JPS6060791A - Window for laser beam - Google Patents

Window for laser beam

Info

Publication number
JPS6060791A
JPS6060791A JP16993083A JP16993083A JPS6060791A JP S6060791 A JPS6060791 A JP S6060791A JP 16993083 A JP16993083 A JP 16993083A JP 16993083 A JP16993083 A JP 16993083A JP S6060791 A JPS6060791 A JP S6060791A
Authority
JP
Japan
Prior art keywords
optical element
laser beam
flange
outer periphery
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16993083A
Other languages
Japanese (ja)
Inventor
Makoto Yano
眞 矢野
Hiroyuki Sugawara
宏之 菅原
Koji Kuwabara
桑原 晧二
Akira Wada
和田 昭
Sei Takemori
竹森 聖
Hiroharu Sasaki
弘治 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP16993083A priority Critical patent/JPS6060791A/en
Publication of JPS6060791A publication Critical patent/JPS6060791A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/041Arrangements for thermal management for gas lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/034Optical devices within, or forming part of, the tube, e.g. windows, mirrors

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To enable the reduction of thermal stress in the periphery of an optical element by arranging the material of good thermal conductivity between the bottom of the side of an internal diameter and a flange from the periphery of the optical element through the gap of predetermined size. CONSTITUTION:The material of good thermal conductivity 7 is arranged between the bottom 6 of the side of an internal diameter and a flange 2 from the periphery of the optical element 4 through the gap G of predetermined size. Then, the side of periphery is not cooled as there is not the material 7 but the gap G and the temperature increases compared with the part cooled by arranging the material 7. Accordingly, the thermal stress of the periphery of the optical element 4 can be reduced.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はレーザビーム用窓に関するものである。[Detailed description of the invention] [Field of application of the invention] The present invention relates to a laser beam window.

〔発明の背景〕[Background of the invention]

第1図にはレーザビーム用窓の従来例が示されている。 FIG. 1 shows a conventional example of a laser beam window.

同図に示されているように中空円筒1上に設けられたフ
ランジ2にその端部が気密に乗置支持され、かつその中
央部からレーザビーム3を透過する光学素子4は、フラ
ンジ2に設けられた冷媒を流通させる冷媒路例えば水を
流通させる水路5と、フランジ2とこのフランジ2に対
向する光学素子4の端部のうちレーザビーム3の入射側
の底面6との両者間に跨って設けられた熱伝導の良い材
料7とで冷却されている。すなわち光学素子4はレーザ
ビーム3が透過する際にその中央部の内部で一部を吸収
発熱するので、光学素子4の底面6とフランジ2との間
の両者間に跨って設けられた熱伝導の良い材料7を通し
て水路5に導き、冷却している。そしてこの熱伝導の良
い材料7は冷却がよく行ガわれるように光学素子4の底
面6とこの底面6に対向するフランジ2との間の全域に
設けられていた。
As shown in the figure, an optical element 4 whose end part is airtightly placed and supported on a flange 2 provided on a hollow cylinder 1, and which transmits a laser beam 3 from its center part, is attached to the flange 2. A refrigerant path provided, for example, a water channel 5 through which water flows, and a bottom surface 6 on the incident side of the laser beam 3 of the flange 2 and the end of the optical element 4 facing the flange 2. It is cooled by a material 7 provided with good heat conductivity. In other words, when the laser beam 3 passes through the optical element 4, it absorbs a portion of the heat inside the central part of the optical element 4 and generates heat. It is guided to the water channel 5 through a material 7 with good quality and cooled. The material 7 having good thermal conductivity is provided over the entire area between the bottom surface 6 of the optical element 4 and the flange 2 facing the bottom surface 6 so that cooling can be performed well.

このように構成されたレーザビーム用窓で光学素子4の
底面6の表面温度分布は、横軸に光学素子の中心から半
径方向の距離tをとり、縦軸に温度Tをとって中心から
の半径方向距離による温度変化が示されている第2図の
特性曲線aのように、中心部が最高で、熱伝導の良い材
料が設けられている端部側になるほど温興が低く、端部
すなわち外周が最低となっている。寿お同図においてT
In the laser beam window configured as described above, the surface temperature distribution of the bottom surface 6 of the optical element 4 is expressed by taking the radial distance t from the center of the optical element on the horizontal axis and the temperature T on the vertical axis. As shown in characteristic curve a in Figure 2, which shows the temperature change with radial distance, the temperature is highest at the center, and the temperature decreases toward the edges where materials with good thermal conductivity are provided. In other words, the outer circumference is the lowest. T in the same picture of Kotobuki
.

は許容温度である。このため光学素子の中央部では温度
が高いので温度上昇により熱膨張するが、端部側は冷却
されていて温度がそれtAと上昇しないので中央部の熱
膨張による伸びが拘束され、端部側において熱応力が円
周方向の引張応力成分として発生し、しかもそれが端部
である外周で最大となっている。このように光学素子の
外周は熱膨張による伸びを抑制する温度的拘束が最も大
きく、円周方向の引張応力として働く大きな熱応力が外
周に発生するので外周から割れが発生するようになる。
is the permissible temperature. For this reason, the central part of the optical element is at a high temperature and thermally expands due to the temperature rise, but the end parts are cooled and the temperature does not rise to that level tA, so the elongation due to thermal expansion in the central part is restricted, and the end parts Thermal stress occurs as a tensile stress component in the circumferential direction, and it is maximum at the outer periphery, which is the end. As described above, the outer periphery of the optical element is subject to the greatest thermal restraint that suppresses elongation due to thermal expansion, and a large thermal stress that acts as a tensile stress in the circumferential direction is generated on the outer periphery, which causes cracks to occur from the outer periphery.

このように熱応力が高出力レーザビーム透過時に問題と
匁っでいる光学素子の破壊の主要因となっているが、同
一構造ならば破壊限界D0は、光学素子の端面あらさ係
数をk、許容応力をm f (P)とすれば、 0°=2°m f (P l −(1)の関係式で衣わ
される。なお(1)式でmは冷却方法。
As described above, thermal stress is the main cause of destruction of optical elements, which is a problem when transmitted by a high-power laser beam.If the structure is the same, the destruction limit D0 is determined by k, the allowable coefficient of end surface roughness of the optical element. If the stress is m f (P), it is given by the relational expression 0°=2°m f (P l -(1). In equation (1), m is the cooling method.

光学素子の形状などにより決まる係数、 f (P)は
透過レーザビームパワーにより決まる応力値である。(
1)式から破壊限界り、は光学素子の材質によって決定
され、一定であるので、構造が決まれば許柊レーザビー
ムパワーPが決壕ってしまう。
The coefficient f (P), which is determined by the shape of the optical element, is a stress value determined by the power of the transmitted laser beam. (
From equation 1), the destruction limit is determined by the material of the optical element and is constant, so once the structure is determined, the laser beam power P will be fixed.

〔発明の目的〕[Purpose of the invention]

本発明は以上の点に鑑みなされたものであり、光学素子
の外周における熱応力の低減を可能としたレーザビーム
用窓を提供することを目的とするものである。
The present invention has been made in view of the above points, and it is an object of the present invention to provide a laser beam window that can reduce thermal stress on the outer periphery of an optical element.

〔発明の概要〕[Summary of the invention]

すなわち本発明は中空円筒上に設けられたフランジにそ
の端部が気密に乗置支持され、かつその中央部からレー
ザビームを透過する光学素子が。
That is, the present invention provides an optical element whose ends are airtightly mounted and supported on a flange provided on a hollow cylinder, and which transmits a laser beam from its center.

フランジに設けられた冷媒を流通させる冷媒路と、フラ
ンジとこのフランジに対向する光学素子の端部のうちレ
ーザビームの入射側の底面との両者間に跨って設けられ
た熱伝導の良い材料とで冷却されるレーザビーム用窓に
おいて、熱伝導の良い材料を、光学素子の外周から内径
側の底面とフランジとの間に所定寸法の間隙を介して配
設したことを第1の特徴とし、中空円筒上に設けられた
フランジにその端部が気密に乗置支持され、かつその中
央部からレーザビームを透過する光学素子が、フランジ
に設けられた冷媒を流通させる冷媒路と、フランジとこ
のフランジに対向する光学素子の端部のうちレーザビー
ムの入射側の底面との両者間に跨って設けられた熱伝導
の良い材料とで冷却さレルレーザビーム用窓において、
熱伝導の良い材料を、光学素子の外周から内径側の底面
とフランジとの曲に所定寸法の間隙を介して配設すると
共に、光学素子の外周にこの外周側を加熱する加熱手段
を設けたことを第2の特徴とするものであり、これによ
って光学素子の外周は熱伝導の良い材料が設けられてい
る部分のそれよりも大きく温度上昇するようになる。
A material with good thermal conductivity is provided between a refrigerant passage provided in the flange through which the refrigerant flows, and a bottom surface on the laser beam incident side of the end of the optical element facing the flange. The first feature of the laser beam window is that a material with good thermal conductivity is disposed with a gap of a predetermined size between the bottom surface on the inner diameter side from the outer periphery of the optical element and the flange, An optical element whose end part is airtightly placed and supported on a flange provided on a hollow cylinder, and which transmits a laser beam from the center thereof, connects a refrigerant passage provided in the flange through which a refrigerant flows, and a refrigerant path provided in the flange and the flange. In the laser beam window, the end of the optical element facing the flange is cooled with a bottom surface on the laser beam incident side and a material with good thermal conductivity provided across the two.
A material with good thermal conductivity is arranged from the outer periphery of the optical element to the curve between the bottom surface on the inner diameter side and the flange with a gap of a predetermined size, and a heating means for heating this outer periphery is provided on the outer periphery of the optical element. This is the second feature, and as a result, the temperature of the outer periphery of the optical element increases more than that of the portion where the material with good thermal conductivity is provided.

〔発明の実施例〕[Embodiments of the invention]

以下、図示した実施例に基づいて本発明を説明する。第
3図には本発明の一実施例が示されている。なお従来と
同じ部品には同じ符号を付したので説明を鳴略する。本
実施例では熱伝導の良い材料7を、光学素子4の外周か
ら内径側の底面6とフランジ2との間に所定寸法の間隙
Gを介して配設した。このようにすることにより光学素
子4の外周は熱伝導の良い材料7を設けて冷却した部分
より温度が上列するようになって、光学素子4の外周の
熱応力を低減することができる。
The present invention will be explained below based on the illustrated embodiments. FIG. 3 shows an embodiment of the invention. Note that parts that are the same as those in the prior art are designated by the same reference numerals, so explanations will be omitted. In this embodiment, a material 7 with good thermal conductivity is disposed between the bottom surface 6 on the inner diameter side from the outer circumference of the optical element 4 and the flange 2 with a gap G of a predetermined size interposed therebetween. By doing so, the temperature of the outer periphery of the optical element 4 is higher than that of the cooled portion provided with the material 7 having good thermal conductivity, and the thermal stress on the outer periphery of the optical element 4 can be reduced.

すなわち外周側は、空隙Gで熱伝導の良い材料7を設け
てないので冷却されず、熱伝導の良い材料7を設けて冷
却した部分よりも温度が上昇し、上述の第2図に記載し
である特性曲線すのように、光学素子の中心からの半径
方向距離による温度変化は中心部の温度が最も高く、こ
れより熱伝導の良い材料を設けた部分にゆくに従って温
度が低く、熱伝導の良い材料を設けた径方向端部部分の
温度が最低となり、これより外周側にゆくに従って温度
が大きくなっている。このため上述の第3図の光学素子
4の中央部の熱膨張による伸びが最も大きく拘束される
のは、温度が最低となって温度的拘束のkも大きな熱伝
導の良い材料7を設けた部分でおって、これより温度の
大きな外周は温度的拘束が緩和されて熱膨張による伸び
を熱伝導の良い材料7を設けた部分はど拘束しないよう
になる。
In other words, the outer peripheral side is not cooled because the material 7 with good heat conduction is not provided in the gap G, and the temperature rises more than the part cooled by providing the material 7 with good heat conduction, as shown in Fig. 2 above. As shown in the characteristic curve, the temperature changes with the radial distance from the center of the optical element. The temperature is the lowest at the radial end portion where a material with good quality is provided, and the temperature increases from this point toward the outer periphery. For this reason, the elongation due to thermal expansion in the central part of the optical element 4 shown in FIG. Temperature restraint is relaxed on the outer periphery where the temperature is higher than this, and the elongation due to thermal expansion is no longer restrained in the part where the material 7 with good thermal conductivity is provided.

すなわち外周の熱応力が低減される。このように外周に
発生する熱応力を低減させることができたので、上述の
(1)式における許容レーザビームパワーf(P)を考
えだ場合に、係v!/、mが低減できたことになり、そ
の分許各し−サビームパワーPを増加させることができ
る。この点本実施例によれば従来に比べて外筒の熱応力
を30から50%低減テキ、レーザビームパワーPは3
0から50%向上て゛きた。なお熱伝導の良い材料7を
設けて冷却した部分に最も大きな熱応力が発生し、この
部分に周方向の犬き在引張応力が働くが、この部分と外
周との間には光学索子4を形成する材料があるので、こ
の部分から割れが発生する懸念はない。
That is, the thermal stress on the outer periphery is reduced. Since we were able to reduce the thermal stress generated on the outer periphery in this way, when considering the allowable laser beam power f(P) in equation (1) above, the relationship v! /, m can be reduced, and the permissible sub-beam power P can be increased accordingly. In this respect, according to this embodiment, the thermal stress of the outer cylinder can be reduced by 30 to 50% compared to the conventional one, and the laser beam power P is 3.
It has improved by 50% from 0. Note that the greatest thermal stress occurs in the area cooled by providing the material 7 with good thermal conductivity, and a tensile stress in the circumferential direction acts on this area, but there is an optical cable 4 between this area and the outer periphery. Since there is a material that forms this part, there is no concern that cracks will occur from this part.

この外周V(おける熱応力低減の効果は、外周側の熱伝
導の良い材料7を設けてないすなわち冷却し、ない部分
である間NGが大きいほど著しく、決められた大きさの
光学素子4の場合には、この冷却しない部分を大きくし
て熱伝導の良い羽料7を設けた冷却部分の大きさを減少
してゆくほど効果が太きい。しかし冷却部分を設けなけ
れば光学素子4の外周は温度的に拘束され力いので、光
学素子4の中央部の熱膨張による伸びが抑制されず熱応
力は発生しないが、光学素子4の温度は上昇し続ける。
The effect of reducing thermal stress at the outer periphery (V) becomes more pronounced as the NG increases in the area where the material 7 with good thermal conductivity on the outer periphery side is not provided, that is, is not provided with the material 7. In this case, the larger the uncooled portion and the smaller the size of the cooling portion provided with the feathers 7 with good heat conduction, the greater the effect.However, if no cooling portion is provided, the outer periphery of the optical element 4 is thermally restrained and strong, so the elongation due to thermal expansion of the central portion of the optical element 4 is not suppressed and thermal stress does not occur, but the temperature of the optical element 4 continues to rise.

これは上述の第2図において本実施例では冷却部分の大
きさが従来に比べて減少したので、それたけ温度が上っ
て特性曲線すのように従来例の特性曲線aより高温側に
移行していることからも明らかである。光学素子4とし
て用いられるセレン化亜鉛Zn5e、ゲルマニウムGe
、ガリウムヒ素Q a A S などの材料にはある温
度を越えると温度上昇につれてレーザビーム吸収率が増
加し、温度が急上昇所印熱暴走してしまう特性を有して
いる。すなわち縦軸に温度Tをとり、横軸に熱伝導の良
い材料70幅である冷却部の幅dをとって冷却部の幅と
温度との関係が示されている第4図のように、冷却部の
幅を減少するにつれて温度は上昇し、許容温度T、を越
える近傍で急激に上昇、すなわち熱暴走する。この許容
温度T、はケルマニウムGeが約40C,セレン化亜鉛
Zn5eおよびカリウムヒ素Q a A Sが共に約1
50Cであるか、熱暴走するとその高熱により光学素子
自身あるいld表面コーティング層が溶融損傷してし捷
う。従って冷却部の幅を減少させるには冷却熱量をQ。
This is because the size of the cooling part in this embodiment is reduced compared to the conventional example in FIG. It is clear from what is being done. Zinc selenide Zn5e, germanium Ge used as optical element 4
Materials such as , gallium arsenide Q a S have a characteristic that when the temperature exceeds a certain temperature, the laser beam absorption rate increases as the temperature rises, and when the temperature suddenly rises, thermal runaway occurs. That is, as shown in FIG. 4, the relationship between the width of the cooling part and the temperature is shown by taking the temperature T on the vertical axis and the width d of the cooling part, which is the width of the material 70 with good thermal conductivity, on the horizontal axis. As the width of the cooling section is reduced, the temperature increases, and increases rapidly near the allowable temperature T, that is, thermal runaway occurs. This allowable temperature T is approximately 40C for kermanium Ge, and approximately 1C for both zinc selenide Zn5e and potassium arsenic Q a A S.
If the temperature is 50C or thermal runaway occurs, the optical element itself or the LD surface coating layer will be melted and damaged due to the high heat. Therefore, to reduce the width of the cooling section, the amount of cooling heat should be Q.

、レーザビーム吸収による光学素子内部の発熱會をQo
とした場合に次の関係式を満たすと共に、光学索子の内
部温度が許容温度T。を越えないようにする必要がある
, the heat generation inside the optical element due to laser beam absorption is Qo
In this case, the following relational expression is satisfied and the internal temperature of the optical cable is the permissible temperature T. It is necessary to make sure that it does not exceed.

Q、、>Q、、 ・・・(2) 第51Flには本発明の他の実施例が示されている。Q,,>Q,,...(2) Another embodiment of the present invention is shown in No. 51 Fl.

本実施例では熱伝導の良い材料(図示せず)を、光学素
子4の外周から内径側の底面とフランジ(共に図示せず
)との間に所定寸法の間隙を介して配設すると共に、光
学素子4の外周にこの外周側を加熱する加熱手段を設け
た。このようにすることにより光学素子4の外周の温度
を前述の場合よりも太きく上昇させることができるよう
になって、光学素子4の外周の熱応力を前述の場合より
も大きく低減させることができる。
In this embodiment, a material with good thermal conductivity (not shown) is disposed with a gap of a predetermined size between the bottom surface of the optical element 4 on the inner diameter side from the outer periphery and the flange (both not shown), and A heating means for heating the outer periphery of the optical element 4 was provided on the outer periphery of the optical element 4. By doing so, the temperature of the outer periphery of the optical element 4 can be increased more greatly than in the above case, and the thermal stress on the outer periphery of the optical element 4 can be reduced more than in the above case. can.

すなわち加熱手段を光学素子4の外周上に配設した伝熱
材8と、この伝熱材8上に設けた発熱体9とで形成した
。このようにすることにより発熱体9で発生させた熱を
伝熱材8を介して外周側に伝導して外周側を加熱するこ
とができるようになって、前述の場合より外周の温度を
上昇させることができるようになり、外周における熱応
力を前述の場合よりも低減させることができる。この場
合に加熱手段による加熱量をQ、とじ、冷却熱量をQ、
、光学素子内部の発熱量をQ、とじた場合に次の関係式
を滴たすと共に、光学素子の内部温度が許容温度を越え
ないようにする必要があるっQ、〉Q。十Q、 ・・・
(3) 〔発明の効果〕 上述のように本発明は光学素子の外周の温度を最低とし
ないことができるようになって、外周における温度的拘
束が緩和されるようになり、光学素子の外周における熱
応力の低減を可能としたレーザビーム用窓を得ることが
できる。
That is, the heating means was formed by a heat transfer material 8 disposed on the outer periphery of the optical element 4 and a heating element 9 provided on the heat transfer material 8. By doing this, the heat generated by the heating element 9 can be conducted to the outer circumferential side via the heat transfer material 8 to heat the outer circumferential side, increasing the temperature of the outer circumference compared to the above case. This makes it possible to reduce thermal stress at the outer periphery more than in the case described above. In this case, the amount of heating by the heating means is Q, and the amount of cooling heat is Q,
When the amount of heat generated inside the optical element is Q, it is necessary to apply the following relational expression and to prevent the internal temperature of the optical element from exceeding the permissible temperature. 10Q...
(3) [Effects of the Invention] As described above, the present invention makes it possible to prevent the temperature at the outer periphery of the optical element from being the lowest, so that the temperature restraint at the outer periphery is relaxed, and the temperature at the outer periphery of the optical element becomes lower. A laser beam window that can reduce thermal stress can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のレーザビーム用窓の縦断側面図。 第2図はレーザビーム用窓の光学素子の底面の温度分布
図、第3図は本発明のレーザビーム用窓の一実施例の縦
断側面図、第4図はレーザビーム用窓の光学素子の冷却
部幅と温度との関係を示す特性図、第5図は本発明のレ
ーザビーム用窓の他の実施例の光学素子の縦断側面図で
ある。 1・・・中空円筒、2・・・フランジ、3・・・レーザ
ビーム、4・・・光学素子、5・・・水路(冷媒路)、
6・・・底面、7・・・熱伝導の良い材料、8・・・伝
熱材、9・・・発熱体。 (ほか1名)゛ 第1図 2 f!−え槃口っqrab、を錠、。綿。 第1頁の続き 0発 明 者 竹 森 を 日立市幸町3丁目所内 0発 明 者 佐 々木 弘治 日立市幸町3丁目所内
FIG. 1 is a longitudinal sectional side view of a conventional laser beam window. Fig. 2 is a temperature distribution diagram of the bottom surface of the optical element of the laser beam window, Fig. 3 is a longitudinal cross-sectional side view of an embodiment of the laser beam window of the present invention, and Fig. 4 is a temperature distribution diagram of the bottom surface of the optical element of the laser beam window. FIG. 5 is a characteristic diagram showing the relationship between the width of the cooling portion and the temperature, and FIG. 5 is a longitudinal sectional side view of an optical element of another embodiment of the laser beam window of the present invention. DESCRIPTION OF SYMBOLS 1... Hollow cylinder, 2... Flange, 3... Laser beam, 4... Optical element, 5... Waterway (coolant path),
6...Bottom surface, 7...Material with good thermal conductivity, 8...Heat transfer material, 9...Heating element. (1 other person) ゛Figure 1 2 f! - Lock the lock. cotton. Continued from page 10 Inventor: Takemori, located at 3-chome Saiwaimachi, Hitachi City0 Inventor: Koji Sasaki, located at 3-chome, Saiwaimachi, Hitachi City

Claims (1)

【特許請求の範囲】 1、 中空円筒上に設けられたフランジにその端部が気
密に乗置支持され、かつその中央部からレーザビームを
透過する光学素子が、前記7う/ジに設けられた冷媒を
流通させる冷媒路と、前記フランジとこのフランジに対
向する前記光学素子の前記端部のうち前記レーザビーム
の入射側の底面との両者間に跨って設けられた熱伝導の
良い材料とで冷却されるレーザビーム用窓において、前
記熱伝導の良い材料を、前記光学素子の外周から内径側
の前記底面と前記フランジとの間に所定寸法の間隙を介
して配設したことを特徴とするレーザビーム用窓。 2、 中空円筒上に設けられたフランジにその端部が気
密に乗置支持され、かつその中央部からレーザビームを
透過する光学素子が、前記フランジに設けられた冷媒を
流通させる冷媒路と、前記フランジとこのフランジに対
向する前記光学素子の前記端部のうち前記レーザビーム
の入射側の底面との両者間に跨って設けられた熱伝導の
良い材料とで冷却されるレーザビーム用窓において、前
記熱伝導の良い材料を、前記光学素子の外周から内径側
の前記底面と前記フランジとの間に所定寸法の間隙を介
して配設すると共に、前記光学素子の前記外周にこの外
周側を加熱する加熱手段を設けたことを%徴とするレー
ザビーム用窓。 3 前記加熱手段が、゛前記光学素子の外周上に配艮し
た伝熱材と、この伝熱材上に設けた発熱体とで形成され
たものである特許請求の範囲第2項記載のレーザビーム
用窓。
[Claims] 1. An optical element, the end of which is airtightly placed and supported on a flange provided on a hollow cylinder, and which transmits a laser beam from the center thereof, is provided in the seventh direction. a refrigerant path through which a refrigerant flows, and a material with good thermal conductivity provided spanning between the flange and the bottom surface of the end portion of the optical element facing the flange on the incident side of the laser beam; In the laser beam window cooled by a laser beam, the material having good thermal conductivity is disposed between the bottom surface on the inner diameter side from the outer periphery of the optical element and the flange with a gap of a predetermined size. window for laser beam. 2. A refrigerant path, the end of which is airtightly placed and supported on a flange provided on a hollow cylinder, and an optical element that transmits a laser beam from the center of the flange, through which the refrigerant is caused to flow; In a laser beam window cooled by the flange and a material with good thermal conductivity provided spanning between the flange and the bottom surface on the laser beam incident side of the end portion of the optical element facing the flange. , the material with good thermal conductivity is disposed between the bottom surface and the flange on the inner diameter side from the outer periphery of the optical element with a gap of a predetermined dimension interposed therebetween, and the material on the outer periphery side of the optical element is A laser beam window characterized by being equipped with a heating means. 3. The laser according to claim 2, wherein the heating means is formed of a heat transfer material disposed on the outer periphery of the optical element and a heating element provided on the heat transfer material. Beam window.
JP16993083A 1983-09-13 1983-09-13 Window for laser beam Pending JPS6060791A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16993083A JPS6060791A (en) 1983-09-13 1983-09-13 Window for laser beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16993083A JPS6060791A (en) 1983-09-13 1983-09-13 Window for laser beam

Publications (1)

Publication Number Publication Date
JPS6060791A true JPS6060791A (en) 1985-04-08

Family

ID=15895564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16993083A Pending JPS6060791A (en) 1983-09-13 1983-09-13 Window for laser beam

Country Status (1)

Country Link
JP (1) JPS6060791A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61174763U (en) * 1985-04-19 1986-10-30
US5737126A (en) * 1995-03-08 1998-04-07 Brown University Research Foundation Microlenses and other optical elements fabricated by laser heating of semiconductor doped and other absorbing glasses
US5768022A (en) * 1995-03-08 1998-06-16 Brown University Research Foundation Laser diode having in-situ fabricated lens element
EP0853357A2 (en) * 1997-01-08 1998-07-15 TRW Inc. Face-cooled optic cell for high-power laser

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61174763U (en) * 1985-04-19 1986-10-30
JPH0445265Y2 (en) * 1985-04-19 1992-10-23
US5737126A (en) * 1995-03-08 1998-04-07 Brown University Research Foundation Microlenses and other optical elements fabricated by laser heating of semiconductor doped and other absorbing glasses
US5768022A (en) * 1995-03-08 1998-06-16 Brown University Research Foundation Laser diode having in-situ fabricated lens element
EP0853357A2 (en) * 1997-01-08 1998-07-15 TRW Inc. Face-cooled optic cell for high-power laser
EP0853357A3 (en) * 1997-01-08 1999-08-18 TRW Inc. Face-cooled optic cell for high-power laser

Similar Documents

Publication Publication Date Title
JPH0229936B2 (en)
JPH10246103A (en) Gas turbine blade
JPS6060791A (en) Window for laser beam
US4486886A (en) Apparatus for cooling laser windows
JPS6240405A (en) Incident end structure of light guide for power transmission
JPS5836258B2 (en) Taiyohoushiya Energy Capsule
Xia et al. Experimental study on microdeformation of water-cooled copper mirrors in high-power laser system
JP6809065B2 (en) Laser ignition device and laser spark plug cooling means
US3566300A (en) Optical means for production of laser emission
JPS63205976A (en) Laser oscillator
JP2790582B2 (en) Semiconductor device
SU735345A1 (en) Rolling roll with cooling system
CN212109631U (en) Efficient car heat abstractor
JPH0316293Y2 (en)
JPH053355A (en) Solid-state laser medium
JP3141600B2 (en) Laser oscillation device
JPH037739Y2 (en)
EP1380870A1 (en) Lens with optimized heat transfer properties
KR0115467Y1 (en) A cooling apparatus for c.r.t. projection tv by using ultra sound vibrators
JPS62104183A (en) Laser beam resonator system and transmission system
JPH04105782A (en) Laser beam machine
JPS587648Y2 (en) Semiconductor device cooling fins
JPH0546713B2 (en)
JPH01289180A (en) Solid state laser
JPH0115186Y2 (en)