JPS6066438A - Forming method of heat-resistant resin film - Google Patents

Forming method of heat-resistant resin film

Info

Publication number
JPS6066438A
JPS6066438A JP17410683A JP17410683A JPS6066438A JP S6066438 A JPS6066438 A JP S6066438A JP 17410683 A JP17410683 A JP 17410683A JP 17410683 A JP17410683 A JP 17410683A JP S6066438 A JPS6066438 A JP S6066438A
Authority
JP
Japan
Prior art keywords
heat
film
resin film
silicon
phosphorus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17410683A
Other languages
Japanese (ja)
Other versions
JPH0120532B2 (en
Inventor
Ken Ogura
謙 小椋
Yasushi Nakabo
中坊 康司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP17410683A priority Critical patent/JPS6066438A/en
Priority to US06/581,365 priority patent/US4528216A/en
Publication of JPS6066438A publication Critical patent/JPS6066438A/en
Publication of JPH0120532B2 publication Critical patent/JPH0120532B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1057Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain
    • C08G73/106Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain containing silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Formation Of Insulating Films (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

PURPOSE:To obtain a resin film having excellent heat-resisting properties and superior characteristics in sufficient film thickness by applying a mixed liquid of a specific polyimide resin precursor solution and a silicon compound solution, to which phosphorus is made to be contained previously, onto a silicon substrate and heating the substrate. CONSTITUTION:A mixed liquid of a polyimide resin precursor solution consisting of a solution containing reactants of pyromellitic dianhydride, 3,3', 4,4'-benzophenyl tetracarboxylic acid dianhydride, 4,4'-diaminodiphenyl ether and 4,4'- diaminodiphenyl ether-3-carboxylic amide and a silicon compound solution to which phosphorus is made to be contained previously is applied onto a silicon substrate, and heated. Consequently, a resin film in which both components of Si- 0-Si components and a polyimide component are made to be contained in a film is formed, and heat-resisting properties are improved and high cracking resistance is obtained. A silicon-polyimide film containing phosphorus can be formed by shaping the film while a phosphorus element is made to be contained, and phosphorus functions as the fixation of movable ions and can lower leakage currents.

Description

【発明の詳細な説明】 (技術分野) 本発明は半導体集積回路に用いる耐熱性樹脂膜の形成方
法に関し、特に約500℃程度の比較的高温に耐える高
耐熱性の樹脂膜の形成方法に関するものである。
Detailed Description of the Invention (Technical Field) The present invention relates to a method for forming a heat-resistant resin film used in a semiconductor integrated circuit, and particularly to a method for forming a highly heat-resistant resin film that can withstand relatively high temperatures of about 500°C. It is.

(従来技術〉 従来かかる高耐熱性樹脂膜としてはポリイミド樹脂、耐
熱性ホトレジスト、ラダーシリコン、あるいは有機シリ
コン材料等が用いられエレクトロンデバイスへの応用技
術の開発が非常にめざましい。
(Prior Art) Conventionally, polyimide resin, heat-resistant photoresist, ladder silicon, organic silicon materials, etc. have been used as such highly heat-resistant resin films, and the development of applied technology to electron devices is extremely remarkable.

例えば、LSIの高集積化を実現するだめの多層配線技
術として、樹脂絶縁多層配線技術が開発され、それらの
絶縁材料としては高純度ポリイミド系樹脂が一般に使用
されている。
For example, resin insulated multilayer wiring technology has been developed as a multilayer wiring technology to achieve high integration of LSIs, and high purity polyimide resin is generally used as the insulating material.

そしてかかるポリイミド系樹脂の他に、前記耐熱性ホト
レジストや、ラダーシリコンあるいは有機シリコン材料
が同様にLSIの高集積化を目的として応用検討が進め
られて居υ、そして特に前記ポリイミド樹脂と有機シリ
コン材料に関する開発研究の進展が目ざましい。
In addition to such polyimide resins, the heat-resistant photoresists, ladder silicon, and organic silicon materials are also being studied for application with the aim of increasing the integration density of LSIs, and in particular, the polyimide resins and organic silicon materials are being studied. The progress of development research on the subject is remarkable.

しかし上述のポリイミド樹脂は、450℃程度の熱処理
で重量減少が生じ上述の多層配線工程に必要とされる熱
処理温度500℃以上ではその耐熱性が十分とは伺え難
い。
However, the above-mentioned polyimide resin loses weight when heat-treated at about 450°C, and its heat resistance is hardly seen to be sufficient at heat-treatment temperatures of 500°C or more required for the above-mentioned multilayer wiring process.

一方有機シリコン樹脂は耐熱性が極めて旨く、例えば1
000℃程度の熱処理にも十分耐える特性を有するが、
些較的厚い膜厚、具体的には1〜2μm厚の膜を形成す
ることが著しく困難である。
On the other hand, organic silicone resins have extremely good heat resistance, for example 1
It has the property of being able to withstand heat treatment at temperatures of around 1,000 degrees Celsius, but
It is extremely difficult to form a relatively thick film, specifically a film with a thickness of 1 to 2 μm.

一般に有機シリコン樹脂は熱処理により収縮してクラッ
クを生じ易く概ねxoooX程度迄社十分に実用に耐え
るが上述のLSIに必要な膜厚1〜2μmでは該クラッ
クにより殆んど実用に供しえない。
In general, organic silicone resins tend to shrink and crack due to heat treatment, and are sufficiently durable for practical use up to approximately xooooX, but with a film thickness of 1 to 2 μm, which is required for the above-mentioned LSI, the cracks make them almost impossible to put to practical use.

即ち、十分な膜厚の点ではポリイミド樹脂が望ましく、
耐熱性については有機シリコン材料の使用が望ましいと
云うことになる。
In other words, polyimide resin is preferable in terms of sufficient film thickness;
In terms of heat resistance, it is desirable to use an organic silicon material.

そして更にかかる樹脂膜に関しては以上の物理的特性以
外に他の電気的特性も重要である。例えばポリイミド樹
脂は、樹脂中の主として金属イオンによる可動イオンの
移動が他のPSG膜と比較して太きいと考えられて居シ
、かかる可動イオンはアルミニウム配線パターン1c所
印電池効果によって腐食させる問題が発生する。
In addition to the above-mentioned physical properties, other electrical properties are also important for such resin films. For example, with polyimide resin, it is thought that the movement of mobile ions mainly due to metal ions in the resin is greater than with other PSG films, and such mobile ions corrode the aluminum wiring pattern 1c due to the battery effect. occurs.

上記PSG膜は、SiO□中に燐を含有させたものでこ
の燐元素の存在によf) NaやCt等の可動イオンの
移動が阻止されることは広く知られている。
The above-mentioned PSG film contains phosphorus in SiO□, and it is widely known that the presence of this phosphorus element prevents the movement of mobile ions such as f) Na and Ct.

そして更にかかる可動イオンの樹B”d膜中での移動が
該樹脂膜の電気特性を低下させる原因となシこれらの改
善が強く望まれている。
Furthermore, the movement of such mobile ions in the resin film causes deterioration of the electrical properties of the resin film, and improvements in these are strongly desired.

(発明の目的) ここに本発明者等は、かかる問題に鑑み、耐熱性にすぐ
れしかも十分な膜厚の樹脂膜を得べく、更に該樹脂膜の
パシベーション効果すなわち微小洩れ電流の少い優れた
特性を有する樹脂膜の形成に関し検討を重ねこの発明を
完成したのである。
(Object of the Invention) In view of this problem, the inventors of the present invention aimed to obtain a resin film with excellent heat resistance and sufficient film thickness, and to further improve the passivation effect of the resin film, that is, with a small leakage current. This invention was completed after repeated studies regarding the formation of a resin film with specific characteristics.

即ち本発明は、ピロメリティックジアンヒドライドと、
3.3’、4.4’−ペンゾフェニルテトラカルボキシ
リイツクアシドソアンヒドシイドと、4.4′−ソアミ
ノソフェニルエーテルと、4 、4’−ソアミノソフェ
ニルエーテルー3−カルボンアミドとの反応体を含む溶
液からなるヂリイミド樹脂前駆体溶液と、予め燐を含有
させたシリコン化合物溶液との混合液をシリコン基板上
に塗布し、加熱処理することを特徴とする耐熱樹脂膜の
形成方法である。
That is, the present invention provides pyromellitic dianhydride;
3.3',4.4'-penzophenyltetracarboxylic acid anhydride, 4.4'-soaminosophenyl ether, 4,4'-soaminosophenyl ether-3-carvone A heat-resistant resin film characterized in that a mixture of a diriimide resin precursor solution containing a reactant with amide and a silicon compound solution containing phosphorus in advance is applied onto a silicon substrate and heat-treated. This is the formation method.

以下本発Elllを詳細に説明する。The present Ell will be explained in detail below.

まず一般的にポリイミド樹脂及び有機シリコン材料を使
用した場合について簡単に説明する。ポリイミド樹脂を
用いた膜形成にはポリイミド前駆体であるポリアミック
酸溶液をシリコン基板上にスピナー等により塗布する。
First, a case where a polyimide resin and an organic silicon material are generally used will be briefly explained. To form a film using polyimide resin, a polyamic acid solution, which is a polyimide precursor, is applied onto a silicon substrate using a spinner or the like.

ここでボリアミツ、り酸の構造は次式で示される。Here, the structure of boriamic acid and phosphoric acid is shown by the following formula.

その後、200℃程度の温度で加熱処理すると溶剤が蒸
発し、該ポリアミック酸か脱水図j猿して次式のポリイ
ミドとなる。
Thereafter, by heat treatment at a temperature of about 200° C., the solvent evaporates, and the polyamic acid dehydrates to form a polyimide of the following formula.

このようにして得られるポリイミド°徂(月旨膜杖、空
気中(酸素雰囲気中)で熱処理すると、約4200C〜
470℃の温度子で徐々に膜重量の減少力玉認められ膜
厚が薄くなる(例えは特公昭51−44871等従照)
0 次に有機シリコン化合物はシリカフィルムとして広く知
られておフ、例えば酢酸硅素をエチルアルコールに′溶
解したものを主成分とする(有機シリコン材料の組成に
ついては例えば特公昭52−20875.52−164
88号公報等参照)。
When the polyimide thus obtained is heat-treated in air (in an oxygen atmosphere), the temperature is about 4200C~
At a temperature of 470℃, the film weight gradually decreases and the film thickness becomes thinner (for example, see Japanese Patent Publication No. 51-44871)
0 Next, organic silicon compounds are widely known as silica films, and their main component is, for example, silicon acetate dissolved in ethyl alcohol (for the composition of organic silicon materials, see, for example, Japanese Patent Publication No. 52-20875.52- 164
(See Publication No. 88, etc.)

有機シリコン材料の場合は、上述の酢酸離業溶液を同様
にスピン塗布法にょフシリコン基板上に塗布し、空気中
(酸素雰囲気中)で400 ’C程度に加熱することに
よ、j)、5i02膜に転する。得られた5in2膜は
例えば1000 ℃程度の熱処理にも耐え、弗酸による
エツチング加工も可能であることから不純物拡散のマス
クとしても使用でき、その性質は通常の5in2膜と変
らないが前述の如くクラックを生じ易い。
In the case of an organic silicon material, the above-mentioned acetic acid release solution is similarly applied onto a silicon substrate using a spin coating method, and heated to about 400'C in air (in an oxygen atmosphere).j), 5i02 It turns into a membrane. The obtained 5in2 film can withstand heat treatment at temperatures of, for example, 1000°C, and can be etched with hydrofluoric acid, so it can also be used as a mask for impurity diffusion, and its properties are the same as normal 5in2 films, but as mentioned above. Cracks are likely to occur.

これに対して本発明は上述の如く特に限定されたピロメ
リティックジアンヒドライドと、313’14.4′−
ヘンゾフェニルテトラカルyキシリイックアシドジアン
ヒドライドと、4 、4’−ノアミノジフェニルニーテ
ルト、4.4’−ソアミノソフェニルエーテルー3−カ
ルボンアミドとの反応体を含む溶液からなるポリイミド
樹脂前駆″体溶液と、予め燐を含有させたシリコン化合
物溶液との混合液をシリコン基板上に塗布し、加熱処理
することにより、塗膜中に後述する5t−0−8t成分
とポリイミド成分の両成分を含有した樹脂膜が形、成さ
れることになり上記耐熱性を著しく向上させかつ高い耐
クラツク性が得られたのである。
On the other hand, the present invention utilizes a particularly limited pyromellitic dianhydride as described above and a 313'14.4'-
A polyimide resin comprising a solution containing a reactant of henzophenyltetracalyxylyic acid dianhydride and 4,4'-noaminodiphenylnitert, 4,4'-soaminosophenyl ether-3-carbonamide By applying a mixture of a precursor solution and a silicon compound solution containing phosphorus on a silicon substrate and heat-treating it, both the 5t-0-8t component and the polyimide component, which will be described later, are added to the coating film. Since a resin film containing the components was formed, the above-mentioned heat resistance was significantly improved and high crack resistance was obtained.

更にかかる絶縁膜には電気絶縁特性、具体的には上記微
小洩れ電流の大きさが問題となるが、本発明は上述のよ
うに有機シリコン化合物中に予め燐元素を含有させ底膜
することによυ燐を含有したシリコン−ポリイミド膜を
形成することができ、該燐は可動イオンを固定する作用
があり上述の洩れ電流を著しく低くすることができたの
である。
Furthermore, electrical insulation properties of such an insulating film, specifically, the magnitude of the above-mentioned micro leakage current, are a problem, but the present invention involves pre-containing a phosphorus element in an organic silicon compound to form a bottom film. It was possible to form a silicon-polyimide film containing phosphorus, which has the effect of fixing mobile ions, making it possible to significantly reduce the above-mentioned leakage current.

次に本発明において有機シリコン化合物とは、例えば次
式 %式%)) (式中Rは1価の炭化水素基、nは0を含む1〜4の整
数) で表わされる硅素化合物及び添加剤(ガラス質形成剤、
有機バインダー等)をアルコール主成分、エステル、ケ
トン等の有機溶剤に溶解したものであシ、上記硅素化合
物が20重量%以下のものである。
Next, in the present invention, an organosilicon compound is a silicon compound and an additive represented by, for example, the following formula (% formula %) (wherein R is a monovalent hydrocarbon group and n is an integer from 1 to 4 including 0) (vitreous forming agent,
An organic binder, etc.) is dissolved in an organic solvent such as an alcohol main component, ester, or ketone, and the silicon compound is 20% by weight or less.

かかる硅素化合物に燐を含有させるには、上記硅素化合
物CRnSi (OH)4−n )と燐化合物1 HO−P−01も R を有機溶剤に溶解したものを予め準備し上述のポリイミ
ド前駆体溶液と混合する仁とにより行われる。
In order to incorporate phosphorus into such a silicon compound, prepare in advance the silicon compound CRnSi (OH)4-n) and the phosphorus compound 1 HO-P-01 dissolved in an organic solvent, and add the above-mentioned polyimide precursor solution. It is done by mixing with keratin.

燐の含有量は上述の硅素化合物に対して1チ〜25チま
での範囲が適当である。 、 次に本発明において、シリコン基板上に塗布した上述塗
布膜の加熱は8o〜s o o ℃の範囲にて行うのが
適当である。
The phosphorus content is suitably in the range of 1 to 25 inches based on the above-mentioned silicon compound. Next, in the present invention, it is appropriate to heat the above-mentioned coating film applied on the silicon substrate at a temperature in the range of 8°C to 50°C.

(実施例) 以下本発明を具体的fx w、gi例に某づ−イ註釧f
説明する。
(Example) Hereinafter, the present invention will be described with specific examples.
explain.

実施例1゜ ポリイミド前駆体として、ピロメリティックジアンヒド
ライドと、3.3’、4.4’−ベンゾフェニルテトラ
カルがキシリイックアシドジアンヒドライドと、4 、
4’−ノアミノジフェニルエーテルと、4 、4’−ジ
アミノジフェニルエーテル−3−カルボンアミドと’t
−N−メチルー2ピロリドン溶液に溶解した反応体(樹
脂濃度分14.0%)の溶液20CCと、上述の如くし
て燐を含有させた有機シリコン化合物溶液(例えば酢酸
硅素、5in2濃度分3チ、燐含有量if/有機シリコ
ン溶液100CC中)IOCCとを準備しこれらを混合
した、1得られた混合物をスピナーによりシリコン基板
上にスピン塗布した後膣シリコン基板を100℃で1時
間加熱した。その結果1〜2μmの膜厚を有し、燐を含
有したSt−〇−8t構造及びポリイミド構造を有する
樹脂被膜がシリコン基板上に形成されていた1、この被
膜の耐熱特性を調べたところ第1図の如く耐熱特性TG
A 、DTAによ夕測定された冥線で示した特性曲線1
,2が得られた。尚ことでTGA特性とは500℃(a
ir中)での樹脂の重さを時間に対して計測したもので
ある。
Example 1 Polyimide precursors include pyromellitic dianhydride, 3.3', 4.4'-benzophenyl tetracal xylyic acid dianhydride, 4,
4'-noamino diphenyl ether, 4,4'-diaminodiphenyl ether-3-carbonamide and 't
20 CC of a solution of the reactant (resin concentration 14.0%) dissolved in -N-methyl-2-pyrrolidone solution and 3 cc of an organosilicon compound solution (e.g. silicon acetate, 5 in 2 concentration) containing phosphorus as described above. , phosphorus content if/in 100 cc of organic silicon solution) and IOCC were prepared and mixed. 1. The resulting mixture was spin-coated onto a silicon substrate using a spinner, and then the vaginal silicon substrate was heated at 100° C. for 1 hour. As a result, a resin film with a film thickness of 1 to 2 μm and having a phosphorous-containing St-〇-8t structure and a polyimide structure was formed on the silicon substrate1.The heat resistance properties of this film were investigated. Heat resistance characteristics TG as shown in Figure 1
A, Characteristic curve 1 shown by the dark line measured by DTA in the evening
, 2 were obtained. Incidentally, TGA characteristics are defined as 500°C (a
The weight of the resin (in ir) was measured against time.

同様に前記ポリイミド樹脂単体(以後PIと略記する)
の耐熱特性は同曲線3,4で示される。
Similarly, the polyimide resin alone (hereinafter abbreviated as PI)
The heat resistance characteristics are shown by curves 3 and 4.

両者を比較すると先ず特性曲線1と3において本発明の
減量率は上記PI3よシも長時間側にシフトしているこ
とが明らかに認められる。
Comparing the two, it is clearly recognized that in characteristic curves 1 and 3, the weight loss rate of the present invention is also shifted to the long-term side compared to PI3.

次にDTA特性は樹脂の温度に対する吸熱反応あるいは
発熱反応を示すものであるが、同様に特性曲線2と4と
を比較すると本発明の樹脂の特性はPI↓りも長時間側
にシフトしていることが判り、即ち発熱反応が樹脂の分
解反応を示しており発熱点が長時間側にシフトすると云
うことはその分温度に対する耐性が大きいことを示して
いる。
Next, the DTA characteristics indicate an endothermic or exothermic reaction with respect to the temperature of the resin, and similarly comparing characteristic curves 2 and 4, the characteristics of the resin of the present invention are shifted to the long-term side compared to the PI↓. In other words, the exothermic reaction indicates a decomposition reaction of the resin, and the fact that the exothermic point shifts to the longer time side indicates that the resistance to temperature is correspondingly greater.

次に図2に本発明樹脂膜とPI樹脂膜との微小洩れ電流
の比較結果を示す。本発明樹脂膜の特性値は曲線1、P
I樹脂は曲線2にて示される。PI &j脂は電圧の増
加につれて洩れ電流が急激に増加するのに対し本発明樹
脂膜はそれが11とんど認められないことが判明した。
Next, FIG. 2 shows a comparison result of micro leakage current between the resin film of the present invention and the PI resin film. The characteristic values of the resin film of the present invention are curve 1, P
The I resin is shown in curve 2. It has been found that while the leakage current of PI&J resin increases rapidly as the voltage increases, this phenomenon is hardly observed in the resin film of the present invention.

。 実施例2 ポリイミド前駆体溶液22頭と有機シリコン化合物溶液
22CC(燐含有量1r/100CCW機シリコン中)
とを混合したものを用いた外は上記実施例1と同様に行
ない上述の耐熱性及び洩れ電流を調べたが実施例1と同
等あるいはそれ以上の値を示した。
. Example 2 22 polyimide precursor solutions and 22 CC of organosilicon compound solution (phosphorus content 1r/100CCW machine silicon)
The heat resistance and leakage current were examined in the same manner as in Example 1 except that a mixture of the above was used, and the results showed values equal to or higher than those in Example 1.

実施例3゜ 上記有機シリコン化合物溶液中に94ヲ帆12〜52の
範囲に添加する外は実施例1と同様に行ったところやは
夕上記実施例1と同等あるいはそれ以上の特性を示す膜
を形成することができた。
Example 3 The procedure was carried out in the same manner as in Example 1 except that 94 and 12 to 52 were added to the organic silicon compound solution. was able to form.

実施例4゜ 実施例1における酢酸硅素の代9に水酸化硅素を用いた
外は実施例1と全く同様に行ったところ上記各側と同等
あるいはそれ以上の特性を有する膜が得られることが確
認された。
Example 4 The same procedure as in Example 1 was performed except that silicon hydroxide was used in place of silicon acetate in Example 1, and a film having properties equal to or better than those of each side described above was obtained. confirmed.

(発明の効果) 本発明は以上説明した如くシリコン基板上に優れた耐熱
性、耐被覆性及び耐電気絶縁特性を有する膜を形成し得
るので特に超高集積回路の各種絶縁膜及びパシベーショ
ン膜の形成に利用して優れた効果全発揮し、工業的利用
価値は極めて高い。
(Effects of the Invention) As explained above, the present invention can form a film having excellent heat resistance, coating resistance, and electrical insulation resistance on a silicon substrate, and is particularly suitable for use in various insulating films and passivation films for ultra-highly integrated circuits. It exhibits excellent effects when used in formation, and has extremely high industrial value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明耐熱樹脂膜の耐熱特性図、第2図は同電
気特性図である。 特許出願人 沖電気工業株式会社
FIG. 1 is a diagram showing the heat resistance characteristics of the heat-resistant resin film of the present invention, and FIG. 2 is a diagram showing the electrical characteristics thereof. Patent applicant Oki Electric Industry Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] (1)ピロメリティックジアンヒドライドと、3゜3’
 、 4 、4’〜ペンゾフエニルテトラカルボキシリ
イツクアンドソアンヒドライドと、 4 、4’−ジア
ミノジフェニルエーテルと、4 、4’−ジアミノジフ
ェニルエルチル−3−カルボンアミドとの反応体を含む
溶液からなるポリイミド樹脂前駆体溶液と、予め燐を含
有させたシリコン化合物溶液との混合液をシリコン基板
上に塗布し、加熱処理することを特徴とする耐熱樹脂膜
の形成方法。
(1) Pyromelitic dianhydride and 3°3'
, 4,4'-benzophenyl tetracarboxylic andthoanhydride, 4,4'-diaminodiphenyl ether, and 4,4'-diaminodiphenyl erthyl-3-carbonamide from a solution containing the reactants. A method for forming a heat-resistant resin film, which comprises applying a mixture of a polyimide resin precursor solution and a silicon compound solution containing phosphorus on a silicon substrate and heat-treating the mixture.
(2)前記有機シリコン化合物溶液が酢酸硅素をエチル
アルコールに溶解したものを特徴とする特許請求の範囲
第1項記載の耐熱樹脂膜の形J戊方法。
(2) The method for forming a heat-resistant resin film according to claim 1, wherein the organic silicon compound solution is a solution of silicon acetate dissolved in ethyl alcohol.
(3)前記ポリイミド樹脂前駆体溶液と有機シリコン化
合物溶液との混合物をシリコン基板上に塗布し、加熱す
ることにより該樹脂膜中に5i−0−8t構造を形成し
含有させる特許請求の範囲第1項記載の耐熱樹脂膜の形
成方法。
(3) A mixture of the polyimide resin precursor solution and an organic silicon compound solution is applied onto a silicon substrate and heated to form and contain a 5i-0-8t structure in the resin film. A method for forming a heat-resistant resin film according to item 1.
(4)前記有機シリコン化合物溶液が水酸化硅素をエチ
ルアルコールに溶解したものを主成分とするものである
特許請求の範囲第1項記載の耐熱樹脂膜の形成方法。
(4) The method for forming a heat-resistant resin film according to claim 1, wherein the organic silicon compound solution contains silicon hydroxide dissolved in ethyl alcohol as a main component.
JP17410683A 1983-02-24 1983-09-22 Forming method of heat-resistant resin film Granted JPS6066438A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP17410683A JPS6066438A (en) 1983-09-22 1983-09-22 Forming method of heat-resistant resin film
US06/581,365 US4528216A (en) 1983-02-24 1984-02-17 Process for forming heat-resistant resin films of polyimide and organosilicic reactants

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17410683A JPS6066438A (en) 1983-09-22 1983-09-22 Forming method of heat-resistant resin film

Publications (2)

Publication Number Publication Date
JPS6066438A true JPS6066438A (en) 1985-04-16
JPH0120532B2 JPH0120532B2 (en) 1989-04-17

Family

ID=15972749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17410683A Granted JPS6066438A (en) 1983-02-24 1983-09-22 Forming method of heat-resistant resin film

Country Status (1)

Country Link
JP (1) JPS6066438A (en)

Also Published As

Publication number Publication date
JPH0120532B2 (en) 1989-04-17

Similar Documents

Publication Publication Date Title
US5899751A (en) Method for forming a planarized dielectric layer
JP4049775B2 (en) Organosilicate polymer and insulating film containing the same
JP2001098224A (en) Silica-based film, method of forming silica-based film, and electronic component having silica-based film
JP3998979B2 (en) Method for forming low dielectric constant silica-based film and semiconductor substrate with low dielectric constant film
TW442546B (en) Method for producing low dielectric coatings from hydrogen silsequioxane resin
JP2001098218A (en) Silica-base coating film, method of forming silica-base coating film and electronic component having silica-base coating film
JP2002504751A (en) Low dielectric constant film with high glass transition temperature prepared by electron beam curing
JPS6066438A (en) Forming method of heat-resistant resin film
JP2000340651A (en) Manufacture of film having low dielectric constant
US4528216A (en) Process for forming heat-resistant resin films of polyimide and organosilicic reactants
JPH0120531B2 (en)
JPS6226825A (en) Formation of flatening cover on substrate
KR101410839B1 (en) The manufacturing method of silicon oxide for gate dielectrics using a low temperature process
JPS6058582B2 (en) Passivation method for semiconductor devices
JP4734815B2 (en) Composition, method of forming low dielectric constant film using the composition, low dielectric constant film, and electronic component having the low dielectric constant film
JPS6064441A (en) Formation of heat-resistant resin film
JP2000021872A (en) Low-dielectric const. resin compsn., method of forming low-dielectric const. insulation film and manufacturing semiconductor device
JPH04125929A (en) Insulating film forming method of semiconductor device and semiconductor device
JPH029458B2 (en)
JP2000265057A (en) Heat-resistant resin precursor composition, production of heat-resistant resin, and heat-resistant resin
JP2003243386A (en) Method for producing insulation film
JPH0685090A (en) Maleimide resin composition
JPS63125579A (en) Silicone resin coating material
KR100299274B1 (en) Method for forming low k film using gaseous silylation process
JPS63196669A (en) Silicone resin paint