JPS6062636A - Fuel injection device of engine - Google Patents

Fuel injection device of engine

Info

Publication number
JPS6062636A
JPS6062636A JP17189883A JP17189883A JPS6062636A JP S6062636 A JPS6062636 A JP S6062636A JP 17189883 A JP17189883 A JP 17189883A JP 17189883 A JP17189883 A JP 17189883A JP S6062636 A JPS6062636 A JP S6062636A
Authority
JP
Japan
Prior art keywords
engine
acceleration
fuel
increase
accelerated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17189883A
Other languages
Japanese (ja)
Inventor
Jiro Sumitani
隅谷 次郎
Masahiko Matsuura
松浦 正彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Mitsubishi Electric Corp
Original Assignee
Mazda Motor Corp
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp, Mitsubishi Electric Corp filed Critical Mazda Motor Corp
Priority to JP17189883A priority Critical patent/JPS6062636A/en
Publication of JPS6062636A publication Critical patent/JPS6062636A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/10Introducing corrections for particular operating conditions for acceleration

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To suppress the over-lean of an air fuel ratio of mixed gas at the initial stage of an engine accelerated operation and thereby satisfactorily increase a fuel amount by making the rate of fuel increase larger as the accelerated operation of an engine is in earlier stage. CONSTITUTION:The fuel injection device of an engine having a fuel adjusting device 8 includes an acceleration detecting means 20 for detecting accelerated operation of engine 1, and an acceleration increasing rate setting means 21 for setting a rate of fuel increase at the accelerated engine operation larger as the accelerated engine operation is in earlier stage. Further, it includes an acceleration increasing means 22 for controlling the fuel adjusting device 8 so as to increase fuel to be supplied to the engine 1 at the acceleration increasing rate given from the acceleration increasing rate setting means 21, when the accelerated operation is detected by the acceleration detecting means 20. Hereby, fuel to be supplied to the engine is controlled to increase at the accelerated operation of the engine 1 such that the acceleration increasing rate is made larger as the accelerated operation is in earlier stage.

Description

【発明の詳細な説明】 (産業上の利用分野》 本発明はエンジンの燃料噴射装置に関し、詳しくは、エ
ンジンの加速運転時における燃料増量制御の改良に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a fuel injection device for an engine, and more particularly, to an improvement in fuel increase control during accelerated operation of the engine.

(従来技術) 一般に、エンジンの燃料噴射装置は、例えば特開昭57
−14.3135丹公報に間示されるように、エンジン
の加速運転時には、吸入空気量が増大づ゛ることおよび
吸気通路内壁への燃料イ」着聞の増大により燃焼室への
燃料供給量が減少J゛ることに対応して、混合気の空燃
比を段定空燃比に保持ずるよう、燃料噴射弁からエンジ
ンに噴射供給ザる燃お1を増量補償するようになされて
いる。
(Prior art) In general, engine fuel injection devices are
As shown in Publication 14.3135, during engine acceleration, the amount of fuel supplied to the combustion chamber decreases due to the increasing amount of intake air and the amount of fuel being deposited on the inner wall of the intake passage. In response to the decrease in J, the amount of fuel injected and supplied to the engine from the fuel injection valve is increased to compensate for the air-fuel ratio of the air-fuel mixture to be maintained at a stepped air-fuel ratio.

ところで、上記の如きエンジンの燃料噴射装置において
は、エンジンの加速運転時の検知は、通常、エンジンの
吸気通路に配設したスロットル弁の開度の時間に対する
変化量を検出することにより、あるいは吸気通路のスロ
ットル弁下流の吸気負圧の変化を検出することにより行
っている。また、このようにエンジンの加速運転時が検
知された時には、エンジンの加速運転状態に応じた燃料
増量分を演算又は読出したのち、燃判噴射弁への噴射パ
ルスのパルス幅の増大分が上記燃料増m分に対応するよ
う、例えば個々の定時噴射パルスのパルス幅を等しく拡
げたり、パルス幅の等しい加速噴躬パルスを複数個発生
するようにして燃料増量がなされている。
By the way, in the engine fuel injection device as described above, the acceleration operation of the engine is usually detected by detecting the amount of change over time in the opening of the throttle valve disposed in the intake passage of the engine, or by detecting the amount of change over time in the opening of the throttle valve disposed in the intake passage of the engine. This is done by detecting changes in the intake negative pressure downstream of the throttle valve in the passage. In addition, when the acceleration operation of the engine is detected in this way, after calculating or reading out the amount of fuel increase according to the acceleration operation state of the engine, the increase in the pulse width of the injection pulse to the fuel injection valve is calculated as above. In order to correspond to the fuel increase m, the amount of fuel is increased by, for example, expanding the pulse width of each scheduled injection pulse equally or by generating a plurality of accelerated injection pulses having the same pulse width.

しかしながら、上記従来のものでは、スロットル間度の
変化量の検出や吸気負圧の変化の検州に時間がかかるこ
とに起因してエンジンの加速運転時の検出に時間近れが
生じ、そのため、パルス幅が拡げられた定時噴射パルス
や加速噴射パルスの出力に時間遅れが生じて、加速運転
初期において混合気の空燃比がオーバリーンとなり、エ
ンジンの加速運転状態に対応した燃判の加速増量制御が
行われず、所111Jの加速運転性能が1qられないと
いう欠点があった。
However, in the above-mentioned conventional method, it takes time to detect the amount of change in the throttle angle and the change in the intake negative pressure, so that the detection time is delayed when the engine is accelerating. There is a time delay in the output of the regular injection pulse and the accelerated injection pulse, which have expanded pulse widths, and the air-fuel ratio of the mixture becomes over-lean in the early stages of acceleration operation, causing the acceleration increase control of the fuel level to correspond to the acceleration operation state of the engine. This had the disadvantage that the acceleration performance of 111J could not be improved by 1q.

(允明の目的〉 本発明の目的は、上記の如きエンジンの燃料噴射装置に
おいて、エンジンの加速運転時には、加速運転初期ほど
燃料増四率を大きくずることにより、エンジンの加速運
転時の検出に時間遅れがあっても、加速運転初期におけ
る混合気の空燃比のオーバリーンを抑制して、エンジン
の加速運転状態に対応した良好な燃料の増ffi!+1
御を行うことにある。
(Kanmei's Object) The object of the present invention is to provide a fuel injection system for an engine as described above, by changing the fuel increase rate to a greater extent in the early stages of engine acceleration, thereby improving detection during engine acceleration. Even if there is a time delay, it suppresses the overleaning of the air-fuel ratio of the air-fuel mixture at the beginning of acceleration operation, resulting in a good fuel increase that corresponds to the engine acceleration operation condition.ffi!+1
The goal is to serve the Lord.

(発明の横成) この目的達成のため、本発明の構成は、第1図に示サよ
うに、エンジン1に供給ずる燃斜を調整する燃料調整装
置8を備えたエンジンの燃料噴射装置において、エンジ
ン1の加速運転時を検知する加速検知手段20と、エン
ジン1の加速運転時における燃料の加速増量率を加速運
転初期ほど大きくなるように設定する加速増m#?−設
定手段21と、上記加速検知手段20により加速運転時
が検知されたときエンジン1に供給する燃料を上記加速
増量率設定手段21の加速増量率でもって増最ずるよう
に上記燃料調整装置8を制御づ”る加速増m手段22と
を備えて、エンジン1の加速運転時には、エンジンに供
給する燃料を加速運転初期ほど加速増量率が大きくなる
ように増量制御するようにしたものである。
(Yokohama of the Invention) To achieve this object, the present invention provides a fuel injection system for an engine equipped with a fuel adjustment device 8 for adjusting the fuel angle supplied to the engine 1, as shown in FIG. , an acceleration detection means 20 for detecting when the engine 1 is running at an accelerated speed, and an acceleration increase m#? that sets the acceleration increase rate of fuel when the engine 1 is running at an accelerated speed so that it becomes larger at the beginning of the accelerated drive. - the setting means 21 and the fuel adjustment device 8 so that the fuel supplied to the engine 1 is increased at the acceleration increase rate of the acceleration increase rate setting means 21 when acceleration operation is detected by the acceleration detection means 20; The engine 1 is provided with an acceleration increasing means 22 for controlling acceleration, so that when the engine 1 is in an accelerating operation, the amount of fuel supplied to the engine is controlled to be increased so that the acceleration increase rate becomes larger in the early stages of the accelerating operation.

(発明の効果) したがって、本発明によれば、エンジンの加速運転時の
燃料増量を加速運転初期ほど大きな加速増ロ率で行うこ
とができるので、エンジンの加速運転時の検知遅れに起
囚ずる加速運転初期時での混合気の空燃比のオーバリー
ンを抑制してエンジンの加速運転状態に対応した良好な
燃料の加速増量制御を行うこどができ、よってエンジン
の加速運転性能の向上を図ることができるものである。
(Effects of the Invention) Therefore, according to the present invention, it is possible to increase the amount of fuel during accelerating operation of the engine at a larger acceleration increase rate in the early stages of accelerating operation. To suppress overleaning of the air-fuel ratio of a mixture at the initial stage of acceleration operation, and to perform good acceleration increase control of fuel corresponding to the acceleration operation state of the engine, thereby improving the acceleration operation performance of the engine. It is something that can be done.

(実施例) 以下、本発明の技術的手段の具体例としての実施例を図
面に基づいて詳細に説明1−る。
(Example) Hereinafter, an example as a specific example of the technical means of the present invention will be described in detail based on the drawings.

第2図において、1はエンジン、2は該エンジン1内に
形成されたシリンダ3と該シリンダ3内に摺動自在に嵌
挿されたピストン4とによって形成された燃焼室、5は
一端がエアクリーナ6を介して大気に間口し、他端が燃
焼室2に間口して吸気を燃焼室2に供給するための吸気
通路であって該吸気通路5内には吸入空気量を制tll
l′!IるスUットル弁7および該スロットル弁7上流
において燃料を噴射供給覆る燃料噴射弁8がそれぞれ配
設されており、該燃料噴射弁8からの燃料噴射供給によ
り、エンジン1に供給タる燃料を調整する燃料調整装置
を構成している。また、9は一端が燃焼室2に開口し他
端が大気に間口しー(燃焼室2から\の排ガスを排出す
るための排気通路であって,該排気通路9の途中には排
ガス浄化用の触媒装置10が介設されている。尚、11
は吸気通路5の燃焼室2への開口部に設けられた吸気弁
、12は排気通路9の燃焼室2への間口部に設けられた
排気弁、13は吸気通路5のスロットル弁7下流側をエ
ンジン冷却水により加熱する吸気加熱菰置である。
In FIG. 2, 1 is an engine, 2 is a combustion chamber formed by a cylinder 3 formed in the engine 1, and a piston 4 slidably inserted into the cylinder 3, and 5 is an air cleaner at one end. 6 to the atmosphere, and the other end to the combustion chamber 2 for supplying intake air to the combustion chamber 2. Inside the intake passage 5, there is a tll for controlling the amount of intake air.
l′! A throttle valve 7 and a fuel injection valve 8 are disposed upstream of the throttle valve 7 to inject and supply fuel, respectively. It constitutes a fuel adjustment device that adjusts the 9 is an exhaust passage with one end opening into the combustion chamber 2 and the other end opening into the atmosphere (for discharging exhaust gas from the combustion chamber 2, A catalyst device 10 of 11 is interposed.
12 is an intake valve provided at the opening of the intake passage 5 to the combustion chamber 2; 12 is an exhaust valve provided at the opening of the exhaust passage 9 to the combustion chamber 2; 13 is the downstream side of the throttle valve 7 of the intake passage 5. This is an intake air heating device that heats the air using engine cooling water.

さらに、14は上記スロットル弁7の聞度を検出するス
ロットル開痘センサ、15は吸気通路5のスロットル弁
7下流の吸気負圧を検出ずる負圧センザ、16は吸気加
熱装置13の冷却水温度を検出ずる冷却水温センサ、1
7は排気通路9の触媒装置10上b;コにa5いて排ガ
ス中の酸糸濃麿により空燃比を検出する02センザより
なる空燃比センサ、18はエンジン1の回転数を検出す
るエンジン回転数センサであって、該各センサ14〜1
8の検出信号は燃料噴制弁8を制御するシントロ一ラ1
9にそれぞれ人ノコされている。
Furthermore, 14 is a throttle opening sensor that detects the pressure of the throttle valve 7, 15 is a negative pressure sensor that detects the intake negative pressure downstream of the throttle valve 7 in the intake passage 5, and 16 is the cooling water temperature of the intake air heating device 13. Cooling water temperature sensor, 1
7 is above the catalytic device 10 in the exhaust passage 9; a5 is located above the catalytic device 10; and a5 is an air-fuel ratio sensor consisting of a 02 sensor that detects the air-fuel ratio based on the concentration of acid fibers in the exhaust gas. 18 is an engine rotation speed that detects the rotation speed of the engine 1. A sensor, each of the sensors 14 to 1
The detection signal 8 is from the syntrol controller 1 that controls the fuel injection valve 8.
9 were each sawed.

上記コ′ント1]一ラ19は、その内部に、第3図に示
づ−ようなスロットル弁7の全開痕■θ4を4等分りる
所定スロットル開麿値θ1,θ2,θ3が予め入力記憶
されているとともに、該各所定スロットル聞痕値01〜
03により4等分された領域X+.X2.Xa,X4が
設けられ、また図示しないがエンジン運転状態に応じた
定時噴射パルスのパルス幅データがエンジン回転数と吸
気負圧とに対応して予め入力記憶されている。
[Content 1] The controller 19 has predetermined throttle opening values θ1, θ2, θ3 input therein, which equally divides the fully open mark θ4 of the throttle valve 7 into four as shown in FIG. In addition to being stored, each predetermined throttle trace value 01~
The area X+.03 is divided into four equal parts. X2. Xa and X4 are provided, and although not shown, pulse width data of a scheduled injection pulse corresponding to the engine operating state is inputted and stored in advance in correspondence with the engine speed and intake negative pressure.

次に、上記コントローラ19による燃料噴射弁8の制御
を嶺4図および第5図のフローチャートに幕づいて説明
ザる。第4図はエンジン1の加速運転時にスロットル間
度が上記所定スロットル間度値θ1〜θ3を横切る旬に
加速噴制パルスを発生するようにしたメインルーチンを
示ず。同図にJ5いて、スタートすると、先ず第1ステ
ップS1でコントローラ19内の全ての値をイニシャラ
イズしたのら、第2ステップS2で負圧センサ15から
の負圧信弓に基づき現在の吸気負圧を読み出ずとともに
、第3ステップS3でスロットル間度センサ14からの
スロットル開度信号に幇づき現在のスロットル間度値θ
を読み出す。
Next, the control of the fuel injection valve 8 by the controller 19 will be explained with reference to the flowcharts of FIGS. 4 and 5. FIG. 4 does not show a main routine in which an acceleration injection control pulse is generated when the throttle angle crosses the predetermined throttle angle values θ1 to θ3 during accelerating operation of the engine 1. When J5 is in the figure and the start is started, all values in the controller 19 are initialized in the first step S1, and then the current intake negative pressure is set based on the negative pressure signal from the negative pressure sensor 15 in the second step S2. At the same time, in the third step S3, the current throttle angle value θ is determined based on the throttle opening signal from the throttle angle sensor 14.
Read out.

次いで、第4ステップS4において現在のスロットル間
度伯θから前回のスロットル間度値θ′を減算し、その
減算結果Δθ(=θ−θ′》が加速運転状態に相当する
スロットル聞麿の設定変化値Δθ1〕以上か否かの判定
によりエンジン1が加速運転状態にあるか否かを判定し
、加速運転状態でないNoの場合つまり定常運転時(減
速運転詩を含む)には第5ステップS5において4つの
領域XI−X4の値をrOJにセットするとともに後述
する増量率増大制御完了フラグYを「O」にセットして
第2ステップS2に戻る。一方、加速運転状態にあるY
ESの場合には第6ステップS6で現在のスロットル間
度値θを上記所定スロットル間度値θ1と大小比較し、
所定スロットル間度値01以下のNoの場合には現在の
スロツ1−ル間喰値θが領域X+にあると判断して第7
ステップS7で領域×1を「1」にセットしたのち第1
3ステップS13に進む。一方、所定スロットル聞度値
θ1より大きいYESの場合には現在のスロットル間度
値θが領域×2以上(X2〜Xa)にあると判断して第
8スデップs8に進む。次いで、該第8ステップS8に
おいて現在のスロットル間rfi値θを所定スロットル
間度値θ2と大小比較し、所定スロットル開度値θ2以
下のNoの場合には現在のスUットル聞瓜値θが領域×
2にあると判断して第9スデップS9で領域X2を「1
」にセットしたのち第13ステップSeaに進む。一方
、所定スロットル開麿値θ2より大きいYESの場合に
は領域×3以上(X3またはX4)にあると判断して、
さらに第10ステップS10において現在のスロットル
間度値θを所定スロットル間度値θ3と大小比較ずる。
Next, in the fourth step S4, the previous throttle angle value θ' is subtracted from the current throttle angle angle θ, and the subtraction result Δθ (=θ−θ') is the throttle angle setting that corresponds to the acceleration driving state. It is determined whether the engine 1 is in an accelerating operation state by determining whether or not the change value Δθ1] is greater than or equal to the change value Δθ1. If the answer is No, that is, when the engine 1 is not in an accelerating operation state, that is, during steady operation (including deceleration operation), the fifth step S5 is performed. , the values of the four regions XI-X4 are set to rOJ, and the increase rate increase control completion flag Y, which will be described later, is set to "O" and the process returns to the second step S2.
In the case of ES, in a sixth step S6, the current inter-throttle degree value θ is compared in magnitude with the predetermined throttle-to-throttle degree value θ1,
In the case of No, which is less than the predetermined throttle angle value 01, it is determined that the current throttle angle value θ is in the region X+, and the seventh
After setting area x 1 to "1" in step S7, the first
3. Proceed to step S13. On the other hand, if YES is greater than the predetermined throttle angle value θ1, it is determined that the current throttle angle value θ is in the region×2 or more (X2 to Xa), and the process proceeds to the eighth step s8. Next, in the eighth step S8, the current inter-throttle rfi value θ is compared in magnitude with a predetermined inter-throttle opening value θ2, and in the case of No, which is less than the predetermined throttle opening value θ2, the current inter-throttle rfi value θ is Area ×
2, and in the ninth step S9, the area X2 is set to “1”.
”, then proceed to the 13th step Sea. On the other hand, if YES is larger than the predetermined throttle opening value θ2, it is determined that it is in the region x 3 or more (X3 or X4),
Further, in a tenth step S10, the current inter-throttle degree value θ is compared in magnitude with a predetermined throttle-to-throttle degree value θ3.

そして、所定スロットル開度舶θ3以下のNoの場合に
は領域x3にあると判断して第11ステップS++で領
域x3を「1」にセットしたのち第13ステップsI3
に進む一方、所定スロットル開麿値θ3より大きいYE
Sの場合には領域×4にあるど判断して第12ステップ
312で領域×4を「1」にセットしたのも第13ステ
ップS13に進む。
If the throttle opening is less than or equal to the predetermined throttle opening θ3, it is determined that the vehicle is in the region x3, and the region x3 is set to "1" in the 11th step S++, and then the 13th step sI3
On the other hand, YE larger than the predetermined throttle opening value θ3
In the case of S, it is determined that the area is in the area x 4, and the area x 4 is set to "1" in the twelfth step 312, and the process also proceeds to the thirteenth step S13.

続いて、第13ステップS13において領域×1が前回
処理で「1」であったか否かを判定し、「1」であった
YESの場合にはさらに第14ステップS14において
領域×2が今回処理で「1」にセットされたか否かを判
定し、「1」にセッ1へされないNoの場合には未だ領
域×1にあると判rjJiシて直ちに第2ステップS2
に戻る一方、「1」にセットされたYESの場合にはス
ロツ]・ル聞度値θが領域x1から領域X2に移行した
と判断して、第15ないし第17ステップS+s〜S1
7において大パルス幅t1をパルス幅記憶領域Tにセッ
トし、次いで増量率増大制御完了フラグYを11」にセ
ットしたのち、上記パルス幅記憶領域Tのパルス幅t1
を加速噴射パルスとして燃料噴射弁8に直ちに出力して
第2ステップS2に戻る。
Subsequently, in the 13th step S13, it is determined whether the area x 1 was "1" in the previous process, and if YES, the area x 2 is determined in the current process in the 14th step S14. It is determined whether or not it has been set to "1", and if it is not set to "1" (No), it is determined that it is still in the area x 1, and the process immediately proceeds to the second step S2.
On the other hand, in the case of YES set to "1", it is determined that the slot degree value θ has shifted from the area x1 to the area X2, and the 15th to 17th steps S+s to S1
7, set the large pulse width t1 in the pulse width storage area T, then set the increase rate increase control completion flag Y to 11'', and then set the large pulse width t1 in the pulse width storage area T.
is immediately output to the fuel injection valve 8 as an accelerated injection pulse, and the process returns to the second step S2.

一方、第13ステップS.+3において領域×1が11
」でなかったNoの場合には、さらに第18ステップS
+aで領域×2が前回処理で「1」であつたか否かを判
定する。そして、領域×2が「1」であったYESの場
合には、さらに第19ステップS1!]で領域X3が今
回処理で「1」にセットされたか否かを判定し、「1」
にセットされなかったNoの場合に(五未だ領域×2に
あると判断して直しに第2ステップS2に戻る一方、領
域×3が「1」一にセットされたYESの場合には現在
のスロットル間度値θが領域×2から領域×3に移行し
たと判断して第20スデップS20に進む。そして第2
0ステップS20において増量率増大制御完了フラグY
がNJであるか否かを判定し、「1」でないNoの場合
には加速運転初期時であると判断して上記第15ないし
第17ステップS,+s〜S17に戻り、大パルス幅t
1の設定および出力並びに増量率増大制御完了フラグY
のセットを行って第2ステップS2に戻る。一方、増量
率増大制御完了フラグYが「1」であるYESの場合に
は大パルス幅t1が出力されて加速運転初期時が経過し
ていると判断して、第21ステップS21において大パ
ルス幅t1より小さいパルス幅の小パルス幅t2をパル
ス幅記憶領域下にセットしたのち、第17ステップS1
7に戻って該パルス幅記憶領域Tの小パルス幅t2を燃
料噴射弁8に出力して第2ステップS2に戻る。
On the other hand, the 13th step S. At +3, area x 1 is 11
”, in the case of No, further step 18
At +a, it is determined whether the area x2 was "1" in the previous processing. Then, in the case of YES where the area x2 is "1", the 19th step S1! ] to determine whether area X3 was set to "1" in this process, and set it to "1".
In the case of No where it is not set to (5), it is determined that it is still in the area x 2 and the process returns to the second step S2, while in the case of YES where area x 3 is set to '1', the current It is determined that the inter-throttle degree value θ has shifted from the area x 2 to the area x 3, and the process proceeds to the 20th step S20.
0 In step S20, the increase rate increase control completion flag Y
is NJ or not, and if No is not "1", it is determined that it is the initial stage of acceleration operation, and the process returns to the above-mentioned 15th to 17th steps S, +s to S17, and the large pulse width t is determined.
1 setting and output and increase rate increase control completion flag Y
is set, and the process returns to the second step S2. On the other hand, if the increase rate increase control completion flag Y is "1" (YES), it is determined that the large pulse width t1 is output and the initial period of acceleration operation has elapsed, and the large pulse width t1 is output in the 21st step S21. After setting a small pulse width t2 smaller than t1 under the pulse width storage area, the 17th step S1
7, the small pulse width t2 of the pulse width storage area T is outputted to the fuel injection valve 8, and the process returns to the second step S2.

同様に、第18ステップS+aにおいて領域×2が前回
処理で「1」でなかったNOの場合には、さらに第22
ステップ822で領域×3が前回処理で「1」であった
か否かを判定する。そして、「1」でなかったNoの場
合には直ちに第2ステップS2に戻る一方、「1」であ
ったYESの場合には、続いて第23ステップnで領域
×4が今回処理で「1」にセットされたか否かを判定し
、「1」にセッ1・されなかったNoの場合には未だ領
域×3にあると判断して直ちに第2ステップS2に戻る
一方、「1」にセットされたYESの場合には現在のス
ロットル聞麿値θが領域×3から領域×4に移行したと
判断して第24ステップS24に進む。そして、第24
ステップS24において増量率増大制御完了フラグYが
「1」であるか否かを判定し、「1」でないNoの場合
には加速運転初期であると判断して第15ないし第17
ステップS’s〜817に戻り、大パルス幅tlの設定
および出力並びに増量率増大制御完了フラグYのセッ1
−を行って第2ステップs2に戻る。一方、増(6)率
増大制御完了フラグYが「1」であるYE’Sの場合に
は加速運転初期を経過したと判断して、第25ステップ
825で小パルス幅t2をパルス幅記憶領域Tにセツ1
〜したのち、第17ステップS17に戻って該パルス幅
記憶領域Tの小パルス幅t2を燃料噴射弁8に出力して
第2ステップs2に戻る。
Similarly, in the case of NO in the 18th step S+a where area x 2 was not "1" in the previous process, the 22nd
In step 822, it is determined whether area x3 was "1" in the previous process. In the case of No, which is not "1", the process immediately returns to the second step S2, while in the case of YES, which is "1", in the 23rd step n, the area x 4 is changed to "1" in the current process. ” is set to “1”. If “No” is not set, it is determined that the area is still in the area x 3 and the process immediately returns to the second step S2, while it is set to “1”. In the case of YES, it is determined that the current throttle value θ has shifted from the area x 3 to the area x 4, and the process proceeds to the 24th step S24. And the 24th
In step S24, it is determined whether or not the increase rate increase control completion flag Y is "1", and if the flag Y is not "1", it is determined that it is the initial stage of acceleration operation, and the 15th to 17th
Returning to steps S's~817, the setting and output of the large pulse width tl and the setting of the increase rate increase control completion flag Y are performed.
- and return to the second step s2. On the other hand, if the increase (6) rate increase control completion flag Y is "1" (YES), it is determined that the initial stage of acceleration operation has passed, and in the 25th step 825, the small pulse width t2 is stored in the pulse width storage area. Set on T 1
After that, the process returns to the 17th step S17, outputs the small pulse width t2 of the pulse width storage area T to the fuel injection valve 8, and returns to the second step S2.

よって、第4ステップs4におけるエンジン1の加速運
転詩の判断により、エンジン1の加速運転時を検知する
ようにした加速検知手段2oを構成しているとともに、
第13ステップS+aないし第24ステップS24(第
17スデップS+yを除く)での処理動作により、現在
のスロットル開度値θが例えば領域X+にある場合に、
このスロットル間麿値θがアクセルペダルの踏込みに応
じて領域X2,X3を経て領域×4に移行する際、先ず
領域X+から領域x2に移行する加速運転初期には大パ
ルス幅【Iの加速噴射パルスの出力により燃料の加速増
量率を大さ《するとともに、その俊はスロットル間度値
θが領域×2から領域X3に、また領域×3から領域X
4に移行する加速運転中・後期には小パルス幅t2の加
速噴射パルスの出力により燃料の加速増同率を小さく設
定する等、現在のスロットル間曵値θが当初何れの領域
にある場合にも隣りの領域に移行した加速運転初期には
大パルス幅tlの加速噴射パルスの出力により燃料の加
速増量率を大きく設定するとともに、さらに進んでその
隣り以降の領域に移行Jる加速運転中・後期には小パル
ス幅t2の加速噴射パルスの出力により燃料の加速増量
率を小さく設定するようにした加速増量率設定手段21
を構成している。また、第4ステップS4でエンジン1
の力1口宋運転時が判断されたときには第17ステップ
S17でパルス幅記憶領域Tに記憶されたパルス幅のパ
ルスを加速噴射パルスとして燃料噴割弁8に出力するこ
とにより、上記加速検知手段20により加速運転時が検
知されたときエンジン1に供給する燃わ1を一L記加速
増m率設定手段21の加速増量率でもって増量ずるよう
に燃判調整装置(燃料噴射弁8)を制御するようにした
加速増m手段22を414成している。
Therefore, the acceleration detecting means 2o is configured to detect when the engine 1 is being accelerated by determining the accelerating operation of the engine 1 in the fourth step s4, and
Due to the processing operations in the 13th step S+a to the 24th step S24 (excluding the 17th step S+y), when the current throttle opening value θ is in the region X+, for example,
When this throttle-to-throttle value θ transitions from regions X2 and X3 to region The acceleration increase rate of fuel is increased by the output of the pulse, and at the same time, the throttle degree value θ increases from area x 2 to area x 3, and from area x 3 to area x
During and in the later stages of acceleration operation when transitioning to 4, the fuel acceleration increase rate is set to a small value by outputting an acceleration injection pulse with a small pulse width t2. At the beginning of the acceleration operation when the transition to the adjacent region is made, the acceleration fuel increase rate is set to a large value by outputting an acceleration injection pulse with a large pulse width tl, and during and after the acceleration operation when the acceleration operation progresses further and the transition is made to the next region and thereafter. is an acceleration increase rate setting means 21 configured to set the acceleration increase rate of fuel to a small value by outputting an acceleration injection pulse having a small pulse width t2.
It consists of Also, in the fourth step S4, the engine 1
When it is determined that the engine is in the 1-stroke mode, the acceleration detecting means outputs a pulse having the pulse width stored in the pulse width storage area T as an acceleration injection pulse to the fuel injection valve 8 in the 17th step S17. When the acceleration operation is detected by 20, the fuel level adjustment device (fuel injection valve 8) is operated so that the amount of fuel 1 to be supplied to the engine 1 is increased by the acceleration rate increasing rate set by the acceleration increasing rate setting means 21. Acceleration increasing means 22 configured to control the acceleration is constituted by 414.

また、第5図のフローチャートは、吸入空気量に応じた
パルス幅の定時噴射パルスを演算して所定タイミングで
出力するための割込みルーヂンであって、所定クランク
角(例えばピストン上死点前60’)foに上記第4図
のメインルーヂンに割込/υで開始されるものである。
The flowchart in FIG. 5 is an interrupt routine for calculating and outputting a fixed injection pulse with a pulse width corresponding to the intake air amount at a predetermined timing, and is executed at a predetermined crank angle (for example, 60' before the piston top dead center). ) fo is started by interrupting /υ to the main routine in FIG. 4 above.

つまり、スタートして、第1ステップS1において回転
数センサ18からの回転数信号に基づき現在のエンジン
回転数を読出したのち、第2ステップS2において該エ
ンジン回転数と第4図のメインルーヂンの第2ステップ
S2で読出した吸気負圧とに基づいてエンジン運転状態
に応じた定時噴躬パルスのパルス幅をパルス幅データか
ら樟出ずる。そして、第3ステップS3で所定pnDA
タイミング〈例えばピストン上死点)を待って第4ステ
ップS4で上記樟出したパルス幅のパルスを定時噴躬パ
ルスとして燃料噴躬弁8に出力し、第4図のメインルー
チンの割込み点にリターンする。
That is, after starting, the current engine speed is read out based on the rotation speed signal from the rotation speed sensor 18 in the first step S1, and then in the second step S2, the engine speed and the main engine rotation speed in FIG. 2. Based on the intake negative pressure read in step S2, the pulse width of the scheduled injection pulse according to the engine operating state is determined from the pulse width data. Then, in the third step S3, the predetermined pnDA
After waiting for the timing (for example, the piston top dead center), in the fourth step S4, the pulse having the width determined above is outputted to the fuel injection valve 8 as a scheduled injection pulse, and the process returns to the interrupt point of the main routine in FIG. do.

したがって、上記実施例においては、当初は例えば領域
×2にある現在のスロットル間度値θがアクセルペダル
の踏込みにより所定スロツ1・ル間度値02を横切って
隣りの領域×3に移行した加速運転初期には、メインル
ーチンの第4スデツプS4におけるその加速運転時の判
断に時間遅れが生じるけれども、加速増量率設定手段2
1により大パルス幅t1の加速噴銅パルスが設定された
のち、この加速噴射パルスが加速増量手段22により燃
料噴射弁8に出力されるので、加速運転初期には大きな
加速増量率でもって燃料増量が行われて、上記加速運転
時の検出遅れによる燃判増吊供給遅れが補償゛されるこ
とになり、燃焼室2に流入する燃料流量は加速運転初期
におい一Cも加速運転状態に応じた適正流量となる。よ
って、加速運転初期における燃焼室2での混合気の空燃
比のA−バリーンを抑制してエンジンの加速運転性能の
向上を図ることができる。
Therefore, in the above embodiment, the acceleration is such that the current inter-throttle degree value θ, which is initially in area x 2, crosses the predetermined throttle angle value 02 and shifts to the adjacent area x 3 due to the depression of the accelerator pedal. At the beginning of operation, there is a time delay in determining the acceleration operation in the fourth step S4 of the main routine, but the acceleration increase rate setting means 2
1, an accelerated injection pulse with a large pulse width t1 is set, and then this accelerated injection pulse is outputted to the fuel injection valve 8 by the acceleration amount increase means 22, so that the fuel amount is increased at a large acceleration increase rate at the beginning of acceleration operation. As a result, the fuel fuel increase and supply delay due to the detection delay during acceleration operation is compensated for, and the fuel flow rate flowing into the combustion chamber 2 is adjusted to 1C according to the acceleration operation state at the beginning of acceleration operation. The flow rate will be appropriate. Therefore, it is possible to suppress the A-balloon of the air-fuel ratio of the air-fuel mixture in the combustion chamber 2 in the early stage of acceleration operation, thereby improving the acceleration operation performance of the engine.

しかも、その後、現在のスロットル聞麿値θがさらに所
定スロットル聞痕値θ3を横切って領域×4に移行した
加速運転中・後期には、加速増量率52定手段21によ
り設定される小パルス幅t2の加速噴躬バルスが燃料噴
躬弁8に出力されるので、燃焼室2内の混合気の空燃比
はほぼ適正空燃比に維持され、オーバリッチになること
がなく、エンジンの中・後期での加速運転性能を良好に
確保りるこどかできる。
Moreover, during and after the acceleration operation when the current throttle value θ further crosses the predetermined throttle value θ3 and shifts to the region x 4, the small pulse width is set by the acceleration increase rate 52 constant means 21. Since the acceleration injection pulse at t2 is output to the fuel injection valve 8, the air-fuel ratio of the air-fuel mixture in the combustion chamber 2 is maintained at approximately the appropriate air-fuel ratio, preventing over-richness, and reducing the engine's middle and late stages. It is possible to ensure good acceleration driving performance.

尚、上記実施例で(よ、加速増量率設定手段21は、最
初に発生ずる加速噴射パルスを大パルス幅t1のもので
構成し、以後は小パルス幅t2のもので構成ずることに
より、燃料の加速増量率を加速運転初期ぽど大きくなる
ように設定したが、本発明はその他、順次発生J゛る加
速噴射パルスのパルス幅を漸次小さく寸るようにしたも
ので構成してもよいのは勿論である。
In the above embodiment, the acceleration increase rate setting means 21 configures the initially generated acceleration injection pulse with a large pulse width t1, and thereafter configures it with a small pulse width t2, so that the fuel Although the acceleration increase rate is set to increase at the beginning of acceleration operation, the present invention may also be configured such that the pulse width of the acceleration injection pulses that are sequentially generated is gradually reduced. Of course.

また、上記実施例では、第5図の割込ルーチンにおいて
負圧センザ15の負圧信号と回転数センサ18の回転数
信号とに基づいて直接定時噴射パルスのパルス幅を棹出
したが、本発明はその他、吸気通路5のスロットル弁7
上流に設けるエア7ローメータ等により吸入空気量を計
測し、該吸入空気量信号に基づいて定時lIl%射パル
スのパルス幅を紳出するようにしたものに対しても同様
に適用覆るこどができるのはいうまでもない。
Furthermore, in the above embodiment, the pulse width of the scheduled injection pulse was directly determined based on the negative pressure signal from the negative pressure sensor 15 and the rotational speed signal from the rotational speed sensor 18 in the interrupt routine shown in FIG. In addition, the invention relates to a throttle valve 7 in an intake passage 5.
The same applies to devices in which the amount of intake air is measured using an air meter installed upstream, and the pulse width of the scheduled lIl% injection pulse is determined based on the intake air amount signal. It goes without saying that you can do it.

さらに、上記実施例では、エンジン1の加速運転時にス
ロットル間度が所定スロツ1〜ル聞麿値θ1〜θ3を横
切る毎に加速噴射パルスを発生するようにしたが、その
他、スロツ1ヘル聞度の時間に対する変化量を検出し該
変化損が所定変化向以上のときに1個又は複数個の加速
噴躬パルスを允生するJ;うに構成してもよいのは勿論
である。
Furthermore, in the above embodiment, an acceleration injection pulse is generated every time the throttle distance crosses the predetermined slot 1 to 1 range values θ1 to θ3 during accelerating operation of the engine 1. Of course, it is also possible to detect the amount of change with respect to time and generate one or more acceleration ejection pulses when the change loss exceeds a predetermined change direction.

加えて、上記実施例では、エンジン1の加速運転時には
加速噴射パルスを発生寸るようにしたものに適用した場
合について説明したが、本発明はその他、定時噴躬バル
スのパルス幅を拡げるようにしたものにも同様に適用す
ることができるのは勿論である。
In addition, in the above embodiment, the case where the acceleration injection pulse is generated is almost increased during the acceleration operation of the engine 1 has been described, but the present invention is also applicable to the case where the pulse width of the scheduled injection pulse is widened. Of course, it can also be applied in the same way.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の構成を示すブロック図、第2図ないし
第5図は本発明の実施例を示し、第2図は全体概略溝成
図、第3図はコントローラの記憶内容を示す図、第4図
はコントローラの作動を説明するメインルーチンのフロ
ーチャート図、第5図は同割込みルーチンのフローチャ
ート図である。 1・・・エンジン、8・・・燃料噴射弁(燃判調整装置
)、20・・・加速検知手段、21・・・加速増量率設
定手段、22・・・加速増聞手段。 −245−
Fig. 1 is a block diagram showing the configuration of the present invention, Figs. 2 to 5 show embodiments of the invention, Fig. 2 is an overall schematic diagram, and Fig. 3 is a diagram showing the memory contents of the controller. 4 is a flowchart of the main routine for explaining the operation of the controller, and FIG. 5 is a flowchart of the interrupt routine. DESCRIPTION OF SYMBOLS 1... Engine, 8... Fuel injection valve (fuel ratio adjustment device), 20... Acceleration detection means, 21... Acceleration increase rate setting means, 22... Acceleration amplification means. -245-

Claims (1)

【特許請求の範囲】[Claims] (1)エンジンに供給する燃料を調整する燃料調整装置
と、エンジンの加速運転時を検知する加速検知手段と、
エンジンの加速運転時における燃斜の加速増量率を加速
運転初期ほど大きくなるJ;うに設定する加速増量率設
定手段と、上記加速検知手段により加速運転時が検知さ
れたとぎエンジンに供給する燃料を上記加速増量率設定
手段の加速増量率でもって増量するように上記燃料調整
装置を制御する加速増量手段とを備えたことを特微とす
るエンジンの燃料噴射装置。
(1) A fuel adjustment device that adjusts the fuel supplied to the engine, and an acceleration detection means that detects when the engine is in accelerated operation;
an acceleration increase rate setting means for setting an acceleration increase rate of the fuel angle during engine acceleration operation such that the rate of increase increases as the engine begins to accelerate; A fuel injection device for an engine, comprising: an acceleration increase means for controlling the fuel adjustment device to increase the amount at an acceleration increase rate of the acceleration increase rate setting means.
JP17189883A 1983-09-16 1983-09-16 Fuel injection device of engine Pending JPS6062636A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17189883A JPS6062636A (en) 1983-09-16 1983-09-16 Fuel injection device of engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17189883A JPS6062636A (en) 1983-09-16 1983-09-16 Fuel injection device of engine

Publications (1)

Publication Number Publication Date
JPS6062636A true JPS6062636A (en) 1985-04-10

Family

ID=15931851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17189883A Pending JPS6062636A (en) 1983-09-16 1983-09-16 Fuel injection device of engine

Country Status (1)

Country Link
JP (1) JPS6062636A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56124638A (en) * 1980-03-07 1981-09-30 Toyota Motor Corp Method of controlling fuel supply to internal combustion engine
JPS5841233A (en) * 1981-09-03 1983-03-10 Mitsubishi Electric Corp Fuel injecting apparatus for internal-combustion engine
JPS5841244A (en) * 1981-09-03 1983-03-10 Mitsubishi Electric Corp Electronic air-fuel ratio control system for internal- combustion engine
JPS59200031A (en) * 1983-04-27 1984-11-13 Toyota Motor Corp Method of feeding fuel to internal-combustion engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56124638A (en) * 1980-03-07 1981-09-30 Toyota Motor Corp Method of controlling fuel supply to internal combustion engine
JPS5841233A (en) * 1981-09-03 1983-03-10 Mitsubishi Electric Corp Fuel injecting apparatus for internal-combustion engine
JPS5841244A (en) * 1981-09-03 1983-03-10 Mitsubishi Electric Corp Electronic air-fuel ratio control system for internal- combustion engine
JPS59200031A (en) * 1983-04-27 1984-11-13 Toyota Motor Corp Method of feeding fuel to internal-combustion engine

Similar Documents

Publication Publication Date Title
JPH07166931A (en) Fuel injection controller of engine
JP3908385B2 (en) Control device for internal combustion engine
JP2641827B2 (en) Air-fuel ratio control device for internal combustion engine
JPS6062636A (en) Fuel injection device of engine
JPS62162750A (en) Fuel injection controller
KR900000149B1 (en) Fuel injection control method for internal combustion engine
JPH0689686B2 (en) Air-fuel ratio controller for engine
JP2003083116A (en) Control device for internal combustion engine
JPS6030443A (en) Fuel supply control method for engine
JPH02188616A (en) Exhaust smell repression device for internal combustion engine
JPH04143448A (en) Exhaust reflux device for diesel engine
JPH0571381A (en) Fuel feed control device for internal combustion engine
JPH08270484A (en) Air-fuel ratio control device for internal combustion engine
JP2000130213A (en) Control device for lean-burn engine
JPH04342846A (en) Fuel control device of engine
JPH07301137A (en) Fuel feed control device for internal combustion engine
JPH0192550A (en) Air-fuel injection control amount device for internal combustion engine
JPH04295138A (en) Throttle valve controller of engine
JP2002285903A (en) Calculation apparatus of actual torque of engine
JPS6022035A (en) Fuel supplying apparatus for engine
JPH01224427A (en) Air-fuel ratio control device of internal combustion engine
JPH0678732B2 (en) Intake control device for internal combustion engine
JPH01121537A (en) Fuel supply control device of internal combustion engine
JPS6079131A (en) Fuel control device in engine
JPS60187731A (en) Control device for fuel injection of engine