JPS6060735A - Manufacture of semiconductor integrated circuit device - Google Patents

Manufacture of semiconductor integrated circuit device

Info

Publication number
JPS6060735A
JPS6060735A JP16826483A JP16826483A JPS6060735A JP S6060735 A JPS6060735 A JP S6060735A JP 16826483 A JP16826483 A JP 16826483A JP 16826483 A JP16826483 A JP 16826483A JP S6060735 A JPS6060735 A JP S6060735A
Authority
JP
Japan
Prior art keywords
film
oxide film
substrate
region
oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16826483A
Other languages
Japanese (ja)
Other versions
JPH0834241B2 (en
Inventor
Kenichi Suzuki
研一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP58168264A priority Critical patent/JPH0834241B2/en
Publication of JPS6060735A publication Critical patent/JPS6060735A/en
Publication of JPH0834241B2 publication Critical patent/JPH0834241B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Drying Of Semiconductors (AREA)
  • Element Separation (AREA)
  • Local Oxidation Of Silicon (AREA)

Abstract

PURPOSE:To necessitate no mask for flattening and to contrive to reduce the parasitic capacity on a semiconductor integrated circuit device by a method wherein an oxide film is selectively formed on the surface of the substrate using an oxidation-resistant film, and after that, grooves are formed in regions with a fixed width on the periphery of the oxidation-resistant film and after an embedding material was adhered on the whole surface, the embedding material is removed up to the surface of the substrate. CONSTITUTION:A buried diffusion layer 2, an epitaxial layer 3 and an oxide film 4 for buffer are formed on a silicon substrate 1, and after that, a silicon nitriding film 5 and a CVD oxide film 6 are successively deposited. After then, a groove 11, which reaches in the surface of the layer 3, is formed using a resist film 7. Then, the resist film 7 is removed, a nitriding film 12 is deposited on the whole surface and plane parts only of the film 12 are removed. The bottom part of the groove 11 is oxidized to form an oxide film 13, the exposed parts of the nitriding films 5 and 12 are performed an etching and removed, and grooves 16, which reach in the substrate 1, are formed in the parts. After that, polycrystalline silicons are thickly deposited on the whole surface and an etching is performed until element regions 14 and an isolation region are flattened.

Description

【発明の詳細な説明】 (技術分野) この発明は半導体集積回路装置の製造方法に関し、特に
バイポーラ型半導体集積回路装置に好適な電子分離領域
の形成方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a method of manufacturing a semiconductor integrated circuit device, and more particularly to a method of forming an electron isolation region suitable for a bipolar type semiconductor integrated circuit device.

(従来技術) バイポーラ型半導体集積回路装首の素子分離は、古くは
PN接合分離法によっていたが、素子が微細化され集積
度が増大するにつれ、分離領域の面積を削減する必要が
生じ、シリコン基板の選択酸化による厚いシリコン酸化
膜を利用した酸化膜分離法(いわゆるアイソブレーナ)
に移行l−ていった。
(Prior art) Element isolation for bipolar semiconductor integrated circuits was traditionally performed using the PN junction isolation method, but as elements become smaller and the degree of integration increases, it becomes necessary to reduce the area of the isolation region, and silicon Oxide film separation method using a thick silicon oxide film by selective oxidation of the substrate (so-called isobrainer)
I moved on to l-.

酸化膜分離法は、PN分離法に比べて著しく分離領域を
減少させるのみならず、素子領域以夕Iのすべての領域
(以下フィールド領域と呼ぶ)を厚い酸化膜に変換する
ため、配線−基板間の浮遊容量が減少し、高速化にも寄
与する効果的な方法であった。
The oxide film isolation method not only significantly reduces the isolation region compared to the PN isolation method, but also converts the entire region from the element region to the field region (hereinafter referred to as the field region) into a thick oxide film. This is an effective method that reduces the stray capacitance between the two and contributes to faster speeds.

酸化膜分離法は、索子形成領域を、薄いシリコン酸化膜
上にシリコン窒化膜を積層した2層よりなる耐酸化性マ
スクで覆い、しかも厚い酸化膜を形成する領域に酸化に
よる体積の増大を防ぐためにエツチングにより溝を形成
したのち熱酸化し、素子領域と分離領域をほぼ平担面と
する方法である。
In the oxide film separation method, the region where the strands are to be formed is covered with an oxidation-resistant mask consisting of a two-layered silicon nitride film laminated on a thin silicon oxide film, and the volume is increased by oxidation in the region where the thick oxide film is to be formed. In order to prevent this, a groove is formed by etching and then thermally oxidized to make the element region and the isolation region almost flat.

(−たがって、溝の側面方向にも酸化が進み、分離領域
の幅は写真食刻によって規定される幅よシも必ず太くな
り、約10μm程度が限界となる。さらに、素子領域の
シリコン基板と耐酸化性マスク層との間には、分離領域
からくさび状に張り出(〜だ酸化膜、即ちパース・ピー
クが形成さ九ること、および素子領域の周囲での酸化膜
の盛り上り即ちバーズ・ヘッドが形成され、完全な平担
表面が得らねないといり欠点があった。
(- Therefore, oxidation progresses in the side direction of the trench, and the width of the isolation region becomes wider than the width defined by photolithography, and the limit is about 10 μm. Furthermore, the silicon substrate in the element region A wedge-shaped oxide film, or perspective peak, is formed between the isolation region and the oxidation-resistant mask layer. The drawback was that a bird's head was formed and a completely flat surface could not be obtained.

一方、素子の微細化は更に進み、高集積化のためには更
に分離領域の面積を縮小する必要が生じた0 最近になって、基板面に対して垂直に膜をエツチングす
る異方性エツチング技術である反応性イオンエッチ(以
下RIEと呼ぶ)が実用化され、酸化膜分離法に代わる
新たな素子分離法が開発されつつある。
On the other hand, the miniaturization of devices has progressed further, and it has become necessary to further reduce the area of isolation regions in order to achieve higher integration.Recently, anisotropic etching, which etches the film perpendicular to the substrate surface, has been A technique called reactive ion etching (hereinafter referred to as RIE) has been put into practical use, and a new element isolation method is being developed to replace the oxide film isolation method.

これまでに提案された種々の新分離技術を大別すると以
下の2つに分類される。
The various new separation techniques that have been proposed so far can be broadly classified into the following two categories.

一つは、RIEによって深い溝を堀り、二酸化シリコン
や多結晶シリコンなどによって埋め戻して平担化する方
法(以下、溝堀り法と呼ぶ)であり、他の一つは、素子
領域の表面のみならず、溝の側壁も耐酸化性マスク層で
破捜して、横方向lソ化による分離領域幅の増大とパー
ク・ピーク、バーズ・ヘッドの形成を防止する方法(以
下、改良型選択酸化法と呼ぶ)である。
One method is to dig a deep trench by RIE and then backfill it with silicon dioxide or polycrystalline silicon to make it planar (hereinafter referred to as trench trenching method). A method in which not only the surface but also the sidewalls of the grooves are penetrated with an oxidation-resistant mask layer to prevent the increase in isolation region width and the formation of park peaks and bird's heads due to lateral lization (hereinafter referred to as an improved method) oxidation method).

溝掘り法は、溝を形成した後、二酸化シリコンなどの絶
縁物あるいは、溝内壁に絶縁膜を形成後したのち多結晶
シリコンなどを厚く堆積させ、エッチバックして平担化
するものであシ、バイポーラ型半導体集積回路装置に適
用する場合には、基板全面に形成した埋込拡散層を貫く
深いmを形成して埋込拡散用のマスクを省略できる利点
があるが、素子分離用の幅の狭い溝部と、幅の広いフィ
ールド領域の溝部とを同時に平担化することが国難であ
り、そのため、平担化用のマスクが必要となり、厳しい
合わせ精度が要求され、さらに工程も複雑化するという
欠点がある。
The trenching method involves forming a trench, then forming an insulating material such as silicon dioxide or an insulating film on the inner wall of the trench, then depositing a thick layer of polycrystalline silicon, etc., and etching it back to make it planar. When applied to a bipolar semiconductor integrated circuit device, there is an advantage that a mask for buried diffusion can be omitted by forming a deep m that penetrates a buried diffusion layer formed on the entire surface of the substrate. It is a national challenge to simultaneously level the narrow grooves in the field area and the wide grooves in the field area, which requires a leveling mask, requires strict alignment accuracy, and further complicates the process. There is a drawback.

一方、改良型選択酸化法は分離幅によらず平担化が可能
であり、工程も比較的簡単であるが、埋込拡散層を毀〈
分離は実用的には不可能であるため埋込拡散用マスクを
必要とし、分離領域が狭くなるほど埋込拡散と分離のマ
スク合わせ精度が厳しくなるので、1j77堀9法はど
分離領域幅を狭められない。また、選択酸化膜直下に設
けるチャンネルストップ用のP+層がN+埋込層と接触
するため、寄生容址が溝堀シ法に比べて大きいという欠
点がある。さらに、横方向酸化が少ないため、チャンネ
ルストップ用P+層が拡散により分離酸化膜の外側に広
が9、リークや耐圧低下の原因となる恐れがある。
On the other hand, the improved selective oxidation method enables flattening regardless of the separation width and has a relatively simple process, but it does not damage the buried diffusion layer.
Separation is practically impossible, so a mask for buried diffusion is required, and the narrower the separation region, the more difficult the precision of matching the masks for buried diffusion and separation becomes. I can't do it. Furthermore, since the P+ layer for channel stop provided directly under the selective oxide film contacts the N+ buried layer, there is a drawback that the parasitic volume is larger than that in the trench trench method. Furthermore, since there is little lateral oxidation, the channel stop P+ layer spreads outside the isolation oxide film 9 due to diffusion, which may cause leakage or a drop in breakdown voltage.

(発明の目的) この発明はこれらの欠点に鑑みなされたもので、平担化
用のマスクを必要とせずに分離領域幅によらず平担化さ
れた表面を形成でき、寄生容量を低減することもでき、
バイポーラ型に適用した場合は埋込拡散用のマスクも省
略できる半導体集積回路装置の製造方法を提供すること
を目的とする。
(Objective of the Invention) This invention was made in view of these drawbacks, and it is possible to form a flattened surface regardless of the isolation region width without requiring a flattening mask, and to reduce parasitic capacitance. You can also
It is an object of the present invention to provide a method for manufacturing a semiconductor integrated circuit device that can also omit a mask for buried diffusion when applied to a bipolar type.

(発明の構成) この発明の半導体集積回路装置の製造方法は、半導体基
体の選択された表面上に耐酸化性の膜を形成した後、前
記選択された表面を除く半導体基体の表面を酸化膜に変
換し、その後、8i1t4己耐眩化性の膜の周辺の一定
幅の領域を除去した上で、その領域における前記半導体
基体に概ね垂直な側壁を持つ溝を形成し、その溝を埋め
るように十尋体基体上の全面に埋込み材料を被着させ、
しかる収、前記埋込み材料を前記半導体基体の表面と概
ね等しい面まで継続的に除去するものである。
(Structure of the Invention) The method for manufacturing a semiconductor integrated circuit device of the present invention includes forming an oxidation-resistant film on a selected surface of a semiconductor substrate, and then covering the surface of the semiconductor substrate other than the selected surface with an oxide film. After that, a region of a certain width around the 8i1t4 self-antiglare film is removed, and a trench having side walls approximately perpendicular to the semiconductor substrate in that region is formed, and the trench is filled. The embedding material is applied to the entire surface of the Juhiro body base,
Accordingly, the embedding material is continuously removed to a surface approximately equal to the surface of the semiconductor substrate.

(実施例) 以下この発明の実施例を図面を参照して説明する。実施
例は、この発明をバイボー2型半導体集積回路装信に適
用したものであるが、この発明の適用範囲はこれに限る
ものではなく、MOS型その他の半導体集積回路装置に
適用することも可能である。
(Example) Examples of the present invention will be described below with reference to the drawings. In the embodiment, the present invention is applied to a Bibo 2 type semiconductor integrated circuit device, but the scope of application of the present invention is not limited to this, and can also be applied to MOS type and other semiconductor integrated circuit devices. It is.

第1図(4)ないしく財)はこの発明の第1の実施例を
示す工程断面図である。
FIG. 1(4) is a process sectional view showing a first embodiment of the present invention.

まず% ?A′、1図(A)に示すように、P−型シリ
コン基+li I VCN+型埋込拡散層2を約2μm
厚に全面に形成し1、その−FにN−型エピタキシャル
層3を約1.5〜2μtn厚に形成し、さらにエピタキ
シャル層3の熱1、し、長シリコン酸化jlQである緩
衝用酸化膜4を500人厚に前61シエビタギシャル層
3に形成した後、その」―に第1の窒化シリコン膜(以
後、第1の窒化刃口と6己す)5をたとえば2000λ
厚に、またCVD酸化膜6をたとえば2000〜300
0Å厚に順次堆積させる。
first% ? A', As shown in Figure 1 (A), the P- type silicon base+li I VCN+ type buried diffusion layer 2 is approximately 2 μm thick.
An N-type epitaxial layer 3 is formed on the entire surface to a thickness of about 1.5 to 2 μtn. After forming a silicon nitride film 4 to a thickness of 500 λ on the front 61-layer virtual layer 3, a first silicon nitride film (hereinafter referred to as the first nitriding edge) 5 is deposited to a thickness of, for example, 2000 λ.
The thickness of the CVD oxide film 6 is, for example, 2000 to 300.
Deposit sequentially to a thickness of 0 Å.

その後、第1図03)に示すようにレジスト膜7を約1
μil+厚に塗布し、通常の写真食刻法によりレジスト
膜7に開口部8および8′を形成する。続いて、この開
口部8および8′を介してCVD酸化膜6をエツチング
して開口部9および9′を形成するが、この時、等方性
エツチング方法によシ適当な量(たとえば0.5〜1.
0μ)のサイドエツチングを行う。ここで形成されたC
VD酸化膜6の開口幅10および10′が最終的な分離
領域の幅とほぼ等しくなる。なお、第1図(B)では、
前記開口部9に幅の狭い分lii+i領域、同じく前記
開口部9′に幅の広い分離領域を形成するように描かれ
ている。
Thereafter, as shown in FIG. 1 (03), the resist film 7 is
The resist film 7 is coated to a thickness of μil+, and openings 8 and 8' are formed in the resist film 7 by ordinary photolithography. Subsequently, the CVD oxide film 6 is etched through the openings 8 and 8' to form openings 9 and 9', but at this time, an appropriate amount (for example, 0.001. 5-1.
0μ) side etching. C formed here
The opening widths 10 and 10' of the VD oxide film 6 are approximately equal to the final width of the isolation region. In addition, in Fig. 1 (B),
The opening 9 is drawn to form a narrow region lii+i, and the opening 9' is also drawn to form a wide separation region.

続いて、第1図(C)に示すように、レジスト膜7をマ
スクしてRI E (リアクティブ・イオン・エツチン
グ)によって第1の窒化111’、!5および緩(ff
17用酸化IN 4 vc開口部を形成し、さらにシリ
コン基体のエピタキシャル層3表面に対してほぼ垂直に
たとえば深さ0.5〜1.0μの溝11および] 1’
を形成する。
Subsequently, as shown in FIG. 1C, the resist film 7 is masked and RIE (reactive ion etching) is performed to remove the first nitrided 111',! 5 and loose (ff
An oxidized IN 4 vc opening for 17 is formed, and a groove 11 with a depth of, for example, 0.5 to 1.0 μm is formed substantially perpendicularly to the surface of the epitaxial layer 3 of the silicon substrate.
form.

次に、レジスト膜7を除去した後、第1図■)に示すよ
うに、溝11および11’の内壁および緩衝用酸化膜4
、第1の窒化膜5.CVD酸化膜6の全表面に第2の窒
化膜12をたとえば1000大厚程度に堆積させる。こ
こで、第2の窒化膜12を堆積させる前に、シリコン基
体の熱酸化により溝11および11’の内壁に薄い第2
の緩衝用酸化膜(SiO□)を形成しておいてもよい。
Next, after removing the resist film 7, as shown in FIG.
, first nitride film5. A second nitride film 12 is deposited on the entire surface of the CVD oxide film 6 to a thickness of, for example, about 1000 mm. Here, before depositing the second nitride film 12, a thin second film is formed on the inner walls of the trenches 11 and 11' by thermal oxidation of the silicon substrate.
A buffer oxide film (SiO□) may be formed in advance.

その後、第1図(ト)に示すように、RIEによp自己
整合的に平面部のみ第2の窒化膜12をエツチング除去
する。したがって、溝11および11’の底部において
は、シリコン基体のエピタキシャル層3または第2の緩
衝用酸化膜が露出する。
Thereafter, as shown in FIG. 1(g), only the plane portion of the second nitride film 12 is etched away by RIE in a p self-aligned manner. Therefore, the epitaxial layer 3 of the silicon base or the second buffer oxide film is exposed at the bottoms of the grooves 11 and 11'.

続いて、第1の窒化膜5と第2の窒化膜12をマスクと
して溝11および11’の底部のシリコン基体を選択的
に酸化し、第1図側に示すように比較的厚い(たとえば
1〜2μ)酸化膜13および13’を形成する。ここで
形成される酸化膜13お↓び13′は最終的にフィール
ド酸化膜を形成するものであり、最終工程において素子
領域14と分離領域(酸化膜13 、13’が形成され
た領域)とが平担化されるような酸化膜厚に設定される
。なお、選択酸化の際、溝11および11’の側壁は第
2の窒化膜12でマスクされているため、酸化膜13お
よび13′においてはバーズビーク領域はほとんど形成
されず、溝11および11′の溝幅とほぼ同等の酸化膜
幅が得られる。この酸化膜13および13’は、以後、
選択酸化膜と称す。
Next, using the first nitride film 5 and the second nitride film 12 as masks, the silicon substrate at the bottom of the grooves 11 and 11' is selectively oxidized to form a relatively thick (for example, ~2μ) Form oxide films 13 and 13'. The oxide films 13 and 13' formed here will eventually form a field oxide film, and in the final step, the element region 14 and the isolation region (the region where the oxide films 13 and 13' are formed) will be formed. The oxide film thickness is set so that it is flattened. Note that during selective oxidation, the side walls of the grooves 11 and 11' are masked with the second nitride film 12, so that almost no bird's beak region is formed in the oxide films 13 and 13', and the side walls of the grooves 11 and 11' are An oxide film width approximately equal to the groove width can be obtained. These oxide films 13 and 13' will be
It is called a selective oxide film.

その後、第1図G)に示すように、CVD酸化膜6と選
択酸化11113およびl 3’をマスクとして、表面
上に露出している第1および第2の窒化膜5および12
をエツチング除去し、続いて、同領域の緩衝用酸化膜4
をエツチング除去して、シリコン基体のエピタキシャル
層3上に開口部15を形成する。この際、緩衝用酸化膜
4のエツチングは、開口部15のエピタキシャル層3が
露出した時点でストップし、CVD酸化膜6は適当な厚
さだけ残すことが好適である。
Thereafter, as shown in FIG. 1G), using the CVD oxide film 6 and selective oxidation 11113 and l3' as masks, the first and second nitride films 5 and 12 exposed on the surface are removed.
Then, the buffer oxide film 4 in the same area is removed by etching.
is removed by etching to form an opening 15 on the epitaxial layer 3 of the silicon substrate. At this time, it is preferable that the etching of the buffer oxide film 4 is stopped when the epitaxial layer 3 in the opening 15 is exposed, leaving only an appropriate thickness of the CVD oxide film 6.

続いて、第1図側に示すように、CVD酸化膜6と選択
酸化膜13および13′ヲマスクとして、開口部15よ
#)RIE法により、エピタキシャル層3および埋込拡
散層2を貫通しP−型シリコン基板1に達する溝16を
形成する。
Subsequently, as shown in FIG. 1, using the CVD oxide film 6 and the selective oxide films 13 and 13' as masks, P is formed through the epitaxial layer 3 and the buried diffusion layer 2 using the RIE method using the opening 15. A groove 16 reaching the - type silicon substrate 1 is formed.

その後、第1図(I)に示すように、熱酸化法によシ溝
16の内壁に比較的薄い酸化膜17を形成する。さらに
、自己整合によシ溝16の底部にチャンネルストップ用
のポロンをイオン注入してP+型層18を形成する。
Thereafter, as shown in FIG. 1(I), a relatively thin oxide film 17 is formed on the inner wall of the trench 16 by thermal oxidation. Furthermore, a P+ type layer 18 is formed by implanting channel-stopping boron ions into the bottom of the groove 16 for self-alignment.

次に、第1図(J)に示すように、多結晶シリコン19
を全面に厚く(たとえば5μm)堆積させ、溝16を完
全に埋める。
Next, as shown in FIG. 1(J), polycrystalline silicon 19
is deposited thickly (for example, 5 μm) over the entire surface to completely fill the grooves 16.

続いて、第1図頓に示すように公知の方法により、多結
晶シリコン19をエッチバックする。エッチバックの深
さは、最終工程においてシリコン基体の素子領域14お
よび分離領域が平担となるような適当な深さとする。こ
の時、素子領域14−c it2、CVD酸化)換6が
露出した時点でエツチングは停止し、また選択酸化膜1
3および13’の領域では、選択酸化膜13および13
′が露出した時点でエツチングは停止する。
Subsequently, as shown in Figure 1, the polycrystalline silicon 19 is etched back by a known method. The depth of the etchback is set to an appropriate depth so that the element region 14 and isolation region of the silicon substrate are flat in the final step. At this time, the etching stops when the element region 14-cit2 and the CVD oxidation layer 6 are exposed, and the selective oxide film 1
In regions 3 and 13', selective oxide films 13 and 13
Etching stops when ′ is exposed.

その後、CVD酸化膜6を除去した後、第1図(L41
に示すように、埋め込まれた多結晶シリコン190表面
に熱酸化によシ酸化膜20を形成して表面を平担化する
After that, after removing the CVD oxide film 6, as shown in FIG.
As shown in FIG. 2, an oxide film 20 is formed on the surface of the buried polycrystalline silicon 190 by thermal oxidation to flatten the surface.

その後、第1図(ロ)に示すように素子領域14上の第
1の窒化膜5および緩衝用酸化膜4を除去し、素子を形
成し、半導体集積回路装置とする。
Thereafter, as shown in FIG. 1(b), the first nitride film 5 and the buffer oxide film 4 on the element region 14 are removed, and an element is formed to form a semiconductor integrated circuit device.

以上説明したように、第1の実施例では、素子領域の周
囲に極めて幅が狭くかつ深い分離用の溝を形成すること
が可能で埋込拡散用のマスクを省略でき、また広いフィ
ールド領域は平担化用のマスクを必要とせずに厚いシリ
コン酸化膜で覆うことができるので、分離領域幅によら
ず平担化が可能である。さらに1通常の選択酸化法で問
題となる素子領域側壁の欠陥が発生しやすい領域は、後
のシリコンエツチング工程により除去され溝が形成され
るため、素子領域への欠陥の影響を回避することができ
る。また、広いフィールド酸化膜領域が得られるため、
配線−基板間の靜電容址が小さくなるとともに、狭く深
い素子分離領域が得られることによって、チャンネルス
トップ用のP+型層とN中型埋込拡散層が完全に分離し
ており、かつ素子領域に対してN+型埋込拡散層の横方
内拡がりがないので、素子領域−基板問答量も極めて小
さくできる。
As explained above, in the first embodiment, it is possible to form an extremely narrow and deep isolation groove around the element region, and a mask for buried diffusion can be omitted, and a wide field region can be formed. Since it can be covered with a thick silicon oxide film without requiring a mask for planarization, planarization is possible regardless of the width of the isolation region. Furthermore, the areas where defects are likely to occur on the sidewalls of the device region, which is a problem with normal selective oxidation methods, are removed in the subsequent silicon etching process to form grooves, making it possible to avoid the effects of defects on the device region. can. Also, since a wide field oxide film area can be obtained,
By reducing the static capacitance between the wiring and the substrate and by obtaining a narrow and deep element isolation region, the P+ type layer for channel stop and the N medium type buried diffusion layer are completely separated, and the element region is completely separated. On the other hand, since there is no lateral inward expansion of the N+ type buried diffusion layer, the amount of interaction between the element region and the substrate can be made extremely small.

このように、第1の実施例では、平担化用のマスクを必
要とせずに分離領域幅によらず平担化された表面を形成
でき、埋込拡散用のマスクも省略でき、さらには寄生容
量の低減と素子領域への欠陥の影響の回避を図ることが
できる。さらに、狭く深い素子分離領域と幅の広いフィ
ールド酸化膜領域をわずか1回の写真食刻法だけで形成
することができる。
In this way, in the first embodiment, a flattened surface can be formed regardless of the isolation region width without requiring a flattening mask, a buried diffusion mask can be omitted, and It is possible to reduce parasitic capacitance and avoid the influence of defects on the element region. Furthermore, narrow and deep isolation regions and wide field oxide regions can be formed in just one photolithography process.

第1の実施例は深い溝の埋込み材料として多結晶シリコ
ンを利用したが、CVD酸化膜を利用することにより更
に表面の完全な平担化が可能となる。第2図(A)ない
しくC)は、この発明の第2の実施例を示す工程断面図
であり、溝の埋込み材料としてCVD酸化膜を利用して
いる。第2図によシ第2の実施例を説明する。
In the first embodiment, polycrystalline silicon was used as the material for filling the deep trenches, but by using a CVD oxide film, it is possible to completely flatten the surface. FIGS. 2A to 2C are process cross-sectional views showing a second embodiment of the present invention, in which a CVD oxide film is used as the trench-filling material. A second embodiment will be explained with reference to FIG.

第2の実施例では、第1図(I)の工程までは第1の実
施例と同一工程である。ただし、第1図働の工程で緩衝
用酸化膜4をエツチングする際、素子領域14上のCV
D酸化膜6を残さずエツチング除去してもかまわない0 第1図(I)に引き続き、第2図(A)に示すように第
2のCVD酸化膜21を全面に厚く堆積させ、溝I6を
完全に埋める。
In the second embodiment, the steps up to the step shown in FIG. 1(I) are the same as those in the first embodiment. However, when etching the buffer oxide film 4 in the process shown in FIG.
It is okay to remove the D oxide film 6 by etching without leaving it behind.Continuing from FIG. 1(I), as shown in FIG. 2(A), a second CVD oxide film 21 is thickly deposited on the entire surface, and the trench fill completely.

続いて、第2図(B)に示すように、公知の方法により
CVD酸化Jli21をエッチバックし、素子領域14
上の第1の窒化膜5が露出した時点でエツチングを停止
する。
Subsequently, as shown in FIG. 2(B), the CVD oxidized Jli 21 is etched back by a known method to form the element region 14.
Etching is stopped when the upper first nitride film 5 is exposed.

その後、第2図C)に示すように、素子領域14上の第
1の窒化膜5および緩衝用酸化膜4を除去し、素子を形
成し、半導体集積回路装置とする。
Thereafter, as shown in FIG. 2C), the first nitride film 5 and the buffer oxide film 4 on the element region 14 are removed, and an element is formed to form a semiconductor integrated circuit device.

以上説明したように、第2の実施例では、分離領域がす
べてシリコン酸化膜で構成されるため、選択酸化工程(
第1図F)でわずかに生じる選択酸化膜上の表面段差も
、CVD酸化膜による叩込みおよびエッチバックにより
完全に平担化することが可能となる。同時に、素子形成
の際、酸化膜分離法の利点であるセルファラインプロセ
スを積極的に採用できる構造とすることができる。3(
発明の効果) 以上の実施例から明らかなように、この発明の半導体集
積回路装置の製造方法によれば、先に述べた構成とする
ことにより、平担化用のマスクを必要とせずに分離領域
幅によらず平担化された表面を形成でき、寄生容量の低
減と素子領域への欠陥の影響の回避も図ることができ、
バイポーラ型に適用した場合は埋込拡散用のマスクも省
略できる。この発ψjの方法は、バイポーラ型をはじめ
、各種の高集積かつ高性能な半導体集積回路装置の製造
方法として広く利用することができる。
As explained above, in the second embodiment, since all the isolation regions are made of silicon oxide film, the selective oxidation process (
Even the slight surface step difference on the selective oxide film that occurs in FIG. At the same time, a structure can be created in which the self-line process, which is an advantage of the oxide film separation method, can be actively employed when forming elements. 3(
Effects of the Invention) As is clear from the above embodiments, according to the method of manufacturing a semiconductor integrated circuit device of the present invention, by having the above-mentioned structure, separation can be performed without the need for a flattening mask. A flat surface can be formed regardless of the region width, reducing parasitic capacitance and avoiding the influence of defects on the element region.
When applied to a bipolar type, the buried diffusion mask can also be omitted. This method of generating ψj can be widely used as a method for manufacturing various highly integrated and high-performance semiconductor integrated circuit devices, including bipolar type devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の半導体集積回路装置の製造方法の第
1の実施例を説明するための工程断面図、第2図はこの
発明の第2の実施例を説明するための工8断面図である
。 l・・・P−型シリコン基板、2・・・N十型埋込拡散
層、3・・・N”’ Wエピタキシャル層、4・・・緩
衝用酸化膜、5・・・第1の窒化膜、13.13’・・
・酸化膜、16・・・tll“メ、19・・・多結晶シ
リコン、21・・・第2のCVD酸化膜。 手続補正書 昭和1 年1月18日 特許庁長官若杉和夫 殿 1、事件の表示 昭和58年 特 肝 願第 168264 号2、発明
の名称 半導体集積回路装置の製造方法 3、補正をする者 事件との関係 特 許 出願人 (029)沖電気工業株式会社 4、代理人 5、補正命令の11刊′ 昭和 年 月 日(自発)1
)明細曹12頁3行「通常の」を「改良型」と訂正する
。 づ丁 W f1ir\
FIG. 1 is a process cross-sectional view for explaining a first embodiment of the method for manufacturing a semiconductor integrated circuit device of the present invention, and FIG. 2 is a process cross-sectional view for explaining a second embodiment of the present invention. It is. 1...P- type silicon substrate, 2...N0-type buried diffusion layer, 3...N''' W epitaxial layer, 4...Buffer oxide film, 5...First nitridation Membrane, 13.13'...
・Oxide film, 16...tll"me, 19...polycrystalline silicon, 21...second CVD oxide film. Procedural amendment January 18, 1939 Kazuo Wakasugi, Commissioner of the Japan Patent Office, Case 1 Indication of 1982 Patent Application No. 168264 2, Name of invention Method for manufacturing semiconductor integrated circuit device 3, Relationship with the case of the person making the amendment Patent Applicant (029) Oki Electric Industry Co., Ltd. 4, Agent 5 , 11th issue of amendment order' Showa year, month, day (voluntary) 1
) In the specification, page 12, line 3, ``ordinary'' is corrected to ``improved type.'' Zuding W f1ir\

Claims (1)

【特許請求の範囲】[Claims] 半導体基体の選択された表面上に耐酸性化の膜を形成す
る工程と、その後、前記選択された表面を除く半導体基
体の表面を酸化膜に変換する工程と、その後、前記耐酸
化性の膜の周辺の一定幅の領域を除去した上で、その領
域における前記半導体基体に概ね垂直な側壁を持つ溝を
形成する工程ど、半導体基体上の全面に埋込み材料を被
着させて前記溝を埋める工程と、前記埋込み材料を前記
半導体基体の表面と概ね等しい面まで継続的に除去する
工程とを具備してなる半導体集積回路装置の製造方法。
forming an acid-resistant film on a selected surface of a semiconductor substrate, then converting the surface of the semiconductor substrate except the selected surface into an oxide film, and then forming an oxidation-resistant film on a selected surface of the semiconductor substrate; After removing a region of a certain width around the periphery of the semiconductor substrate, a step of forming a trench having sidewalls generally perpendicular to the semiconductor substrate in that region is performed, and filling the trench by depositing a embedding material over the entire surface of the semiconductor substrate. and a step of continuously removing the embedding material to a surface approximately equal to the surface of the semiconductor substrate.
JP58168264A 1983-09-14 1983-09-14 Method for manufacturing semiconductor integrated circuit device Expired - Lifetime JPH0834241B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58168264A JPH0834241B2 (en) 1983-09-14 1983-09-14 Method for manufacturing semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58168264A JPH0834241B2 (en) 1983-09-14 1983-09-14 Method for manufacturing semiconductor integrated circuit device

Publications (2)

Publication Number Publication Date
JPS6060735A true JPS6060735A (en) 1985-04-08
JPH0834241B2 JPH0834241B2 (en) 1996-03-29

Family

ID=15864784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58168264A Expired - Lifetime JPH0834241B2 (en) 1983-09-14 1983-09-14 Method for manufacturing semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPH0834241B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01235349A (en) * 1988-03-16 1989-09-20 Sony Corp Manufacture of semiconductor device
JPH04326549A (en) * 1991-04-26 1992-11-16 Nec Corp Semiconductor device
JPH08172087A (en) * 1994-06-16 1996-07-02 Lg Semicon Co Ltd Structure of separation membrane of semiconductor element and its formation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5943545A (en) * 1982-09-06 1984-03-10 Hitachi Ltd Semiconductor ic device and its manufacture
JPS6038832A (en) * 1983-08-12 1985-02-28 Hitachi Ltd Semiconductor device and manufacture thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5943545A (en) * 1982-09-06 1984-03-10 Hitachi Ltd Semiconductor ic device and its manufacture
JPS6038832A (en) * 1983-08-12 1985-02-28 Hitachi Ltd Semiconductor device and manufacture thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01235349A (en) * 1988-03-16 1989-09-20 Sony Corp Manufacture of semiconductor device
JPH04326549A (en) * 1991-04-26 1992-11-16 Nec Corp Semiconductor device
JPH08172087A (en) * 1994-06-16 1996-07-02 Lg Semicon Co Ltd Structure of separation membrane of semiconductor element and its formation

Also Published As

Publication number Publication date
JPH0834241B2 (en) 1996-03-29

Similar Documents

Publication Publication Date Title
JPS6352468B2 (en)
US6461934B2 (en) Method of manufacturing semiconductor device having trench type element isolation regions
US5229315A (en) Method for forming an isolated film on a semiconductor device
US4968636A (en) Embedded isolation region and process for forming the same on silicon substrate
JPH0513566A (en) Manufacture of semiconductor device
JPS6348180B2 (en)
EP0193116A2 (en) Method of manufacturing a semiconductor device having a trench
JPH08172087A (en) Structure of separation membrane of semiconductor element and its formation
US4882291A (en) Process for the production of electrical isolation zones in a CMOS integrated circuit
EP0641022B1 (en) Isolation structure and method for making same
JPS6060735A (en) Manufacture of semiconductor integrated circuit device
JPS5958838A (en) Semiconductor device
US5256592A (en) Method for fabricating a semiconductor integrated circuit device
JP2757358B2 (en) Method for manufacturing semiconductor device
JPH0420267B2 (en)
JPH01286436A (en) Manufacture of semiconductor device
WO1991006119A1 (en) Method of producing semiconductor integrated circuit devices
JPH0273650A (en) Manufacture of semiconductor integrated circuit device
JP2661357B2 (en) Method for manufacturing semiconductor device
KR970009273B1 (en) Method for forming the field oxide on the semiconductor element
JPS59178773A (en) Manufacture of semiconductor device
JPH05121537A (en) Manufacture of semiconductor device
KR100188092B1 (en) Semiconductor device and method for manufacturing the same
JPS60206150A (en) Manufacture of semiconductor device
JPS6025247A (en) Manufacture of semiconductor device