JPS606081B2 - Method for producing acicular oxide magnetic material - Google Patents

Method for producing acicular oxide magnetic material

Info

Publication number
JPS606081B2
JPS606081B2 JP50056622A JP5662275A JPS606081B2 JP S606081 B2 JPS606081 B2 JP S606081B2 JP 50056622 A JP50056622 A JP 50056622A JP 5662275 A JP5662275 A JP 5662275A JP S606081 B2 JPS606081 B2 JP S606081B2
Authority
JP
Japan
Prior art keywords
day
acicular
magnetic material
fine particles
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50056622A
Other languages
Japanese (ja)
Other versions
JPS51130898A (en
Inventor
武久 大川
俊明 泉
茂幸 福岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP50056622A priority Critical patent/JPS606081B2/en
Publication of JPS51130898A publication Critical patent/JPS51130898A/en
Publication of JPS606081B2 publication Critical patent/JPS606081B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】 本発明は磁気テープなどに使用される酸化物磁性材料の
製造方法に関し、特に針状Q−Fe00日微粒子を核晶
として、その表面にy−Fe00日を生成させ、この微
粒子をy−Fe203に変態させることにより、磁性塗
料中における分散性を極めて良好にし、充てん性及び配
向性を高めた針状酸化物磁性材料の製造方法である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing an oxide magnetic material used for magnetic tapes, etc., and in particular, by using acicular Q-Fe00 day fine particles as a nucleus crystal, producing y-Fe00 day on the surface thereof, By transforming these fine particles into y-Fe203, the present invention is a method for producing an acicular oxide magnetic material that has extremely good dispersibility in a magnetic paint and has improved filling properties and orientation.

従釆、磁気テープなどの磁気記録媒体に使用される酸化
物磁性材料はh一般には4・田−カムラス法によって得
た針状Q−Fe00日粒子を還元してFe304とし、
これを酸化してy−Fe203に変態させる方法により
得られて来た。
In general, oxide magnetic materials used in magnetic recording media such as magnetic tapes are made by reducing acicular Q-Fe00 particles obtained by the 4-Ta-Kamuras method to Fe304.
It has been obtained by a method of oxidizing this and transforming it into y-Fe203.

しかしこの方法によると針状Q−Fe00日粒子の形状
のコントロールは容易であり、また安定してy−Fe2
03を製造することができるが、Q−Fe00日粒子の
生成に際して針状粒子の技分れが必然的に生じ、これが
充てん性或は配向性の向上に対する支障となっていた。
However, according to this method, it is easy to control the shape of the acicular Q-Fe00 day particles, and the y-Fe2
However, during the production of Q-Fe 00-day particles, the acicular particles were inevitably divided, which was a hindrance to improving the filling property or orientation.

そして又、この方法によって得られたy−Fe203の
磁性塗料中における分散性は必ずしも良好とは言えなか
った。磁性材料であるy−Fe203の分散性、充てん
性及び配向性の向上は磁気テープにおける感度.再生出
力の向上、或いはノイズレベルの低減に大きく寄与する
ものである。本発明は、このような問題点を解決するた
めになされたものであり、針状Q−Fe00日微粒子を
核晶として、その表面にy−Fe00日を生成させるこ
とによりQ−Fe00印粒子の針状性を継承することで
容易に針状比が大きく形のととのった粒子を得ることが
でき、y−Fe203とした時の保磁力も40比お程度
まで高めることも可能であり、高分散性で充てん性、配
同性の良好なy一Fe203からなる酸化物磁性材料を
製造する方法を提供するものである。
Furthermore, the dispersibility of y-Fe203 obtained by this method in the magnetic paint was not necessarily good. The improved dispersibility, filling properties, and orientation of y-Fe203, a magnetic material, improve the sensitivity of magnetic tapes. This greatly contributes to improving reproduction output or reducing noise level. The present invention has been made to solve these problems, and uses acicular Q-Fe00-day fine particles as a nucleus crystal to generate y-Fe00-day particles on the surface of the Q-Fe00-marked particles. By inheriting the acicularity, it is possible to easily obtain particles with a large acicularity ratio and a sharp shape, and it is also possible to increase the coercive force to about 40 ratio when using y-Fe203, making it highly dispersible. The present invention provides a method for producing an oxide magnetic material made of y-Fe203 that has good properties, filling properties, and coordination properties.

本発明は針状Q−Fe00日微粒子を水に分散したスラ
リー溶液に塩化第一鉄の水溶液を加え、さらに塩化第一
鉄の1/2当量以下のアルカリ溶液を加え、生じたFe
(OH)2コロイドを30℃以下の温度で激しくかくは
ん酸化させることにより針状Q−Fe00日微粒子の表
面にy−Fe00日を生成させv この微粒子を加熱脱
水し、さらに還元.酸化することに特徴がある。
In the present invention, an aqueous solution of ferrous chloride is added to a slurry solution in which acicular Q-Fe 00-day fine particles are dispersed in water, and an alkaline solution of 1/2 equivalent or less of ferrous chloride is further added, and the resulting Fe
By vigorously stirring and oxidizing (OH)2 colloid at a temperature below 30°C, y-Fe00 day is generated on the surface of acicular Q-Fe00 day fine particles.v The fine particles are heated and dehydrated, and further reduced. It is characterized by oxidation.

これにより針状比が大きく形のととのった分散性の良好
なy−Fe203を得ることができる。以下本発明を具
体的に説明する。
This makes it possible to obtain y-Fe203 with a large acicular ratio, a well-shaped shape, and good dispersibility. The present invention will be specifically explained below.

従来知られている方法により得られた針状Q−Fe00
日微粒子が榛晶として使用され、針状比10:1以上、
最軸0.5〆以下のものが好ましい。
Acicular Q-Fe00 obtained by a conventionally known method
Sun particulates are used as sac crystals, with an acicular ratio of 10:1 or more,
The maximum axis is preferably 0.5 or less.

この針状Q−Fe00日微粒子を水に良く分散したスラ
リー溶液に塩化第一鉄水溶液を加え、引き続きかくはん
を継続する。加える塩化第一鉄の量は、生成させようと
するy−Fe00日量によって決められ、核晶の針状Q
−Fe00日微粒子1モルに対してy−Fe00日を2
モル生成させようとする場合、塩化第一鉄4モルを加え
る。塩化第一鉄水溶液に続いてもアルカリ溶液を加えF
e(OH)2コロイドを生成し、激しくかくはんし必要
な場合は酸素含有ガス(例えば空気)を吹き込み〜Fe
2(OH)2を酸化させてy−Fe00日を生成させる
。y−Fe00日を生成させる条件として溶液のPH及
び反応温度が重要であり〜塩化第一鉄に対して1/2当
量以下のアルカリの添加、即ち溶液の初期PHを7.5
以下とする。また反応温度は30℃以下2に維持しなけ
ればならない。PHが7.5以上或いは反応温度が30
℃以上の場合は、y−Fe00日が生成されずFe30
4が生成されてしまう。塩化第一鉄に対して1/2当量
以下のアルカリ量であればも良Pち溶液の初期PHが7
.5以下であればy−3Fe00日が生成されるが「
アルカリ量の減少に伴ない塩化第一鉄に対するy−Fe
00日の生成収率が低下するため塩化第一鉄に対して1
ノ2当量のアルカリを加えるのが好ましい。アルカリと
してNaOH,KOH,NH40日,Ca(OH)2な
どが使用3される。Fe(OH)2コロイドが酸化され
y−Fe00日が生成されると反応溶液はオレンジ色を
帯びた黄色となり反応は完了する。
A ferrous chloride aqueous solution is added to a slurry solution in which the acicular Q-Fe 00 day fine particles are well dispersed in water, and stirring is continued. The amount of ferrous chloride to be added is determined by the daily amount of y-Fe00 to be produced.
-Fe00 days y-Fe00 days for 1 mole of fine particles
If you want to generate moles, add 4 moles of ferrous chloride. Add an alkaline solution to the ferrous chloride aqueous solution and F
Generate e(OH)2 colloid, stir vigorously and blow in oxygen-containing gas (e.g. air) if necessary ~Fe
2(OH)2 is oxidized to produce y-Fe00 day. The pH of the solution and the reaction temperature are important as conditions for producing y-Fe00 days. ~ Addition of 1/2 equivalent or less of alkali to ferrous chloride, that is, the initial pH of the solution is set to 7.5.
The following shall apply. Further, the reaction temperature must be maintained at 30° C. or lower. pH is 7.5 or higher or reaction temperature is 30
If the temperature is above ℃, y-Fe00 day is not generated and Fe30
4 will be generated. Even if the amount of alkali is less than 1/2 equivalent to ferrous chloride, the initial pH of the solution is 7.
.. If it is less than 5, y-3Fe00 days will be generated, but "
y-Fe relative to ferrous chloride as the amount of alkali decreases
1 for ferrous chloride because the production yield on day 00 decreases.
Preferably, 2 equivalents of alkali are added. NaOH, KOH, NH40, Ca(OH)2, etc. are used as the alkali. When the Fe(OH)2 colloid is oxidized and y-Fe00 is produced, the reaction solution becomes orange-yellow and the reaction is completed.

この時の溶液のPHは3程度であり反応時間は概略3〜
5時間である。 4生成した沈でん物を区別、水洗した
のち乾燥して針状微粒子が得られる。この針状微粒子の
X線回折パターンを第1図に示す。図においてaはAS
TM回折カード17一536によるQ−Fe00日のX
線回折パターンであり、bは同カード8−98によるy
−Fe00日のパターンである。核晶のQ−Fe00H
Iモルに対してそれぞれ1モル「 2モル「 3モルの
y−Fe00日を生成させるように塩化第一鉄を加えて
反応させた場合のX線回折パターンがc,d,eである
。Q一Fe00H/y−Fe00日が1ノ1の場合のc
では極く徴量のy−Fe00日が検知されるだけである
が、Q−Fe00H/シーFe00日が1/3であるe
ではQ‐Fe00日の回折パターンはほとんど消去し、
y‐Fe00日の回折パターンのみとなりQ−Fe00
日微粒子の表面がy−Fe00日で充分に覆われている
ことがわかる。乾燥した針状微粒子を粉砕したのち50
0qo以下の温度で脱水し「更に通常の方法で還元。
The pH of the solution at this time is about 3, and the reaction time is approximately 3~
It is 5 hours. 4. Separate the formed precipitate, wash it with water, and then dry it to obtain needle-like fine particles. The X-ray diffraction pattern of this acicular fine particle is shown in FIG. In the figure, a is AS
Q-Fe00 day X by TM diffraction card 17-536
Line diffraction pattern, b is y according to the same card 8-98
-Fe00 day pattern. Nucleic crystal Q-Fe00H
The X-ray diffraction patterns are c, d, and e when ferrous chloride is added and reacted to produce 1 mol, 2 mol, and 3 mol of y-Fe00 per 1 mol, respectively.Q c when one Fe00H/y-Fe00 day is 1 no 1
In this case, only y-Fe00 day of extremely high concentration is detected, but Q-Fe00H/sea Fe00 day is 1/3 e
Then, the diffraction pattern of Q-Fe00 day almost disappears,
Only the diffraction pattern of y-Fe00 day is Q-Fe00
It can be seen that the surface of the day fine particles is sufficiently covered with y-Fe00 days. After crushing the dried needle-like particles,
It is dehydrated at a temperature below 0qo and further reduced using normal methods.

酸化することによりy−Fe203からなる酸化物磁性
材料を得ることができる。本発明におけるy−Fe20
3の性状を左右する重要な因子のひとつとして綾鼠とな
るQ−Fe00日微粒子の形状〜即ちその針状比「粒子
サイズがあげられるが最大の因子は針状ぱ−Fe00日
微粒子の表面に生成させるy−Fe00日の量である。
By oxidizing, an oxide magnetic material made of y-Fe203 can be obtained. y-Fe20 in the present invention
One of the important factors that influences the properties of 3 is the shape of the Q-Fe 00-day fine particles, that is, its acicular ratio. This is the amount of y-Fe produced on day 00.

このy−Fe00日の生成量は核晶であるQ−Fe00
日微粒子の表面積、粒子サイズに左右され一義的に規定
できないが、本発明の効果を出す上でその下限はぴ−F
e00日微粒子の表面を覆うだけのy−Fe00日量が
必要とされ、例えばX線回折の結果充分検知されるだけ
のy−Fe00日が生成される必要がある。一方y−F
e00日生成量の増加に伴ない得られるy−Fe203
の分散性は飽和しまた保磁力は低下する懐向を示して来
るので、結局分散性が飽和し保磁力の低下を起さない程
度のy−Fe00日生成島が上限となる。このようにし
て得られたy−Fe203からなる針状酸化物磁性材料
は、これを用いて磁性塗料としフィルムベースに塗布し
て磁気テープに加工した場合、印加磁界500比たで約
0.8のBr/Bm12.2以上の配向度(磁気テープ
の長さ方向と中方向のBrの比)を示し、良好な角形性
「 配向性を有し、分散性のすぐれていることがわかっ
た。
The amount of y-Fe00 produced on day 1 is Q-Fe00, which is the nucleus crystal.
Although it cannot be defined unambiguously because it depends on the surface area and particle size of the microparticles, the lower limit for producing the effects of the present invention is
An amount of y-Fe00 days is required to cover the surface of the e00-day fine particles, and it is necessary to generate enough y-Fe00 days to be sufficiently detected as a result of X-ray diffraction, for example. On the other hand, y-F
y-Fe203 obtained with increasing production amount on e00 day
Since the dispersibility of y-Fe00 is saturated and the coercive force tends to decrease, the upper limit is the y-Fe00 day generation island, which is such that the dispersibility is saturated and the coercive force does not decrease. When the thus obtained acicular oxide magnetic material made of y-Fe203 is used as a magnetic paint and applied to a film base to be processed into a magnetic tape, the applied magnetic field 500 ratio is approximately 0.8 It was found that the magnetic tape had an orientation degree of Br/Bm of 12.2 or more (ratio of Br in the longitudinal direction and the middle direction of the magnetic tape), had good squareness, and had excellent dispersibility.

以下実施例を示す。実施例 1 長藤の長さが平均0.3山、針状比10:1の針状蚊−
Fe00日微粒子(第2図の写真)89夕を水8ク中に
分散し、これに咳晶となるQ−Fe00日の量と表面に
生成するy−Fe00日量がモル比で1:2となるよう
塩化第一鉄(Fec12.辺も0)800夕を水5そ中
に溶解したものを加え、かくはんを継続しながらさらに
NaOH160夕を水2そ中に溶解したものを加える。
Examples are shown below. Example 1 Needle-like mosquitoes with an average length of long wisteria of 0.3 peaks and a needle-like ratio of 10:1
89 pieces of Fe00 fine particles (photograph in Figure 2) were dispersed in 8 cups of water, and the amount of Q-Fe00 that became cough crystals and the amount of Y-Fe00 that formed on the surface were mixed in a molar ratio of 1:2. Add 800 ml of ferrous chloride (Fec 12.0) dissolved in 5 ml of water, and then add 160 ml of NaOH dissolved in 2 ml of water while stirring.

そしてこの反応溶液を20℃の温度に保持して激しくか
くはんを続けた。NaOH溶液を加えた直後の反応溶液
のPHは7.5であった。約5時間かくはんを続けるこ
とにより溶液はオレンジ色を帯びた黄色に変化しPHは
31とZなり反応は完了したので生成枕でん物をろ別し
水洗したのち乾燥、粉砕して黄色の微粉末を得た。これ
を電子顕微鏡で観察したところ長軸の長さが平均0.5
り針状比が(10〜15);1の針状微粒子(第3図の
写真)であった。この微粒子を(酸化性雰囲気下)25
0qoの温度で脱水処理が行ない続いて還元性雰囲気下
350℃の温度で還元処理を行ない、さらに酸化性雰囲
気下30000の温度で酸化処理を行なってy−Fe2
03を得た。
The reaction solution was kept at a temperature of 20° C. and vigorously stirred. The pH of the reaction solution immediately after adding the NaOH solution was 7.5. By continuing to stir for about 5 hours, the solution changed to an orange-yellow color, and the pH reached 31 and Z, indicating that the reaction was complete, so the resulting pulp was filtered out, washed with water, dried, and crushed to give a yellow fine powder. A powder was obtained. When observed with an electron microscope, the average length of the long axis was 0.5
The particles were acicular fine particles with an acicular ratio of (10 to 15):1 (photograph in Figure 3). This fine particle (under oxidizing atmosphere)
Dehydration treatment was performed at a temperature of 0qo, followed by reduction treatment at a temperature of 350℃ in a reducing atmosphere, and further oxidation treatment at a temperature of 30000℃ in an oxidizing atmosphere to obtain y-Fe2.
I got 03.

この磁気特性は保磁力(HC)が37のe、単位重量あ
たりの飽和磁気モーメソト(os)が6段mu/夕、単
位重量あたりの残留磁気モーメント(〇r)が3準mu
ノタであった。
This magnetic property has a coercive force (HC) of 37 e, a saturation magnetic moment per unit weight (os) of 6 steps mu/h, and a remanent magnetic moment per unit weight (〇r) of 3 quasi-mu.
It was Nota.

このy−Fe203を磁性材料として作製した磁気テー
プは保磁力(Hc)が33のe、飽和磁束密度(Bm)
が150に、残留磁束密度(Br)が120的、Br/
Bmが0.80配向度が2.4であった。
A magnetic tape made using this y-Fe203 as a magnetic material has a coercive force (Hc) of 33e and a saturation magnetic flux density (Bm).
is 150, residual magnetic flux density (Br) is 120, Br/
Bm was 0.80 and degree of orientation was 2.4.

実施例 2実施例1に用いた針状Q−Fe00日微粒子
89夕を水8〆中に分散し、これに核晶のQ−Fe00
日の量と生成されるy−Fe00日の量がモル比で1:
3となるように塩化第一鉄(FeC12.4も0)12
00夕を水5〆中に溶解したものを加え、かくはんを継
続しながらさらにNaOH240夕を水2Z中に溶解し
たものを加え、この反応溶液を20午0の温度に保持し
て激しくかくはんを続けた。
Example 2 89 pieces of acicular Q-Fe00 fine particles used in Example 1 were dispersed in water, and Q-Fe00 of the nucleus crystals were added to this.
The molar ratio of the amount per day and the amount of y-Fe00 produced per day is 1:
Ferrous chloride (FeC12.4 is also 0) 12
A solution of 0.00 ml dissolved in 5 ml of water was added, and while stirring was continued, a solution of 240 ml of NaOH dissolved in 2 z of water was added, and this reaction solution was kept at a temperature of 0.20 ml and continued to be stirred vigorously. Ta.

NaOH溶液を加えた直後の反応溶液のPHは7.3で
あった。約4時間かくはんを続けることにより溶液はオ
レンジ色に変化しPHは2.8となり反応は完了したの
で生成沈でん物をろ別し、水洗したのち乾燥.粉砕して
オレンジ色の微粉末を得た。これを電子顕微鏡で観察し
たところ長較の長さが平均0.6〃、針状比が(10〜
15)三1の針状微粒子であった。この微粉末を実施例
1と同様に熱処理してy一Fe203とした。その磁気
特性はHcが29のe、osが技鷺mu/夕、びrが3
1emuノタであった。このy−Fe203を磁性材料
として実施例1と同様に作製した磁気テープはHcが2
6のe、Bmが1300夕、Brが100の、Br/B
mが0.77、配向度が2.3であった。実施例 3 現在広く実用に供されている、長軸の長さが平均0.5
山、針状比7三1の針状Q−Fe00日微粒子を89夕
とり水8〆中に分散する。
The pH of the reaction solution immediately after adding the NaOH solution was 7.3. By continuing to stir for about 4 hours, the solution turned orange and the pH reached 2.8, indicating that the reaction was complete, so the precipitate formed was filtered off, washed with water, and then dried. It was crushed to obtain an orange fine powder. When observed with an electron microscope, the average length of the long chain was 0.6〃, and the needle ratio was (10~
15) It was 31 needle-like fine particles. This fine powder was heat treated in the same manner as in Example 1 to obtain y-Fe203. Its magnetic properties are Hc of 29 e, os of Gisagimu/Yu, and bir of 3
It was 1 emu. A magnetic tape produced in the same manner as in Example 1 using this y-Fe203 as a magnetic material had an Hc of 2.
6 e, Bm is 1300 evening, Br is 100, Br/B
m was 0.77, and the degree of orientation was 2.3. Example 3 Currently widely used in practical use, the average length of the major axis is 0.5
Acicular Q-Fe00 day fine particles with a needle ratio of 731 were dispersed in 89 evening water and 800 ml of water.

これにQ−Fe00日の量と生成されるy‐Fe00日
の量でモル比1:3となるように塩化第一鉄(FeC1
2.4も○)1200夕を水5ク中に溶解したものを加
え、かくはんを継続しながらさらにNaOH240夕を
水22中に溶解したものを加えた。
Ferrous chloride (FeC1
2.4 ○) 1,200 liters dissolved in 5 quarts of water was added, and while stirring was continued, 240 liters of NaOH dissolved in 22 quarts of water was added.

この反応溶液を2ぴ0の温度に保持して激しくかくはん
を続け、約4時間後溶液はオレンジ色に変化して反応を
完了したので生成沈でん物をろ別し水洗したのち乾燥.
粉砕してオレンジ色の微粉末を得た。これを電子顕微鏡
で観察したところ長軸の長さが平均0.6r、針状比(
10〜15):1の針状微粒子であった。この微粒子を
実施例1と同様に熱処理してyータFe203とした。
This reaction solution was maintained at a temperature of 2.0 mm and continued to be stirred vigorously. After about 4 hours, the solution turned orange and the reaction was complete, so the precipitate formed was filtered out, washed with water, and then dried.
It was crushed to obtain an orange fine powder. When observed with an electron microscope, the length of the major axis was 0.6r on average, and the acicular ratio (
10-15):1 needle-like fine particles. These fine particles were heat-treated in the same manner as in Example 1 to obtain yetaFe203.

その磁気特性はHcが28のeosが6段muノタ、。
rが3をmu/夕であった。このy−Fe203を実施
例1と同様に磁性材料として作製した磁気テープはHc
が25のe、Bmが125の、Brが105のBr/B
mが0.81、配向度が2.5であった。0 なおこの
は−Fe00日を原料として従来の方法で製造されたy
−Fe203の磁気特性はHcが、38“史、りsが7
父mu/夕、びrが37emu/夕であり、これを用い
て実施例1と全く同じように作製した磁気テープはHc
が34のe、Bmが130に、タBrが95の、Br/
Bmが0.73、配向度が1.6であった。このように
本発明になる酸化物磁性材料の製造方法によると、磁気
テープ等に使用してすぐれた特性を有する酸化物磁性材
料を得ることができ0る。
Its magnetic properties are Hc 28 and EOS 6-stage MU.
r was 3 mu/t. A magnetic tape made of this y-Fe203 as a magnetic material in the same manner as in Example 1 was
Br/B with e of 25, Bm of 125, and Br of 105
m was 0.81, and the degree of orientation was 2.5. 0 It should be noted that y produced by conventional methods using -Fe00 days as raw material
-The magnetic properties of Fe203 are: Hc is 38", and Ris is 7".
The magnetic tape produced in exactly the same manner as in Example 1 using the same mu/unit and bir was 37 emu/unit.
is 34 e, Bm is 130, Ta Br is 95, Br/
Bm was 0.73 and degree of orientation was 1.6. As described above, according to the method for producing an oxide magnetic material according to the present invention, it is possible to obtain an oxide magnetic material having excellent properties when used in magnetic tapes and the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はQ−Fe00日とッ−Fe00日のX線回折パ
ターン、第2図はQ−Fe00日の電子顕微鏡写真、第
3図はその表面にy−Fe00日を生成させたものの電
子顕微鏡である。 第2図 第3図 第1図
Figure 1 is an X-ray diffraction pattern of Q-Fe00 days and -Fe00 days, Figure 2 is an electron micrograph of Q-Fe00 days, and Figure 3 is an electron microscope photograph of the surface of which y-Fe00 days have been generated. It is. Figure 2 Figure 3 Figure 1

Claims (1)

【特許請求の範囲】[Claims] 1 針状α−FeOOH微粒子の表面にγ−FeOOH
を生成させ、該微粒子を加熱脱水した後還元、酸化して
γ−Fe_2O_3にする針状酸化物磁性材料の製造方
法。
1 γ-FeOOH on the surface of acicular α-FeOOH fine particles
A method for producing an acicular oxide magnetic material by generating γ-Fe_2O_3 by heating and dehydrating the fine particles, and then reducing and oxidizing them to γ-Fe_2O_3.
JP50056622A 1975-05-10 1975-05-10 Method for producing acicular oxide magnetic material Expired JPS606081B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50056622A JPS606081B2 (en) 1975-05-10 1975-05-10 Method for producing acicular oxide magnetic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50056622A JPS606081B2 (en) 1975-05-10 1975-05-10 Method for producing acicular oxide magnetic material

Publications (2)

Publication Number Publication Date
JPS51130898A JPS51130898A (en) 1976-11-13
JPS606081B2 true JPS606081B2 (en) 1985-02-15

Family

ID=13032372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50056622A Expired JPS606081B2 (en) 1975-05-10 1975-05-10 Method for producing acicular oxide magnetic material

Country Status (1)

Country Link
JP (1) JPS606081B2 (en)

Also Published As

Publication number Publication date
JPS51130898A (en) 1976-11-13

Similar Documents

Publication Publication Date Title
US4309459A (en) Process for producing SiO2 coated iron oxide powder for use in the preparation of acicular magnetic iron or iron oxide powder
US4729846A (en) Method for manufacturing lepidocrocite
JPS6113362B2 (en)
JPH0725531B2 (en) Magnetic ultrafine particles composed of ε'iron carbide and method for producing the same
US3897354A (en) Cobalt-containing acicular ferrimagnetic iron oxide of improved remanence stability
EP0279626B1 (en) Plate-like magnetite particles, plate-like maghemite particles and process for producing the same
GB1559145A (en) Acicular ferromagnetic metal particles and method for preparation of the same
JPS606081B2 (en) Method for producing acicular oxide magnetic material
JP2937211B2 (en) Method for producing acicular magnetic iron oxide particles
US5911905A (en) Processes for producing hydrated iron oxide and ferromagnetic iron oxide
KR100445590B1 (en) Cobalt-coated needle iron magnetic iron oxide particles
US4495164A (en) Process for producing acicular magnetite or acicular maghemite
JPH0585487B2 (en)
KR0136152B1 (en) Manufacturing method of hematite powder
JP3166809B2 (en) Method for producing acicular magnetic iron oxide particles
JP2970699B2 (en) Method for producing acicular magnetic iron oxide particles
JPS6251898B2 (en)
KR0136167B1 (en) Manufacturing method of iron oxide
US4348430A (en) Process for producing magnetic particles for magnetic recording medium
JPH0573698B2 (en)
JPH0120201B2 (en)
EP0131223B1 (en) Process for producing cobalt-modified ferromagnetic iron oxide
JPS6313943B2 (en)
JP3171223B2 (en) Method for producing acicular magnetic particle powder
JPH0635326B2 (en) Method for producing particles containing iron carbide