JPS6060775A - Manufacture of solar cell device - Google Patents

Manufacture of solar cell device

Info

Publication number
JPS6060775A
JPS6060775A JP58168191A JP16819183A JPS6060775A JP S6060775 A JPS6060775 A JP S6060775A JP 58168191 A JP58168191 A JP 58168191A JP 16819183 A JP16819183 A JP 16819183A JP S6060775 A JPS6060775 A JP S6060775A
Authority
JP
Japan
Prior art keywords
solar cell
light
leads
lead
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58168191A
Other languages
Japanese (ja)
Other versions
JPS6362912B2 (en
Inventor
Koichi Suda
晃一 須田
Tadao Kushima
九嶋 忠雄
Kunihiro Matsukuma
邦浩 松熊
Yasuaki Uchida
内田 泰明
Kimio Hatsumi
初見 君男
Masafumi Ono
雅文 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58168191A priority Critical patent/JPS6060775A/en
Publication of JPS6060775A publication Critical patent/JPS6060775A/en
Publication of JPS6362912B2 publication Critical patent/JPS6362912B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PURPOSE:To connect a plurality of solar cell elements in series at high speed on a plane, and to improve mass productivity by cutting and working-connecting conductor leads positioned on the light-receiving surfaces and back sides of the solar cell elements by a laser. CONSTITUTION:Conductive patterns 2a, 2b are formed on the light-receiving surface and an electrode on the back of a solar cell element, flexible leads 30 and transparent pressing structures 9 are shaped on the conductive patterns, and leads 30a are bonded with the patterns 2a, 2b. Laser beams 13 are projected to the leads 30a to connect the leads 30a to the patterns 2a, 2b. A metallic spacer 10 is inserted, and the leads 30a are cut by laser beams. The leads 30a are pressed by a pressing structure 9a, to which projecting sections 9b are formed, brought into contact and connected by projecting laser beams 13.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は太陽電池装置の製造方法に係り、特に、太陽電
池素子と導体リードを高速で直列に接続するに好適外太
陽電池装置の製造方法に関するものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a method for manufacturing a solar cell device, and particularly relates to a method for manufacturing a solar cell device suitable for connecting a solar cell element and a conductor lead in series at high speed. It is something.

〔発明の背景〕[Background of the invention]

従来のこの種の太陽電池装置の製造方法は、第1図(I
)及び■)に示すように、受光面及び裏面に導電用電極
パターン2a及び2bを形成した複数の太陽電池素子1
,1.・・・を、予めはんだメッキ層4等をほどこした
導体リード3を階段状に成形させ、予めはんだメッキ層
や浸漬法による共晶の予備はんだ層等を表裏面にほどこ
した前記太陽電池素子1の裏面から隣接素子の受光面へ
となるよう直列方向に順々に配置させ、水素(H2)や
窒素(Nz)、6るいはアルゴン(Ar)ガス等の雰囲
気炉を用いた抵抗体加熱方式で各導体リード3と導電用
電極パターン2a及び2bとを接続させていた。このた
めはんだ溶融(その温度は、183C以上である。)の
時間が数秒から数十分かかつていた。
A conventional method for manufacturing this type of solar cell device is shown in FIG.
) and ■), a plurality of solar cell elements 1 each having conductive electrode patterns 2a and 2b formed on the light-receiving surface and the back surface.
,1. The solar cell element 1 has conductor leads 3 on which a solder plating layer 4 etc. has been applied in advance, formed into a stepped shape, and a solder plating layer or a preliminary eutectic solder layer by dipping method etc. on the front and back surfaces. A resistor heating method using an atmosphere furnace containing hydrogen (H2), nitrogen (Nz), 6- or argon (Ar) gas, etc. Each conductor lead 3 was connected to the conductive electrode patterns 2a and 2b. For this reason, the time for melting the solder (its temperature is 183C or higher) ranges from several seconds to several tens of minutes.

また、前記のように、導体リード3は、隣接の太陽電池
素子1及び1の間にまたがる構造であるため、自動供給
方法を採用することが困難でアシ、大量生産性に乏しい
という問題があった。さらに、この抵抗体加熱方法では
、H,、N2.あるいはArガス等の雰囲気炉であって
、しかも大型のコンベア炉のため、ガスや電力などエネ
ルギーの消耗が多いばかシでなく、前記したように接続
終了呼でかなりの時間がかかるなど量産に不向きである
という問題があった。
Furthermore, as mentioned above, since the conductor lead 3 has a structure that spans between the adjacent solar cell elements 1 and 1, there is a problem that it is difficult to adopt an automatic supply method, resulting in poor mass productivity. Ta. Furthermore, in this resistor heating method, H, N2. Alternatively, it is an atmospheric furnace using Ar gas, etc., and because it is a large conveyor furnace, it is not a stupid furnace that consumes a lot of energy such as gas and electricity, and as mentioned above, it takes a considerable amount of time to complete a connection call, making it unsuitable for mass production. There was a problem that.

第2図は上述のような問題点を解消した従来の製造方法
により得た太陽電池や装置の製造方法を示す断面図であ
る。第2図に示すように、基板5の導体6に合せて太陽
電池素子1を配列し、上面よりはんだメッキをほどこし
た銅箔の導体をフィルム7に貼り合せて導電パターン8
を形成したフィルム導体リードを、太陽電池素子1の電
極パターン2aに合せて、配置し、かつ加熱加圧により
太陽電池素子1及び基板5に貼り合せ、該太陽電池素子
1.1の間はフィルム導体リードの可とう性によシ双方
の導体6,8が接触すると共に、はんだが加熱によって
溶けて双方の導体6.8が接続されて太陽電池装置が製
造されている。このような従来技術においても、基板5
の熱容量が大きいため、はんだが溶けて凝固するまでか
なりの時間がかかる、高速化と大量生産性の点で問題で
あった。
FIG. 2 is a sectional view showing a method for manufacturing solar cells and devices obtained by a conventional manufacturing method that solves the above-mentioned problems. As shown in FIG. 2, the solar cell elements 1 are arranged in line with the conductors 6 of the substrate 5, and a conductor made of copper foil plated with solder is attached to the film 7 from the top surface to form a conductive pattern 8.
The formed film conductor lead is arranged in accordance with the electrode pattern 2a of the solar cell element 1, and is bonded to the solar cell element 1 and the substrate 5 by heating and pressing, and the film is placed between the solar cell elements 1.1. Due to the flexibility of the conductor leads, both conductors 6 and 8 come into contact with each other, and the solder is melted by heating to connect both conductors 6 and 8, thereby producing a solar cell device. Even in such conventional technology, the substrate 5
Because of its large heat capacity, it takes a considerable amount of time for the solder to melt and solidify, which has been a problem in terms of speeding up and mass productivity.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記従来技術の欠点を解消し、太陽電
池素子の電極の剥れや割れが発生せず、しかも、複数個
の太陽電池素子を平面上で直列に、かつ高速度で接続す
ることのできる太陽電池装置の製造方法を提供すること
にある。
It is an object of the present invention to solve the above-mentioned drawbacks of the prior art, to prevent peeling or cracking of the electrodes of solar cell elements, and to connect a plurality of solar cell elements in series on a plane at high speed. An object of the present invention is to provide a method for manufacturing a solar cell device that can perform the following steps.

〔発明の概要〕[Summary of the invention]

本発明は、上記目的を達成するため、太陽電池素子の表
裏両面に可とう性のある導体リードを配置せしめ、その
外側より透明の加圧構造体で挾み、外部よ多発生させた
高エネルギ光熱源を該加圧構造体を介して太陽電池素子
の電極及び導体リード部と、隣接太陽電池素子間での先
に光熱源によシ切断された上下の導体リード部とに照射
するものである。
In order to achieve the above object, the present invention arranges flexible conductor leads on both the front and back sides of a solar cell element, and sandwiches the flexible conductor leads from the outside with a transparent pressure structure to generate high energy from the outside. A light and heat source is irradiated through the pressurized structure to the electrodes and conductor lead portions of the solar cell elements, and to the upper and lower conductor lead portions between adjacent solar cell elements that have been previously cut by the light and heat source. be.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を図面に基づいて説明する。 Hereinafter, one embodiment of the present invention will be described based on the drawings.

第3図乃至第6図は本発明に係る太陽電池装置の製造方
法を説明するために示す図である。
FIG. 3 to FIG. 6 are diagrams shown for explaining the method for manufacturing a solar cell device according to the present invention.

第3図は本発明の太陽電池装置の製造方法の構成断面図
、第4図は同説明図、第5図は第4図の断面図である。
FIG. 3 is a cross-sectional view of the structure of the method for manufacturing a solar cell device of the present invention, FIG. 4 is an explanatory view of the same, and FIG. 5 is a cross-sectional view of FIG. 4.

第3図において、太陽電池素子1の受光面と裏面の電極
上に、共晶はんだメッキ層、浸漬法又はリフロー法によ
る共晶はんだ層、印刷法によるペーストはんだ層等を被
覆した導電パターン2a。
In FIG. 3, the electrodes on the light-receiving surface and the back surface of the solar cell element 1 are coated with a eutectic solder plating layer, a eutectic solder layer formed by dipping or reflowing, a paste solder layer formed by printing, etc., to form a conductive pattern 2a.

2bを形成した太陽電池素子1の両面に、例えば銅(C
u )等の金属箔リード30aの上に共晶はんだメッキ
等40をほどこした可とう性のリード(以下、フレキシ
ブルリード)30を位置合せする。次に、フレキシブル
リード30の外側より、透明の加圧構造体(例えば、石
英ガラス材)9で挾み、太陽電池素子の導電パターン2
a、2bにフレキシブルリード30を密着させる。
For example, copper (C
A flexible lead (hereinafter referred to as flexible lead) 30 coated with eutectic solder plating or the like 40 is aligned on top of the metal foil lead 30a such as u). Next, from the outside of the flexible lead 30, the conductive pattern 2 of the solar cell element is sandwiched between transparent pressure structures (for example, quartz glass material) 9.
The flexible leads 30 are brought into close contact with a and 2b.

さらに、第4図に示すように、太陽電池素子1にフレキ
シブルリード301石英加圧構造体9の順に搭載した外
から、例えば、YAGレーザの如き高エネルギ光熱源発
生装置からの光熱源13をガラスファイバー等14で透
動し、ヘッドHita及び11bで光熱源を集光せしめ
、加圧構造体9を透過させて、太陽電池素子1の導電パ
ターン上のフレキシブルリード30に照射させ、各々の
はんだ層を溶かして接続させる。
Furthermore, as shown in FIG. 4, a light heat source 13 from a high energy light heat source generator such as a YAG laser is connected to the solar cell element 1 from the outside in the order of the flexible lead 301 and the quartz pressurized structure 9. The light is transmitted through a fiber or the like 14, the light and heat source is focused by the heads Hita and 11b, transmitted through the pressurizing structure 9, and irradiated onto the flexible lead 30 on the conductive pattern of the solar cell element 1, and is applied to each solder layer. Melt and connect.

その後、隣接する太陽電池素子間の上下のフレキシブル
リード30,30の間に、例えば、 cu。
Thereafter, for example, a cu.

SuS等からなる金属スペーサ1oを挿入して、図示上
下より、光熱源をヘッド部12a、l 2bで集光して
、フレキシブルリー)” 30 (D 一部に照射させ
て切断する。
A metal spacer 1o made of SuS or the like is inserted, and a light and heat source is focused by the head parts 12a and 12b from above and below as shown in the figure, and a part of the flexible Lee is irradiated and cut.

しかして、太陽電池素子1.1の間の切断されたフレキ
シブルリード3oを、第6図に示すように、突部9bを
設けた加圧構造体9aで加圧せしめて、相互のフレキシ
ブルリード3oを接触させ、石英加圧構造体9aを介し
て外から高エネルギー光源であるYAGレーザ光線13
を照射させて接触部のはんだ層を局部的に瞬時に急熱急
冷凝固させて接Fiきせるものである。
As shown in FIG. 6, the cut flexible leads 3o between the solar cell elements 1.1 are pressurized by a pressure structure 9a provided with a protrusion 9b, and the flexible leads 3o are connected to each other. YAG laser beam 13, which is a high-energy light source, is applied from the outside through the quartz pressurized structure 9a.
The solder layer at the contact area is locally and instantaneously heated and solidified by irradiating the solder layer with the irradiation material to form a bond.

高エネルギ光熱源のYAGレーザ光線等を用い石英加圧
構造体を介して照射させることにより、太陽電池素子と
導体リードの接続が高速かつ高歩留りにでき、高信頼性
の太陽電池装置を製造することができる。
By irradiating the quartz pressurized structure with a YAG laser beam, etc., which is a high-energy photothermal source, the connection between the solar cell element and the conductor lead can be made at high speed and with a high yield, and a highly reliable solar cell device can be manufactured. be able to.

本実施例によれば、下記の点で効果がある。According to this embodiment, there are effects in the following points.

(1)各太陽電池素子1の導電パターン2a、2bとフ
レキシブルリード30の接続及び隣接素子間のリードの
切断、接続が局部的かつ瞬時にはんだ層を急熱急冷凝固
できるので、導電パターン周囲への熱影響もなく高速度
にできる。
(1) The connection between the conductive patterns 2a and 2b of each solar cell element 1 and the flexible lead 30, and the cutting and connection of the leads between adjacent elements, can be performed locally and instantaneously, and the solder layer can be rapidly heated and solidified, so that the solder layer can be rapidly solidified, so that it can spread around the conductive pattern. High speeds can be achieved without any thermal effects.

(2)フレキシブル導体リードを連続的に供給し、切断
、接続する方法忙よシ、太陽電池素子とリードの配列工
程が単純化され、工程の時間も大幅に短縮できる。
(2) Method of continuously supplying, cutting and connecting flexible conductor leads The process of arranging solar cell elements and leads can be simplified and the process time can be significantly shortened.

(3)リード材料もフープ材として適用可能で、コスト
を大幅に低減できる。
(3) The lead material can also be used as a hoop material, which can significantly reduce costs.

(4)雰囲気ガスや大型炉の電力を必要とせず、省エネ
ルギで低コストプロセスとなる。
(4) It does not require atmospheric gas or electricity for a large furnace, resulting in an energy-saving and low-cost process.

(5)大量生産性に富み高出力の太陽電池パネルを安価
に高歩留りで得られる。
(5) It is possible to obtain high-output solar cell panels at low cost and with high yield due to mass productivity.

ところで、フレキシブルリード30とi!パターン2と
を接続する場合、第7図に示すように、レーザ光は光沢
はんだメッキ層4aの表面で一部が反射光13aとなっ
てしまい、熱の吸収が多少妨けられることがある。
By the way, Flexible Lead 30 and i! When connecting pattern 2, as shown in FIG. 7, part of the laser light becomes reflected light 13a on the surface of the glossy solder plating layer 4a, which may hinder heat absorption to some extent.

そこで、導体リード30にはんだメッキ層40aを形成
した。後に、一方の側を陽極酸化法によシ無光沢はんた
メッキ層40bとする。このようにすると、第8し1に
示すように、反射がなくなる。
Therefore, a solder plating layer 40a was formed on the conductor lead 30. Later, one side is formed into a matte solder plating layer 40b by anodizing. If this is done, reflection will be eliminated as shown in No. 8-1.

ここで、はんだメッキ法は、鉛(Pb )メッキ+スズ
(Sn)メッキの2層メッキ法によるか、あるいけ、鉛
(Pb)、スズ(Sn)の合金メッキ法によるかのどち
らでもよい。これよシ、レーザ光が反射することなく無
光沢はんだメッキ層40bに伝わり熱効率良く加熱接続
できるので、はんだ付性も良好で高速度で太陽電池素子
とリードとの接続が可能であシ、その効果は大きい。
Here, the solder plating method may be either a two-layer plating method of lead (Pb) plating and tin (Sn) plating, or an alloy plating method of lead (Pb) and tin (Sn). In this case, the laser beam is transmitted to the matte solder plating layer 40b without being reflected, and a heat connection can be made with high thermal efficiency, so the solderability is good and it is possible to connect the solar cell element and the lead at high speed. The effect is great.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、大量生産が可能であ
り、高出力の太陽電池装置を提供できる効果がある。
As described above, according to the present invention, mass production is possible and a high output solar cell device can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(I)及び(II)、第2図は従来の太陽電池装
置の製造方法を示す構成図及び断面図、第3図乃至第6
図Vま本発明に係る太陽電池装置の製造方法の一実施例
を各工程毎に示す図でおり、第3図は断面図、第4図は
平面図、第5図は断面図、第6図は断面図、第7図は接
続工程を説明するために示す断面図、第8図は同断面図
である。 1・・・太陽電池素子、2,2a、2b・・・Jiff
パターン、3・・・導体リード、30・・・フレキシブ
ルリード、30a・・・金属箔リード、4,40・・・
はんだメッキ層、訃・・基板、6・・・基板導体、7・
・・フィルム、8・・・フィルム導体、9.9a、gb
・・・加圧構造体、10−・・金属スヘーサ、Ila、
llb、12a。 第 1 図 第 2 図 案 4−凶 第S 図 1b 第乙目 第1頁の続き 0発 明 者 初 見 君 男 日立市幸田内
Figures 1 (I) and (II), Figure 2 are a configuration diagram and a sectional view showing a conventional method of manufacturing a solar cell device, and Figures 3 to 6.
Figure V is a diagram showing each step of an embodiment of the method for manufacturing a solar cell device according to the present invention, where Figure 3 is a sectional view, Figure 4 is a plan view, Figure 5 is a sectional view, and Figure 6 is a cross-sectional view. The figure is a sectional view, FIG. 7 is a sectional view for explaining the connection process, and FIG. 8 is the same sectional view. 1...Solar cell element, 2, 2a, 2b...Jiff
Pattern, 3... Conductor lead, 30... Flexible lead, 30a... Metal foil lead, 4, 40...
Solder plating layer, bottom... board, 6... board conductor, 7...
...Film, 8...Film conductor, 9.9a, gb
... Pressure structure, 10-... Metal spacer, Ila,
llb, 12a. Fig. 1 Fig. 2 Design 4-Kousaku S Fig. 1b Continuation of the first page of the second page 0 Inventor Hatsumi Kimi Otoko Hitachi City Koudai

Claims (1)

【特許請求の範囲】 1、受光面及び裏面に導電用電極パターンを形成した複
数個の太陽電池素子を、導体リードをもって直列に接続
して太陽電池装置を製造する方法において、複数個の太
陽電池素子の受光面側と裏面側にそれぞれ導体リードを
位置せしめる工程と、受光面側と裏面側に光熱源を照射
して各導体リードと導電用電極パターンとを接続させる
工程と、隣接する太陽電池素子間で受光面側導体リード
の一部と後面側導体リードの一部を切断する工程と、前
記工程で切断した受光面側導体リードの一部と裏面側導
体リードの一部とを加圧しながら光熱源を照射して接続
する工程とを備えてなることを特徴とする太陽電池装置
の製造方法。 2、特許請求の範囲第1項において、導体リードの一部
を切断する工程は、隣接する太陽電池素子間での受光面
側導体リードと裏面側導体リードとの間に金属スペーサ
を挿入して所定に位置せしめた後に、光熱源によシ加熱
切断することを特徴とする太陽電池装置の製造方法。 3、特許請求の範囲第1項において、導体リードと導電
用電極バター/とを接続させる工程は、金属箔リードに
はんだ層を形成し、かつこれを陽極配化法によシ無光沢
にした導体リードを用いて接続することを特徴とする太
陽電池装置の製造方法。
[Scope of Claims] 1. A method for manufacturing a solar cell device by connecting a plurality of solar cell elements in series with conductor leads, each of which has a conductive electrode pattern formed on its light-receiving surface and back surface. A process of locating conductor leads on the light-receiving side and back side of the element, a process of irradiating the light-receiving side and the back side with a light source to connect each conductor lead with a conductive electrode pattern, and a process of connecting each conductor lead to the conductive electrode pattern, A step of cutting a part of the light-receiving side conductor lead and a part of the rear-side conductor lead between the elements, and pressurizing a part of the light-receiving side conductor lead and a part of the back-side conductor lead cut in the above step. A method for manufacturing a solar cell device, comprising the steps of: irradiating and connecting a light/heat source; 2. In claim 1, the step of cutting a part of the conductor lead includes inserting a metal spacer between the light-receiving side conductor lead and the back side conductor lead between adjacent solar cell elements. 1. A method of manufacturing a solar cell device, which comprises heating and cutting the solar cell device with a light heat source after positioning the device in a predetermined position. 3. In claim 1, the step of connecting the conductor lead and the conductive electrode butter/conductor includes forming a solder layer on the metal foil lead and making it matte by an anode arrangement method. A method for manufacturing a solar cell device, characterized in that connection is made using conductor leads.
JP58168191A 1983-09-14 1983-09-14 Manufacture of solar cell device Granted JPS6060775A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58168191A JPS6060775A (en) 1983-09-14 1983-09-14 Manufacture of solar cell device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58168191A JPS6060775A (en) 1983-09-14 1983-09-14 Manufacture of solar cell device

Publications (2)

Publication Number Publication Date
JPS6060775A true JPS6060775A (en) 1985-04-08
JPS6362912B2 JPS6362912B2 (en) 1988-12-05

Family

ID=15863468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58168191A Granted JPS6060775A (en) 1983-09-14 1983-09-14 Manufacture of solar cell device

Country Status (1)

Country Link
JP (1) JPS6060775A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100416139B1 (en) * 2001-04-04 2004-01-31 삼성에스디아이 주식회사 Solar battery module
JP2004039856A (en) * 2002-07-03 2004-02-05 Toyama Kikai Kk Lead welding apparatus
JP2004247402A (en) * 2003-02-12 2004-09-02 Sanyo Electric Co Ltd Solar cell module and its manufacturing method
JP2004253475A (en) * 2003-02-18 2004-09-09 Sharp Corp Solar cell module, its producing process and heat source for use therein
JP2006049429A (en) * 2004-08-02 2006-02-16 Sharp Corp Method for manufacturing solar cell and solar cell module
US8196798B2 (en) 2010-10-08 2012-06-12 Kulicke And Soffa Industries, Inc. Solar substrate ribbon bonding system
US8231044B2 (en) 2010-10-01 2012-07-31 Orthodyne Electronics Corporation Solar substrate ribbon bonding system
WO2016152649A1 (en) * 2015-03-25 2016-09-29 ナミックス株式会社 Solar cell module and method for manufacturing same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100416139B1 (en) * 2001-04-04 2004-01-31 삼성에스디아이 주식회사 Solar battery module
JP2004039856A (en) * 2002-07-03 2004-02-05 Toyama Kikai Kk Lead welding apparatus
JP2004247402A (en) * 2003-02-12 2004-09-02 Sanyo Electric Co Ltd Solar cell module and its manufacturing method
JP2004253475A (en) * 2003-02-18 2004-09-09 Sharp Corp Solar cell module, its producing process and heat source for use therein
JP2006049429A (en) * 2004-08-02 2006-02-16 Sharp Corp Method for manufacturing solar cell and solar cell module
US8231044B2 (en) 2010-10-01 2012-07-31 Orthodyne Electronics Corporation Solar substrate ribbon bonding system
US8308050B1 (en) 2010-10-01 2012-11-13 Orthodyne Electronics Corporaition Solar substrate ribbon bonding system
US8196798B2 (en) 2010-10-08 2012-06-12 Kulicke And Soffa Industries, Inc. Solar substrate ribbon bonding system
US8251274B1 (en) 2010-10-08 2012-08-28 Orthodyne Electronics Corporation Solar substrate ribbon bonding system
WO2016152649A1 (en) * 2015-03-25 2016-09-29 ナミックス株式会社 Solar cell module and method for manufacturing same
CN107534069A (en) * 2015-03-25 2018-01-02 纳美仕有限公司 Solar module and its manufacture method
US10672942B2 (en) 2015-03-25 2020-06-02 Namics Corporation Solar cell module and method for producing same

Also Published As

Publication number Publication date
JPS6362912B2 (en) 1988-12-05

Similar Documents

Publication Publication Date Title
JPS604270A (en) Manufacture of solar battery
JP3129728B2 (en) Thin film semiconductor device
US6919529B2 (en) Method of laser welding a flexible circuit board with a metal contact
JP5414125B2 (en) Method for connecting contact areas of thin film solar cells
JPH10308576A (en) Printed wiring board and its manufacture
JPH055375B2 (en)
US20140230878A1 (en) Method for electrically connecting several solar cells and photovoltaic module
JP2009130118A (en) Semiconductor device, method for manufacturing the same, and solar battery
JPS6060775A (en) Manufacture of solar cell device
CN212517188U (en) IGBT module packaging structure with preset solder
JP2009130117A (en) Solar cell, semiconductor device link, and its connecting interconnect
JPH0471346B2 (en)
JP3539563B2 (en) Light-emitting element laminate and display using the same
JPH08195560A (en) Method for manufacturing printed circuit board
JPH08264819A (en) Semiconductor device and manufacturing method thereof
JPH0478029B2 (en)
CN117525213B (en) Preparation method of battery piece assembly and battery piece assembly
JP2003059969A (en) Method for adhering configuration section to connection support due to welding without requiring addition of substance
JPH02104119A (en) Method for mounting surface acoustic wave element
JPS63237483A (en) Manufacture of photovoltaic element
JPS6281744A (en) Manufacture of film carrier with bump
JP5182746B2 (en) Power generation array for photoelectric conversion device, photoelectric conversion device, and manufacturing method thereof
CN116014470A (en) FPC and busbar welding method
JPH0360138A (en) Bonding method
CN115692515A (en) Photovoltaic module and photovoltaic module manufacturing process