクトロンデバイスへの応用技
術の開発が非常にめざましい。
(Prior Art) Conventionally, polyimide resin, heat-resistant photorenost, ladder silicon, or organic silicon materials have been used as such highly heat-resistant resin films, and the development of application technology to electron devices has been extremely remarkable.

例えば、LSIの高集積化を実現するための多層配線技
術として、樹脂絶縁多層配線技術が開発され、それらの
絶縁材料としては高純度ポリイミド系樹脂が一般に使用
されている。
For example, resin insulated multilayer wiring technology has been developed as a multilayer wiring technology to achieve high integration of LSIs, and high purity polyimide resin is generally used as the insulating material.

そしてかかるポリイミド系樹脂の他に、前記耐熱性ホト
レジストや、ラダーシリコンらるい線有機シリコン材料
が同様にLSIの高集積化を目的として応用検討が進め
られて居シ、そして特に前記ポリイミド樹脂と有機シリ
コン拐料に関する開発研究の進展が目ざましい。
In addition to such polyimide resins, the heat-resistant photoresists and ladder silicon linear organic silicon materials are also being considered for application with the aim of increasing the integration of LSIs. Research and development on silicone additives has made remarkable progress.

しかし上述のポリイミド樹脂は、450℃程度の熱処理
で重量減少が生じ上述の多層配線工程に必要とされる熱
処理温度500℃以上ではその耐熱性が十分とは言え難
い。
However, the above-mentioned polyimide resin loses weight when heat treated at about 450°C, and its heat resistance cannot be said to be sufficient at heat treatment temperatures of 500°C or higher required for the above-mentioned multilayer wiring process.

一方有機シリコン樹脂は耐熱性が極めて高く、例えば1
000℃程度の熱処理にも十分側える特性を有するが、
比較的厚い膜厚、具体的にV11〜2μm厚の膜を形成
することが著しく困難である。
On the other hand, organic silicone resins have extremely high heat resistance, for example 1
It has characteristics that can withstand heat treatment at around 000℃,
It is extremely difficult to form a relatively thick film, specifically a film with a thickness of V11 to 2 μm.

一般に有機シリコン樹脂は熱処理によシ収縮してクラッ
クを生じ易く概ね100OA程度迄は十分に実用に耐え
るが上述のLSIに必要な膜厚1〜2μmでは該クラッ
クにより殆んど実用に供しえない。
In general, organic silicone resins tend to shrink and crack due to heat treatment, and are sufficiently durable for practical use up to approximately 100 OA, but cannot be used practically at the film thickness of 1 to 2 μm, which is required for the above-mentioned LSI, due to cracks. .

即ち、十分な膜厚の点ではポリイミド樹脂が望ましいが
耐熱性に問題があり、該耐熱性については有機シリコン
材料の使用が望ましいとしても上記クラックを生ずる重
大な問題が免かれないことになる。
That is, polyimide resin is preferable in terms of sufficient film thickness, but it has a problem with heat resistance.Even if it is preferable to use an organic silicon material in terms of heat resistance, the above-mentioned serious problem of causing cracks cannot be avoided.

(発明の目的) ここに本発明者等は、かかる問題に鑑み、耐熱性にすぐ
れしかも十分な膜厚を有する優れた特性を有する樹脂膜
の形成に関し横側を重ねこの発明全完成したのである。
(Purpose of the Invention) In view of this problem, the inventors of the present invention have completed this invention by stacking sideways on the formation of a resin film having excellent heat resistance and sufficient film thickness. .

即ち本発明は、ピロメリティックジアンヒドライドと、
3.3’、4.4’−ペンゾフェニルテトラカルボキシ
リイツクアシドジアンヒドライドと、4.4′−ジアミ
ノジフェニルエーテルと、4.4′−ノアミノジフェニ
ルエーテル−3−カルボンアミドとの反応体を含む溶液
からなるポリイミド樹脂前駆体溶液と、シリコン化合物
溶液との混合液をシリコン基板上に塗布し、加熱処理す
る仁とを特徴とする耐熱樹脂膜の形成方法である。
That is, the present invention provides pyromellitic dianhydride;
A reactant of 3.3',4.4'-penzophenyltetracarboxylic acid dianhydride, 4.4'-diaminodiphenyl ether, and 4.4'-noaminodiphenyl ether-3-carbonamide. This method of forming a heat-resistant resin film is characterized in that a mixed solution of a polyimide resin precursor solution containing a solution containing a silicon compound solution and a silicon compound solution is applied onto a silicon substrate and then heat-treated.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

まず一般的にポリイミド樹脂及び有機シリコン材料を使
用した場合について簡単に説明する。ポリイミド樹脂を
用いた膜形底にはポリイミド前駆体であるポリアミック
酸溶液をシリコン基板上にスピナー等により塗布する。
First, a case where a polyimide resin and an organic silicon material are generally used will be briefly explained. For the film-shaped bottom using polyimide resin, a polyamic acid solution, which is a polyimide precursor, is applied onto a silicon substrate using a spinner or the like.

ここでポリアミック酸の構造は次式で示される。Here, the structure of polyamic acid is shown by the following formula.

その後、200℃程度の温度で加熱処理すると溶剤が蒸
発し、該ポリアミック酸が脱水閉環してこのようにして
得られるIリイミド樹脂膜は、空気中(酸素雰囲気中)
で熱処理すると、約420℃〜470℃の温度下で徐々
にM1藍の減少が認められ膜厚が狗くなる(例えば儀公
昭51−44871等参照)。
Thereafter, when heat-treated at a temperature of about 200°C, the solvent evaporates, and the polyamic acid undergoes dehydration and ring closure.
When heat-treated at a temperature of about 420° C. to 470° C., a gradual decrease in M1 indigo is observed and the film thickness becomes thicker (see, for example, Gikosho 51-44871).

次に有機シリコン化合物はシリカフィルムとして広く知
られており、例えば酢酸硅素をエチルアルコールに溶解
したものを主成分とする(有機シリコン材料の組成につ
いては例えは特公昭52−20825.52−1648
8号公報等参照ン。
Next, organic silicon compounds are widely known as silica films, and their main component is, for example, silicon acetate dissolved in ethyl alcohol (for the composition of organic silicon materials, see Japanese Patent Publication No. 52-20825.52-1648).
See Publication No. 8, etc.

有機シリコン材料の場合は、上述の酢酸硅素溶液を同様
にスピン塗布法によりシリコン基板上に塗布し、突気中
(酸素雰囲気中〕で401) ℃程度に加熱することに
よジ、sio□膜に転する。得られたSin、膜は例え
ば1000℃程度の熱処理にも耐え、弗酸によるエツチ
ング加工も11゛能であることから不純物拡散のマスク
としても使用でき、その性質は通常の5IOz膜と変ら
ないが前述の如くクラック金主じ易い。
In the case of organic silicon materials, the silicon acetate solution described above is similarly applied onto a silicon substrate by the spin coating method, and heated to about 401°C in a sudden atmosphere (in an oxygen atmosphere) to form a di-sio□ film. Change to. The obtained Sin film can withstand heat treatment at temperatures of, for example, 1000°C, and can also be etched with hydrofluoric acid to 11 degrees, so it can be used as a mask for impurity diffusion, and its properties are the same as those of ordinary 5IOz films. As mentioned above, it is easy to become a crack owner.

これに対して本発明は上述の如く、特に限定されたビロ
メリティックノアンヒドライドと、3゜3’ 、 4 
、4’−ペンゾフェニルテトラヵルゴキシリイツクアシ
ドノアノヒドライドと、 4 、4’−ジアミノジフェ
ニルエーテルと、4 、4’−ジアミノジフェニルエー
テル−3−カルボンアミドとの反応体を含む溶液からな
るs9 リイミド樹脂前駆体溶液と、M機シリコン溶液
とを混合しシリコン基板上に塗布し加熱したことにより
、後記詳述する如く得られる塗膜中に5i−0−8i成
分とポリイミド成分の周成分を含有した樹脂膜が形成さ
れることになυ上記耐熱性f:、著しく向上式せがっ茜
い耐クラツク性が得られたのである。
On the other hand, the present invention, as mentioned above, uses particularly limited bilomeritic anhydrides and 3°3', 4
, 4'-benzophenyltetracalgoxylic acidinoanohydride, 4,4'-diaminodiphenyl ether, and 4,4'-diaminodiphenyl ether-3-carbonamide. By mixing the resin precursor solution and the M-machine silicone solution, applying the mixture onto a silicon substrate, and heating it, the resulting coating film contains surrounding components of the 5i-0-8i component and the polyimide component, as will be detailed later. As a result of the formation of a resin film, significantly improved heat resistance f: and significantly improved crack resistance were obtained.

次に本発明において有機シリコン化合物とは、例えは次
式 %式% (式中RFi1価の炭化水素基、nは0を含む1〜4の
整数) で表わされる硅素化合物及び添加剤(ガラス質形成剤、
’;’waバインダー等)をアルコール主凧分、エステ
ル、ケトン等の有機溶剤に溶解したものであシ、上記硅
素化合物が20重量%以下のものである。
Next, in the present invention, the organosilicon compound is, for example, a silicon compound and an additive (vitreous forming agent,
';'wa binder, etc.) dissolved in an organic solvent such as alcohol, ester, or ketone, and the silicon compound is 20% by weight or less.

次に本発明において、シリコン基板上に塗布した上述塗
布膜の加熱は80〜5oo℃の範囲にて行うのが適幽で
ある。
Next, in the present invention, it is appropriate to heat the above-mentioned coating film applied on the silicon substrate at a temperature in the range of 80 to 50°C.

(実施例) 以下本発明を具体的な実施例に基づいて詳細に説明する
(Examples) The present invention will be described in detail below based on specific examples.

実施例1゜ ポリイミド前駆体として、ピロメリティックジアンヒト
2イドと、3.3’、4.4’−ペンゾフェニルテトラ
カルボキシリイックアシドジアンヒドライl’ト、4.
4’−ジアミノジフェニルエーテルと、 4 、4’−
ジアミノジフェニルニーテルル3−カルボンアミドとを
N−メチル−2ピロリドン溶液に溶解した反応体(轡脂
濃度分14.2%)の溶液20CCと、上述の有機シリ
コン化合物溶液(例えば酢酸硅素、5in2濃度分3%
)IOCCとを準備しこれらを混合した。得られた混合
物をスピナーによフシリコン基板上にスピン塗布した後
膣シリコン基板t−100℃で1時間加熱した1、その
結果1〜2μmの膜厚全有し、後記の如(St−0−8
i構造及びポリイミド構造を有する樹脂被膜がシリコン
基板上に形成されていた。この被膜の耐熱特性を調べた
ところ第1図の如く耐熱特性TGA 。
Example 1 Polyimide precursors include pyromellitic dianhydride and 3.3',4.4'-benzophenyltetracarboxyliic acid dianhydride;4.
4'-diaminodiphenyl ether, 4,4'-
20 cc of a solution of a reactant (fat concentration: 14.2%) in which diaminodiphenylniterurium-3-carbonamide was dissolved in an N-methyl-2-pyrrolidone solution, and the above-mentioned organosilicon compound solution (e.g., silicon acetate, 5 in2 concentration). minute 3%
) IOCC were prepared and mixed. The resulting mixture was spin-coated onto a silicon substrate using a spinner, and then heated at t-100°C for 1 hour on the silicon substrate, resulting in a total film thickness of 1 to 2 μm, as described below (St-0- 8
A resin film having an i-structure and a polyimide structure was formed on a silicon substrate. When we investigated the heat resistance properties of this film, we found that the heat resistance properties were TGA as shown in Figure 1.

DTAにより測定された実線で示した特性曲線12が得
られた。尚ことでTGA特性とは500℃(air中)
での樹脂の重さを時間に対して計測したものである。
A characteristic curve 12, shown as a solid line, measured by DTA was obtained. Furthermore, TGA characteristics are 500℃ (in air)
The weight of the resin is measured against time.

同様に前記ポリイミド樹脂単体(以後PIと略記するン
の耐熱特性は同曲M3,4で示される。
Similarly, the heat resistance properties of the polyimide resin alone (hereinafter abbreviated as PI) are shown in M3 and M4.

両者を比較すると先ず特性的wM1と3において本発明
の減量率は上記PI3よシも長時間側にシフトしている
ことが明らかに認められる。
Comparing the two, it is clearly recognized that in characteristic wM1 and wM3, the weight loss rate of the present invention is also shifted to the long-term side compared to the above-mentioned PI3.

次に1)TA%性は樹脂の温度に対する吸熱反応あるい
れ発熱反応を示すものであるが、同様に特性的1M2と
4゛とを比較すると本発明の樹脂の特性はPIよシも長
時間側にシフトしていることが判り、即ち発熱反応が樹
脂の分解反応を示しておシ分温度に対する耐性が大きい
ことを示し高耐熱性を有することが示されている。
Next, 1) TA% indicates an endothermic reaction or an exothermic reaction with respect to the temperature of the resin. Similarly, when comparing the characteristics 1M2 and 4゛, the characteristics of the resin of the present invention are similar to those of PI. It was found that the exothermic reaction was a decomposition reaction of the resin, and the resistance to the decomposition temperature was high, indicating that the resin had high heat resistance.

次に顕微鏡等による塗膜表面の観察結果では本発明樹脂
膜はPI樹脂膜と比較してクラック等が生じやすくなる
という欠点は特に見出されなかった。
Next, as a result of observing the surface of the coating film using a microscope or the like, no particular drawback was found in the resin film of the present invention such that cracks were more likely to occur compared to the PI resin film.

なおこれらの樹脂膜に関してFTIR(フーリエ変換赤
外吸収スペクトル分析)による分析の吸収差スペクトル
を調べた結果を竿2図に示す(樹脂膜g350℃IHキ
ュアした後FTIR分析したもの)。波数1790に5
i−0−8tによる吸収が見られると同時にイミド結合
による吸収が出ており本発明樹脂膜は5t−0−8i成
分とポリイミド成分との合成されたものであることを示
すと同時にイミド虫取反応がPIよυも早いことを示し
ている。
The absorption difference spectra of these resin films analyzed by FTIR (Fourier transform infrared absorption spectroscopy) are shown in Figure 2 (resin films were subjected to FTIR analysis after IH curing at 350° C.). wave number 1790 to 5
At the same time absorption by i-0-8t is observed, absorption by imide bonds is also observed, indicating that the resin film of the present invention is a composite of the 5t-0-8i component and the polyimide component, and at the same time, imide insect repellent reaction. This shows that PI is also faster than υ.

実施例2゜ ポリイミド前駆体溶液20CCと有機シリコン化合物溶
液20C11,と全混合したものを用いた外は上記実施
例1と同様に行ない上述の耐熱性を調べたJt中自泗加
11 ち掴 41 互基(吻九枇を云 2.か−実施例
3゜ 実施例1における酢酸硅素の代シに水酸化硅素を用いた
外は実施例1と全く同様に行ったところ上記各側と同等
あるいはそれ以上の特性を有する膜が得られることが確
認された。
Example 2 The heat resistance was investigated in the same manner as in Example 1 except that a complete mixture of polyimide precursor solution 20CC and organic silicon compound solution 20C11 was used. 2. - Example 3 The procedure was carried out in exactly the same manner as in Example 1 except that silicon hydroxide was used instead of silicon acetate in Example 1. It was confirmed that a film with superior properties could be obtained.

(発明の効果) 本発明は以上説明した如くシリコン基板上に優れた耐熱
性、耐被覆性を有する膜を形成しイuるので特に超高集
積回路の各種絶縁膜に利用して優れた効果を発揮し、工
業的利用価値は極めて高い。
(Effects of the Invention) As explained above, the present invention forms a film having excellent heat resistance and coating resistance on a silicon substrate, so it can be particularly applied to various insulating films of ultra-high integrated circuits. It exhibits extremely high industrial utility value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明耐熱樹脂膜の耐熱!侍性図、第2図は同
FTIR分析特性図である。 手続補正書(自発) 特許庁長官 若杉和夫殿 1 事件の表示 特願昭58−174105号 2 発明の名称 耐熱樹脂膜の形成方法 3 補正をする者 事件との関係 特許出願人 (0291沖電気工業株式会社 4代理人 5、7I11正の対象 発明の詳細な説明の鼎 6、7111正の内容 別 紙 の 通 リ (1ン 明細書10頁1]行rl 790Jをr107
0Jと訂正する。 2) 同10頁12行 「同時に」の次に 「波数17
90に」を加入する。
Figure 1 shows the heat resistance of the heat-resistant resin film of the present invention! Figure 2 of the Samurai Figure is an FTIR analysis characteristic diagram of the same. Procedural amendment (spontaneous) Kazuo Wakasugi, Commissioner of the Japan Patent Office 1 Indication of the case Patent Application No. 174105/1983 2 Name of the invention Method for forming a heat-resistant resin film 3 Person making the amendment Relationship to the case Patent applicant (0291 Oki Electric Industry Co., Ltd. Co., Ltd. 4 Agent 5, 7I11 Detailed Explanation of the Subject Invention 6, 7111 Main Contents Separate Paper (1) Specification Page 10 Page 1] Line RL 790J to R107
Correct it to 0J. 2) On page 10, line 12, after “at the same time”, “wave number 17”
Add ``90''.

Claims (4)

【特許請求の範囲】[Claims] (1)ピロメリティックジアンヒドライドと、3゜3’
、4.4’−ベンゾフェニルテトラカル〆キシリイツク
アシドジアンヒドライドと、4,4′−ソアミノジフェ
ニルエーテルと、4.4′−ジアミノジフェニルエーテ
ル−3−カルヴンアミドとの反応体を含む溶液からなる
ポリイミド樹脂前駆体溶液と、シリコン化合物溶液との
混合液をシリコン基板上に塗布し、加熱処理することを
特徴とする耐熱樹脂膜の形成方法。
(1) Pyromelitic dianhydride and 3°3'
, a polyimide comprising a solution containing a reactant of 4,4'-benzophenyltetracarpoxyacide dianhydride, 4,4'-soamino diphenyl ether, and 4,4'-diaminodiphenyl ether-3-carvnamide. A method for forming a heat-resistant resin film, which comprises applying a mixture of a resin precursor solution and a silicon compound solution onto a silicon substrate and heat-treating the mixture.
(2)前記有機シリコン化合物溶液が酢酸硅素をエチル
アルコールに溶解したものを特徴とする特許請求の範囲
第1項記載の耐熱樹脂膜の形成方法。
(2) The method for forming a heat-resistant resin film according to claim 1, wherein the organic silicon compound solution is a solution of silicon acetate dissolved in ethyl alcohol.
(3)前記ポリイミド樹脂前駆体溶液と有機シリコン化
合物溶液との混合物をシリコン基板上に塗布し、加熱す
ることにより該樹脂膜中にSt −0−8i構造を形成
し含有させる特許請求の範囲第1項記載の耐熱樹脂膜の
形成方法。
(3) A mixture of the polyimide resin precursor solution and an organic silicon compound solution is applied onto a silicon substrate and heated to form and contain an St-0-8i structure in the resin film. A method for forming a heat-resistant resin film according to item 1.
(4)前記有機シリコン化合物溶液が水酸化硅素をエチ
ルアルコールに溶解したものを主成分とするものである
特許請求の範囲第1項記載の耐熱樹脂膜の形成方法。
(4) The method for forming a heat-resistant resin film according to claim 1, wherein the organic silicon compound solution contains silicon hydroxide dissolved in ethyl alcohol as a main component.
JP17410583A 1983-02-24 1983-09-22 Forming method of heat-resistant resin film Granted JPS6066437A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP17410583A JPS6066437A (en) 1983-09-22 1983-09-22 Forming method of heat-resistant resin film
US06/581,365 US4528216A (en) 1983-02-24 1984-02-17 Process for forming heat-resistant resin films of polyimide and organosilicic reactants

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17410583A JPS6066437A (en) 1983-09-22 1983-09-22 Forming method of heat-resistant resin film

Publications (2)

Publication Number Publication Date
JPS6066437A true JPS6066437A (en) 1985-04-16
JPH0120531B2 JPH0120531B2 (en) 1989-04-17

Family

ID=15972730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17410583A Granted JPS6066437A (en) 1983-02-24 1983-09-22 Forming method of heat-resistant resin film

Country Status (1)

Country Link
JP (1) JPS6066437A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62283153A (en) * 1986-06-02 1987-12-09 Toray Ind Inc Polyimide coating agent composition
JPS62291119A (en) * 1986-06-11 1987-12-17 Toray Ind Inc Manufacture of semiconductor element
JPS6315424A (en) * 1986-07-08 1988-01-22 Toray Ind Inc Passivation method of semiconductor element
EP1146074A3 (en) * 2000-04-05 2002-05-02 Hitachi, Ltd. Heat resistant resin composition and process for producing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62283153A (en) * 1986-06-02 1987-12-09 Toray Ind Inc Polyimide coating agent composition
JPS62291119A (en) * 1986-06-11 1987-12-17 Toray Ind Inc Manufacture of semiconductor element
JPS6315424A (en) * 1986-07-08 1988-01-22 Toray Ind Inc Passivation method of semiconductor element
EP1146074A3 (en) * 2000-04-05 2002-05-02 Hitachi, Ltd. Heat resistant resin composition and process for producing the same

Also Published As

Publication number Publication date
JPH0120531B2 (en) 1989-04-17

Similar Documents

Publication Publication Date Title
US5114757A (en) Enhancement of polyimide adhesion on reactive metals
CA2069521A1 (en) Process for coating a substrate with a silica precursor
JPH04224824A (en) Polyimide having low tce
JP3998979B2 (en) Method for forming low dielectric constant silica-based film and semiconductor substrate with low dielectric constant film
JPH0145493B2 (en)
JPS6066437A (en) Forming method of heat-resistant resin film
JPH0292535A (en) Composite molding of metal and polyimide
US4528216A (en) Process for forming heat-resistant resin films of polyimide and organosilicic reactants
JPS584816B2 (en) Semiconductor elements and their manufacturing methods
JPH05279856A (en) Vapor growth method
JPH0214242A (en) Polyamic acid composition and production thereof
JPS6066438A (en) Forming method of heat-resistant resin film
JP3897908B2 (en) Method for forming low dielectric constant insulating film, interlayer insulating film, and semiconductor device
JPS61273806A (en) Insulation covered wire
JPS6064441A (en) Formation of heat-resistant resin film
JPS63193935A (en) Polyimide polymer molded article
JPS59155137A (en) Formation of heat-proof resin film
JPS62261149A (en) Manufacture of semiconductor device
Matsuoka et al. Ester‐type photosensitive polyimide precursor with low thermal expansion coefficient
JP2979558B2 (en) Method of forming multilayer wiring interlayer insulating film of semiconductor device
JPS6222830A (en) Silicon-containing polyimide resin and its production
JPS59107524A (en) Method for formation of interlayer insulating film for semiconductor element
JPH0685090A (en) Maleimide resin composition
JP2000265057A (en) Heat-resistant resin precursor composition, production of heat-resistant resin, and heat-resistant resin
JPS62133736A (en) Flattened multilayer interconnection forming method