JPS6060236A - Method of controlling fuel injection by prediction of engine speed - Google Patents

Method of controlling fuel injection by prediction of engine speed

Info

Publication number
JPS6060236A
JPS6060236A JP17017283A JP17017283A JPS6060236A JP S6060236 A JPS6060236 A JP S6060236A JP 17017283 A JP17017283 A JP 17017283A JP 17017283 A JP17017283 A JP 17017283A JP S6060236 A JPS6060236 A JP S6060236A
Authority
JP
Japan
Prior art keywords
engine
fuel injection
period
fuel
engine speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17017283A
Other languages
Japanese (ja)
Inventor
Takashi Miyano
宮野 隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mikuni Corp
Original Assignee
Mikuni Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mikuni Corp filed Critical Mikuni Corp
Priority to JP17017283A priority Critical patent/JPS6060236A/en
Publication of JPS6060236A publication Critical patent/JPS6060236A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D31/00Use of speed-sensing governors to control combustion engines, not otherwise provided for
    • F02D31/001Electric control of rotation speed
    • F02D31/007Electric control of rotation speed controlling fuel supply

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To obtain a rotary servo-mechanism which is operated in a stable manner and without delay of time, by predicting the next engine speed by expanding the period of past engine speeds by use of Taylor expansion, and determining the pulse width of fuel injection and a control value of the fuel-flow rate. CONSTITUTION:The pulse width of fuel injection and a control value of the fuel- flow rate are determined by predicting the next engine speed by expanding the period of past engine speed by use of Taylor expansion. That is, at a step 40, the period of engine speed is picked up and stored by a CPU. At a step 46, the engine period gamman+1 is predictively calculated by way of Taylor expansion using correction factors (a), (b) and engine periods gamman, gamman-1, gamman-2. Then, at a step 47, a control value QFout for the fuel flow rate is calculated. Further, at a step 48, the pulse width IP of an injector is determined by use of the engine period gamman+1 and the control value QFout. By employing such a method, it is enabled to obtain a rotary servo-mechanism which is operated in a stable manner and without delay of time.

Description

【発明の詳細な説明】 本発明は、回転数予測による燃料噴射制御方法、特に時
間遅れなくエンジン回転数に応じて適切な燃料噴射の可
能な回転数予測による燃料噴射制御方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fuel injection control method using engine speed prediction, and particularly to a fuel injection control method using engine speed prediction that enables appropriate fuel injection according to engine speed without time delay.

一般に内燃機関に対して混合気を供給する手段としては
、電子制御による燃料噴射方式があるこ)−は周知であ
A8この種の燃料噴射力tは、燃善の節約及び出力性能
の増大のために、エンジン回転数、吸気温度、吸気量等
の各種パラメータによって燃料噴射時間もしくは噴射量
を制御して最適混合比を得るよう制御されるものである
In general, as a means of supplying air-fuel mixture to an internal combustion engine, there is an electronically controlled fuel injection system. In addition, the fuel injection time or injection amount is controlled by various parameters such as engine speed, intake air temperature, intake air amount, etc. to obtain an optimum mixture ratio.

第1図は従来のマイクロコンビーータを用いた燃料噴射
制御装置であり、第2図は動作説明のだめのタイムチャ
ートである。
FIG. 1 shows a conventional fuel injection control device using a microconbeater, and FIG. 2 is a time chart for explaining the operation.

第1図において、Aはエンジン回転数を検知する信号で
あって、例えばクランクの基準位置からの信号(4サイ
クル、4気筒、1回転1回噴射)であり(第2図(a)
 ) 1.これを分周回路lを介してタイマー2へ導入
してl/2に分周された信号を導出し、この信号の「H
」レベル時(第2図(b))にクロック回路3からのク
ロック・ぐルスの数を開側する(第2図(C))。寸だ
、信号Aはタイマー4へも入力されて、この信号Aの立
上りからの燃料噴射パルス幅IPを設定し、インソエク
ター信号Bを出力する(第2図(d))。
In Fig. 1, A is a signal for detecting the engine speed, for example, a signal from the reference position of the crank (4 cycles, 4 cylinders, one injection per revolution) (Fig. 2 (a)
) 1. This is introduced into the timer 2 via the frequency dividing circuit 1 to derive a signal frequency-divided by 1/2.
'' level (FIG. 2(b)), the number of clock pulses from the clock circuit 3 is opened (FIG. 2(C)). The signal A is also input to the timer 4, which sets the fuel injection pulse width IP from the rising edge of the signal A, and outputs the injector signal B (FIG. 2(d)).

コノ際、CPU5においではエンジンの回転数及びその
他のパラメータに応じた演算処理がなされ、その結果と
してインジェクター信号Bが出力されることになる。
At this time, the CPU 5 performs arithmetic processing according to the engine speed and other parameters, and as a result, the injector signal B is output.

なお、一般的にインジェクターの・ぐルス幅IPは次式
の如く表わすことができる。
In general, the injection width IP of an injector can be expressed as in the following equation.

IP =に1 (QF ×エンジン周期)十に2但し、
Ki r K2はインジェクター特性及びカウンターの
基本クロックによシ決定される定数 QFは燃料流量 しかし、第2図かられかるように、時間T2−73にお
ける燃料噴射は、時間T、−T2のエンジン周期をもと
に演算されることになる。即ち、インジェクターのパル
ス幅は最小、エンジン半回転前のエンジン周期をもとに
計算される。又、サーボ機構による燃料流量QFの操作
を考えると、通常のPID操作の場合、半回転前のエン
ジン周期を利用して操作している。いずれにしても・ぐ
ルス幅IPは燃料流量QFの時間的遅れとエンジン周期
の時間的遅れを含んでおり、更に噴射された燃料がエン
ジンのノeワーとなって現われるのは、エンジン特性か
ら最大4行程、即ち、エンノンの2回転分遅れることに
なる。
IP = 1 to 1 (QF x engine period) 2 to 10 However,
Ki r K2 is a constant determined by the injector characteristics and the basic clock of the counter QF is the fuel flow rate However, as can be seen from FIG. It will be calculated based on. In other words, the injector pulse width is calculated based on the minimum engine cycle of half a rotation of the engine. Furthermore, considering the operation of the fuel flow rate QF by the servo mechanism, in the case of normal PID operation, the operation is performed using the engine cycle half a revolution before. In any case, the fuel width IP includes a time delay in the fuel flow rate QF and a time delay in the engine cycle, and furthermore, the fact that the injected fuel appears as engine noise is due to the engine characteristics. There will be a delay of up to 4 strokes, or 2 rotations of Ennon.

本発明は上記問題点を解決することを目的としてなされ
たものであシ、時間的遅れがなく、安定した回転サーボ
を得ることの可能な回転数予測による燃料噴射制御方法
を提供することを目的としている。
The present invention was made with the aim of solving the above-mentioned problems, and it is an object of the present invention to provide a fuel injection control method using rotational speed prediction, which is free from time delay and can obtain a stable rotational servo. It is said that

そして本発明では連続して動作するエンジン周期を検出
してこれを記憶し、これら一連の過去のデータをもとに
燃料噴射時のエンノン周期を予測し、燃料流量QFに対
する操作量とインジェクターの・ぐルス幅とを決定しよ
うとするものである。
In the present invention, the continuously operating engine cycle is detected and stored, and based on this series of past data, the engine cycle at the time of fuel injection is predicted, and the operation amount and injector's The aim is to determine the width of the curve.

以下図面を参照して実施例を説明する。実施例の説明に
先立って本発明の基本的な考え方を説明する。即ち、 一般に、周期τn−2+τ。−1,τ。、τ。+1.・
・・をもって連続的に変化する・ぐルス列はテーラ−展
開によって表わされ、これを2次までとすると、τ。+
1−τ、十a(τ。−τn+)+2b2[τ。−τn−
1a(τn−1−τn−2)1って決定される。
Examples will be described below with reference to the drawings. Before explaining the embodiments, the basic idea of the present invention will be explained. That is, in general, the period τn-2+τ. -1, τ. , τ. +1.・
The Gurus sequence that changes continuously with ... can be expressed by Taylor expansion, and if this is up to second order, then τ. +
1-τ, tena(τ.-τn+)+2b2[τ. -τn-
1a(τn-1-τn-2)1 is determined.

また第3図はエンジン回転数制御の一般的な構成図であ
り、目標回転数NSに対してエンジン回転数Nnをフィ
ードパ、りして差を出し、エンジンコントローラを介し
てエンジン回転数Nnを制御する様子が示されている。
Fig. 3 is a general configuration diagram of engine speed control, in which the engine speed Nn is fed to the target speed NS to create a difference, and the engine speed Nn is controlled via the engine controller. It is shown how it is done.

そして燃料優先型における燃料流量の割算式は下記の通
りである。
The fuel flow rate division formula in the fuel priority type is as follows.

QFNEM/=QFOLD+KI(Ns−Nn)QFO
[JT=QFNEw+Kp(N5−Nn)+Kn(Nn
 Nn−L)但し、K、け積分項 KPは比例項 に、は微分項 したがって燃料流量に対しての操作量はエンジン回転数
Nの関数となる。しかしエンジン周期はエンジン回転数
の逆数であるため、これをエンジン周期によって置換す
ることができる。以上の結果、インジェクターの・ぐル
ス幅及び燃料流量の操作量も共にエンジン周期によって
表わすことが可能である。
QFNEM/=QFOLD+KI(Ns-Nn)QFO
[JT=QFNEw+Kp(N5-Nn)+Kn(Nn
(Nn-L) However, the integral term KP is a proportional term, and the integral term KP is a differential term. Therefore, the manipulated variable for the fuel flow rate is a function of the engine rotation speed N. However, since the engine period is the reciprocal of the engine speed, this can be replaced by the engine period. As a result of the above, it is possible to express both the injector's fuel width and the fuel flow rate in terms of the engine cycle.

第4図は本発明になる回転数予測による燃料噴射制御方
法を説明するだめのフローチャー1・である。
FIG. 4 is a flowchart 1 for explaining the fuel injection control method based on rotational speed prediction according to the present invention.

第4図において、ステップ40はエンジンの回転周期を
とり込みストア処理する。即ち、エンジン周期のサンプ
リング時毎に例えば過去3回のエンジン周期τ。、τn
−1.τn’2が夫々メモリされる。
In FIG. 4, step 40 takes in the rotation period of the engine and stores it. That is, for each engine cycle sampling time, for example, the past three engine cycles τ. , τn
-1. τn′2 are respectively memorized.

ステップ41においてはエンジン状態が判断され、例え
ば1定時間内の目標回転数に対する回転エラーの積算が
所定値内におさまる安定時であればステ、グ42へ、又
、回転エラーの積算が所定値内におさまらない発振時で
あればステ、フ043へ移って各運転状態に応じた各定
数aE及びb=を決定する。ステップ44においては例
えばIDア、グ等の目標回転数の変化に応じた定数ay
 l brを設定し、ステップ45においてイニシャル
値al p blと、目標回転数の変化による定数ar
、brと、エンジンの運転状態から決定される定数aE
 + bEとの夫々から最終的に補正された定数a、b
を決定する。ステ、グ46では最終的に決定された定数
a + bとストアされたエンジン周期τ□、τn−1
゜τn−2とを用いテーラ−展開式によって、エンジン
周期τ。+1を予測演算し、更にステ、プ47へ移って
燃料流量に対する操作量QFOUTを演算する。ステラ
f4Bにおいてはステ、f47にて演算されたQFou
T とステップ46にて予測演算されたて。+1とを用
いてインジェクターの・ぐルス幅IPを決定し、ステッ
プ49においてタイマー(2)−、出力し、ステップ4
0へ戻ってこれらの動作を繰シ返す。
In step 41, the engine condition is judged, and if the engine condition is stable, for example, the cumulative rotational error with respect to the target rotational speed within a certain period of time is within a predetermined value, the process goes to step 42, and the cumulative rotational error is a predetermined value. If the oscillation is not within the range of oscillation, the process moves to step 043 to determine constants aE and b= corresponding to each operating state. In step 44, a constant ay corresponding to a change in the target rotation speed of ID a, g, etc.
l br is set, and in step 45, the initial value al p bl and the constant ar due to the change in the target rotation speed are set.
, br, and a constant aE determined from the operating state of the engine.
+bE and the final corrected constants a and b, respectively.
Determine. In Step 46, the finally determined constant a + b and the stored engine periods τ□, τn-1
The engine period τ is determined by the Taylor expansion using ゜τn-2. +1 is predicted and calculated, and then the process moves to step 47 to calculate the manipulated variable QFOUT for the fuel flow rate. In Stella f4B, QFou calculated in Stella f47
T and the prediction calculation was performed in step 46. +1 is used to determine the injector's width IP, and in step 49 the timer (2) - is outputted,
Return to 0 and repeat these operations.

要するに燃料噴射制御をするに際してインジェクターの
パルス幅及び燃料流量を夫々エンジン回転周期の関数と
し、更にエンジン周期をテーラ−展開式をもとに演算す
ることによシ前記パルス幅及び燃料流量の操作量を決定
するものである。
In short, when controlling fuel injection, the pulse width and fuel flow rate of the injector are each made a function of the engine rotation period, and the engine period is further calculated based on the Taylor expansion formula. This is what determines the

なお、定数a、bの決定に際しては、エンジン温度、大
気温度、大気圧力等の時間以外の条件を導入すれば、よ
シ一層効率的な制御が可能であることは勿論である。
It goes without saying that more efficient control can be achieved by introducing conditions other than time, such as engine temperature, atmospheric temperature, and atmospheric pressure, when determining the constants a and b.

以上説明した如く、本発明によれば記憶された過去のエ
ンジン回転周期をテーラ−展開し次の回転数を予測する
ことによって燃料噴射のパルス幅及び燃料流量の操作量
を決定するようにしたので、時間遅れなく安定性のよい
回転サーボが得られ、しかも効率的な燃料噴射の可能な
回転数予測による燃料噴射制御方法を提供できる。
As explained above, according to the present invention, the manipulated variables of the fuel injection pulse width and fuel flow rate are determined by Taylor-expanding the stored past engine rotational cycles and predicting the next rotational speed. Therefore, it is possible to provide a fuel injection control method by predicting the rotational speed, which can obtain a rotation servo with good stability without time delay, and can perform efficient fuel injection.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のマイクロコンピュータを用い/ζ燃料噴
射制御装置の構成図、第2図は動作説明のためのタイム
チャート、第3図はエンジン回転数制御の一般的な構成
図、第4図は本発明になる回転数予測による燃料噴射制
御方法を説明するだめのフローチャートである。 1 ・分周回路 2,4・・タイマー 3・・クロ、り回路 5・・CPU 特許出願人 三國工業株式会社 代理人 弁理士 石 井 紀 男 第1図 第2図 第3図 第4図
Fig. 1 is a block diagram of a conventional microcomputer/ζ fuel injection control device, Fig. 2 is a time chart for explaining operation, Fig. 3 is a general block diagram of engine speed control, and Fig. 4 1 is a flowchart for explaining a fuel injection control method based on rotational speed prediction according to the present invention. 1. Frequency division circuit 2, 4.. Timer 3.. Black circuit 5.. CPU Patent applicant Mikuni Kogyo Co., Ltd. Representative Patent attorney Norio Ishii Figure 1 Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] エンジンの運転状態に応じて適宜燃料制御を行なう燃料
噴射制御方法において、過去のエンジン回転周期をもと
にテーラ−展開を用いて次のエンジン回転周期を予測演
算し、前記演算決定されたエンジン回転周期を用いてエ
ンジン回転周期の関数として表わした燃料流量の操作量
及び燃料噴射・ぐルス幅を演算決定することを特徴とす
る回転数予測による燃料噴射制御方法。
In a fuel injection control method that performs fuel control as appropriate depending on the operating state of the engine, the next engine rotation period is predicted using Taylor expansion based on the past engine rotation period, and the engine rotation determined by the calculation is calculated. 1. A fuel injection control method based on rotational speed prediction, characterized in that a manipulated variable of a fuel flow rate and a fuel injection/gust width expressed as a function of an engine rotation period are calculated and determined using a period.
JP17017283A 1983-09-13 1983-09-13 Method of controlling fuel injection by prediction of engine speed Pending JPS6060236A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17017283A JPS6060236A (en) 1983-09-13 1983-09-13 Method of controlling fuel injection by prediction of engine speed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17017283A JPS6060236A (en) 1983-09-13 1983-09-13 Method of controlling fuel injection by prediction of engine speed

Publications (1)

Publication Number Publication Date
JPS6060236A true JPS6060236A (en) 1985-04-06

Family

ID=15900021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17017283A Pending JPS6060236A (en) 1983-09-13 1983-09-13 Method of controlling fuel injection by prediction of engine speed

Country Status (1)

Country Link
JP (1) JPS6060236A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01113546A (en) * 1987-10-27 1989-05-02 Japan Electron Control Syst Co Ltd Intake-air temperature detecting device for internal combustion engine
JPH01125532A (en) * 1987-11-10 1989-05-18 Japan Electron Control Syst Co Ltd Controller for internal combustion engine
US6848427B2 (en) * 2003-01-23 2005-02-01 Ford Global Technologies, Llc Method and system for providing fuel injection time scheduling for internal combustion engines using engine speed prediction

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01113546A (en) * 1987-10-27 1989-05-02 Japan Electron Control Syst Co Ltd Intake-air temperature detecting device for internal combustion engine
JPH01125532A (en) * 1987-11-10 1989-05-18 Japan Electron Control Syst Co Ltd Controller for internal combustion engine
US6848427B2 (en) * 2003-01-23 2005-02-01 Ford Global Technologies, Llc Method and system for providing fuel injection time scheduling for internal combustion engines using engine speed prediction

Similar Documents

Publication Publication Date Title
JPH0240044A (en) Throttle opening control device for internal combustion engine
JP2577210B2 (en) Electronically controlled fuel injection device for internal combustion engine
JP2564858B2 (en) Fuel injection amount control device for internal combustion engine
JPH09287513A (en) Torque controller for engine
JP2666366B2 (en) Control device for internal combustion engine
JPH10184431A (en) Engine control system
JPH03179147A (en) Air-fuel learning controller for internal combustion engine
JPS6060236A (en) Method of controlling fuel injection by prediction of engine speed
US4359992A (en) Method of controlling fuel supply to internal combustion engine
JPH10184429A (en) Engine control system
JPH01232134A (en) Engine control method
US4442817A (en) Electronically controlled fuel metering system
GB2189627A (en) Method of air/fuel ratio control for internal combustion engine
JP2754568B2 (en) Fuel injection amount control device for internal combustion engine
JP2580638B2 (en) Ignition timing control device
JP2701296B2 (en) Fuel injection amount control device for internal combustion engine
JPH11287146A (en) Engine controlling method and device thereof
JP2003020987A (en) Fuel injection control device of internal combustion engine
JP3518168B2 (en) Engine torque control device
JP2759991B2 (en) Fuel injection amount control device for internal combustion engine
KR890004295B1 (en) Apparatus for controlling idling operation of an internal combustion engine
JP2658246B2 (en) Fuel injection amount control device for internal combustion engine
JPS60237137A (en) Fuel injection amount controller on starting for electronic controlled injection controller for internal-combustion engine
JP2615773B2 (en) Fuel injection amount control device for internal combustion engine
JP3028851B2 (en) Fuel injection control device