JPS6057662B2 - heating element - Google Patents

heating element

Info

Publication number
JPS6057662B2
JPS6057662B2 JP14547178A JP14547178A JPS6057662B2 JP S6057662 B2 JPS6057662 B2 JP S6057662B2 JP 14547178 A JP14547178 A JP 14547178A JP 14547178 A JP14547178 A JP 14547178A JP S6057662 B2 JPS6057662 B2 JP S6057662B2
Authority
JP
Japan
Prior art keywords
electrical
heating element
resistance heating
electric
heating elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14547178A
Other languages
Japanese (ja)
Other versions
JPS5572387A (en
Inventor
忠視 鈴木
敦 西野
林 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP14547178A priority Critical patent/JPS6057662B2/en
Publication of JPS5572387A publication Critical patent/JPS5572387A/en
Publication of JPS6057662B2 publication Critical patent/JPS6057662B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Surface Heating Bodies (AREA)
  • Resistance Heating (AREA)

Description

【発明の詳細な説明】 本発明は複数個の電気抵抗発熱体を有する発熱体の改
良に関するものであり、特に小型、高密度化をはかると
同時に各電気抵抗発熱体をそれぞれ切換え作動せしめる
ように構成した発熱体を提供しようとするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement of a heating element having a plurality of electrical resistance heating elements, and in particular, to achieve smaller size and higher density, and at the same time, to individually switch and operate each electrical resistance heating element. The purpose of the present invention is to provide a heating element having the following structure.

従来、電気オープン、オープンレンジ等の調理器に使
用されている発熱体はシーズヒータ、あるいはミラクロ
ンヒータ等である。これらの発熱体は調理物に合わせて
温度コントロールが必要である。この温度コントロール
としては電子式のもの、あるいはバイメタル式のものが
あるが、いずれのものも温度コントロールに要するコス
トの比率が非常に高い。その理由は電気抵抗発熱体の本
数が2本〜3本であり、電気抵抗発熱体の切り換え作動
だけでは調理物に合わせた温度設定が困難である。この
場合、電気抵抗発熱体のワット数を減らして本数を増加
すれば、電気抵抗発熱体の切り換え作動だけで調理物に
合わせた温度設定が可能になるが、現在使用されている
シーズヒータがミラクロンヒータでは経済的に割高とな
り、実質的に困難である。 本発明者等は上記の点に着
目し、一本で数種類の電気容量が得られる発熱体の開発
に成功したもので、以下、本発明をその実施例を示す図
面にもとづいて説明する。
Conventionally, heating elements used in electric open cookers, open range cookers, and the like are sheathed heaters, miracron heaters, and the like. These heating elements require temperature control according to the food being cooked. There are electronic types and bimetal types for this temperature control, but the cost ratio required for temperature control is extremely high in either type. The reason for this is that the number of electrical resistance heating elements is 2 to 3, and it is difficult to set the temperature according to the food to be cooked only by switching the electrical resistance heating elements. In this case, if the wattage of the electric resistance heating element is reduced and the number of electric resistance heating elements is increased, it will be possible to set the temperature according to the food by simply switching the electric resistance heating element, but the currently used sheathed heater is a miracle Long heaters are economically expensive and practically difficult. The present inventors focused on the above points and succeeded in developing a heating element that can obtain several types of capacitance with a single heating element.Hereinafter, the present invention will be explained based on drawings showing embodiments thereof.

第1図は本発明の一実施例を示したもので、すなわち電
気伝導体1の表面に電気絶縁層2を被覆形成した棒状絶
縁体3の外周に、電気抵抗体4、4’をコイル状に巻回
した電気抵抗発熱体5、5’を2個設けた場合を示した
のである。そして電気抵抗発熱体5、5’はそれぞれの
一端6、6’を棒状絶縁体3を構成する電気伝導体1と
接続し、かつ他端の電源端子7、7’とし、さらに棒状
絶縁体3の一端に電源端子8を設けて発熱体とした。
なお、電気抵抗発熱体5、5’は電気抵抗体4、4’間
の絶縁距離が充分にとれる場合は、表面に電気絶縁層9
、9’を被覆形成する必要はないが、第1図のように各
電気抵抗体4、4’間が密着巻の場合は電気絶縁層9、
9’は必ず設けなければならない。
FIG. 1 shows an embodiment of the present invention, in which electric resistors 4 and 4' are arranged in a coil shape around the outer periphery of a rod-shaped insulator 3 whose surface is coated with an electric insulating layer 2. This shows a case in which two electrical resistance heating elements 5, 5' wound around each other are provided. The electric resistance heating elements 5, 5' have one end 6, 6' connected to the electric conductor 1 constituting the rod-shaped insulator 3, and the other end used as a power terminal 7, 7', and the rod-shaped insulator 3 A power supply terminal 8 was provided at one end to serve as a heating element.
In addition, when the electric resistance heating elements 5 and 5' have a sufficient insulation distance between the electric resistance elements 4 and 4', an electric insulation layer 9 is provided on the surface.
, 9' need not be coated, but if the electrical resistors 4, 4' are tightly wound as shown in FIG.
9' must be provided.

また電気抵抗発熱体5、5’の電気抵抗体4、4’の内
径と棒状絶縁体3との空隙は電気抵抗体4、4’の線径
以内が好ましい。さらに電気抵抗発熱体5、5’と棒状
絶縁体3の接続部は第1図のAで示すように、その部分
だけ電気絶縁層2を除いて溶接あるいはロウ付等の方法
で接続している。この場合、2個の電気抵抗発熱体5,
5″の接続端子6,6″は一体で構成する方が好ましい
。なぜなら、コイル状に巻回した電気抵抗発熱体5,5
″の中間部の電気抵抗体4,4″をのばして接続端子6
,6゛とすることにより、2個の電気抵抗発熱体5,5
゛が構成できる。したがつて2個の電気抵抗発熱体5,
5″の電気容量は必要に応じて設定できる。第2図は発
熱体をコの字型に構成した場合の実施例であり、また第
3図は円型に構成した場合の実施例であり、第3図中1
0は発熱体の保持具である。
Further, the gap between the inner diameter of the electrical resistors 4, 4' of the electrical resistance heating elements 5, 5' and the rod-shaped insulator 3 is preferably within the wire diameter of the electrical resistors 4, 4'. Furthermore, the connection between the electric resistance heating elements 5, 5' and the rod-shaped insulator 3 is made by welding or brazing, except for the electric insulating layer 2 at that part, as shown by A in FIG. . In this case, two electric resistance heating elements 5,
It is preferable that the 5" connection terminals 6, 6" be constructed in one piece. This is because the electric resistance heating elements 5, 5 are wound into coils.
Stretch out the electrical resistor 4, 4'' in the middle of the connecting terminal 6.
, 6゛, two electric resistance heating elements 5, 5
can be configured. Therefore, two electrical resistance heating elements 5,
The electric capacity of 5" can be set as required. Figure 2 shows an example in which the heating element is configured in a U-shape, and Figure 3 is an example in which the heating element is configured in a circular shape. , 1 in Figure 3
0 is a holder for the heating element.

次に本発明の発熱体の回路構成の一実施例について第4
図にもとづいて説明する。
Next, a fourth example of the circuit configuration of the heating element of the present invention will be described.
This will be explained based on the diagram.

この第4図において、一方の電気抵抗発熱体5の電源端
子7は切換えスイッチ11と接続し、かつ他方の電気抵
抗発熱体5″の電源端子7″は切換えスイッチ12と接
続する。そして電気伝導体1の一端に設けた電源端子8
を電源スイッチ13の一端と接続し、かつ電源スイッチ
13の他端および切換えスイッチ11,12の他端を電
源14と結線している。上記回路構成において、その操
作はまず電源スイッチ13を閉じ、一方の電気抵抗発熱
体5に通電したい場合は切換えスイッチ11を閉じる。
この場合、切換えスイッチ12は開いておく。また他方
の電気抵抗発熱体5″に通電したい場合は切換えスイッ
チ12は閉じる。この場合、前記切換えスイッチ11は
開いておく。また両方の電気抵抗発熱体5,5″に通電
したい場合は、切換えスイッチ11,12の両方とも閉
じる。このように本発明は一本の発熱体で3種類の電気
容量が容易に得られる。
In FIG. 4, the power terminal 7 of one electric resistance heating element 5 is connected to a changeover switch 11, and the power supply terminal 7'' of the other electric resistance heating element 5'' is connected to a changeover switch 12. And a power terminal 8 provided at one end of the electrical conductor 1
is connected to one end of the power switch 13, and the other end of the power switch 13 and the other ends of the changeover switches 11 and 12 are connected to the power source 14. In the above circuit configuration, the operation is performed by first closing the power switch 13, and when it is desired to energize one of the electric resistance heating elements 5, closing the changeover switch 11.
In this case, the changeover switch 12 is left open. When it is desired to energize the other electrical resistance heating element 5'', the changeover switch 12 is closed.In this case, the changeover switch 11 is left open.Also, when it is desired to energize both electric resistance heating elements 5, 5'', the changeover switch 12 is closed. Both switches 11 and 12 are closed. In this way, in the present invention, three types of capacitance can be easily obtained with one heating element.

次に電気抵抗発熱体5,5″の電気絶縁層9,9″の形
成方法について述べる。
Next, a method for forming the electrical insulating layers 9, 9'' of the electrical resistance heating elements 5, 5'' will be described.

この形成方法は、Fe−Cr−A1系の電気抵抗体4,
4″を溶融ア.ルカリ浴中に浸漬して該電気抵抗体4,
4゛の表面に、水酸化鉄を主体とする皮膜を形成させ、
次いで強酸化性雰囲気中で加熱して水酸化鉄を主体とす
る皮膜を酸化アルミニウムを主体とする皮膜に変化させ
るという方法である。この方法で得ら−れた電気絶縁層
9,9″は皮膜の厚さが薄すぎて電気抵抗体4,4″間
の絶縁は充分とはいえないが実用上は問題はない。また
この他に従来から電気抵抗体4,4″を酸化性雰囲気で
高温に加熱し、かつ表面でアルミニウムを選択的に酸化
させて酸化アルミニウムを主体とする絶縁皮膜を形成さ
せる方法もよく知られており、さらには耐熱ホーロー、
耐熱塗料をコーティングして電気絶縁層を形成する方法
等もあるが、これらの方法も本発明に含まれるものであ
る。
This method of forming a Fe-Cr-A1 electrical resistor 4,
The electric resistor 4'' is immersed in a molten alkali bath.
A film mainly composed of iron hydroxide is formed on the surface of 4゛,
This method is then heated in a strongly oxidizing atmosphere to change the film mainly composed of iron hydroxide to a film mainly composed of aluminum oxide. Although the electrical insulating layers 9, 9'' obtained by this method are too thin to provide sufficient insulation between the electrical resistors 4, 4'', there is no problem in practical use. In addition, a well-known method is to heat the electrical resistor 4,4'' to a high temperature in an oxidizing atmosphere and selectively oxidize aluminum on the surface to form an insulating film mainly composed of aluminum oxide. In addition, heat-resistant enamel,
There are also methods of forming an electrically insulating layer by coating with heat-resistant paint, and these methods are also included in the present invention.

なお、本発明の実施例ではプラズマ溶射により金属酸化
物を絶縁被覆する方法を用いた。
In the examples of the present invention, a method of insulating metal oxide coating by plasma spraying was used.

すなわ″ち電気抵抗体4,4″として鉄−クロムーアル
ミ系の電熱線(TIS,FCH−1)を用いて、棒状絶
縁体3の外周にコイル状に密着巻きし、そして表面を洗
浄した後、弾性限界内において電気抵抗体4,4″をの
ばすとともに、各電気抵抗体4,4″間に空隙を設けて
保持し、さらにその電気抵抗体4,4″を回転させなが
ら、SiC#100を用いて圧力5k9/CFllでブ
ラスチングにて表面を粗面化する。上記ブラスチングの
方法としては、電気抵抗体4,4″に対してブラストノ
イズを直角方向、あるいは左右45ての方向にそれぞれ
対向させ、かつ電気抵抗体4,4″平行にブラストノズ
ルを移動させながらブラスチングする。
That is, an iron-chromium-aluminum heating wire (TIS, FCH-1) is used as the electric resistor 4, 4, and it is tightly wound in a coil around the outer circumference of the rod-shaped insulator 3, and the surface is cleaned. , while stretching the electric resistors 4, 4'' within the elastic limit, creating a gap between each electric resistor 4, 4'', and holding the electric resistors 4, 4'', and rotating the electric resistors 4, 4'', SiC#100 The surface is roughened by blasting at a pressure of 5k9/CFll using a blasting machine.The above-mentioned blasting method involves applying blasting noise to the electrical resistors 4, 4'' in a direction perpendicular to them, or facing each other in the left and right directions. and blasting while moving the blast nozzle parallel to the electric resistors 4, 4''.

上記の方法でブラスチングをすると電気抵抗体4,4″
の内外面ともに均一に粗面化することができる。またブ
ラスチングが終了した後は、プラズマ溶射によりイツト
リア安定化によるジルコニア粉末を溶射被覆させた。
When blasting is done using the above method, the electrical resistor becomes 4.4″.
Both the inner and outer surfaces can be uniformly roughened. After the blasting was completed, itria-stabilized zirconia powder was coated by plasma spraying.

前記プラス7溶射の方法はブラスチングと同様に行なつ
たため、電気抵抗体4,4″の内外面ともに均一な溶射
被覆層が形成された。なお、プラズマ溶射の条件は、プ
ラズマダイン社の80KW(7)SG−100タイプを
使用し、電流:900A1電圧:41V1アークガスに
アルゴン、補助ガスとしてヘリウムを用いた。またこの
プラズマ溶射が終了した後は、電気抵抗体4,4″の回
転を停止して各電気抵抗体4,4″間に空隙を設けて保
持していた状態を解くと、元の密着巻の電気抵抗体4,
4″の状態にもどる。
Since the above-mentioned Plus 7 thermal spraying method was carried out in the same manner as blasting, a uniform thermal spray coating layer was formed on both the inner and outer surfaces of the electrical resistors 4, 4''.The plasma spraying conditions were as follows: 7) SG-100 type was used, current: 900A, voltage: 41V, argon was used as the arc gas, and helium was used as the auxiliary gas.After this plasma spraying was completed, the rotation of the electric resistors 4 and 4'' was stopped. When the state in which the electrical resistors 4, 4'' were held by creating a gap between them is released, the original tightly wound electrical resistors 4, 4'' are released.
Return to the 4″ state.

その理由としては電気抵抗体4,4″の弾性限界内で保
持することと、プラズマ溶射の特徴として高融点の粉末
を半溶融状態にはするが、基材(この場合電気抵抗体)
を熱変形する温度以下にして溶射被覆層を形成すること
ができるようにしているためである。なお、前記ブラス
チングが終了した後、電気抵抗体4,4″の表面を洗浄
すると、溶射被覆層の密着強度はさらに強くなることも
確認できたが、この場合は用途により使い分けが必要で
ある。
The reason for this is that the electrical resistor 4, 4'' must be kept within its elastic limit, and as a characteristic of plasma spraying, the powder with a high melting point is turned into a semi-molten state, but the base material (in this case the electrical resistor)
This is because the thermal spray coating layer can be formed at a temperature below the temperature at which thermal deformation occurs. It was also confirmed that the adhesion strength of the thermally sprayed coating layer could be further strengthened by cleaning the surfaces of the electrical resistors 4, 4'' after the blasting was completed, but in this case, it is necessary to use it properly depending on the application.

次に棒状絶縁体3の実施例としては第5図に示すような
形状について検討した。すなわち、第5図において、a
は円柱形状、bは管形状、Cは二個の穴を有する円柱形
状、dは三角形状、eは板形状、fは四角形状である。
その他、多角形のものでも可能であり、特殊な形状とし
てはgのようなものでも充分使用に耐える。また棒状絶
縁体3の材質は、電気伝導体であればよく、例えば、鉄
およびその合金、アルミニウムおよびその合金、銅およ
びその合金、ニッケルおよびその合金、チタンおよびそ
の合金、亜鉛およびその合金等の鉄鋼および非鉄金属材
料が用いられる。なお、その他、電気伝導体を有するガ
ラス質のもの、あるいは有機材料であつても良い。これ
らの材料の中から、発熱体の使用目的、使用温度、使用
状態等によつて選択する必要があるが、本発明の実施例
では耐熱性の点からFe−Cr−A1系の材料を使用し
た。また棒状絶縁体3の電気絶縁層2の形成方法は電気
抵抗体4,4″への電気絶縁層9,9″被覆と同様プラ
ズマ溶射を用いたが、電気絶縁性を有する塗料、耐熱ホ
ーローでも充分な電気絶縁性が得られた。
Next, as an example of the rod-shaped insulator 3, a shape as shown in FIG. 5 was studied. That is, in FIG.
is a cylindrical shape, b is a tube shape, C is a cylindrical shape with two holes, d is a triangular shape, e is a plate shape, and f is a square shape.
In addition, a polygonal shape is also possible, and as a special shape, a shape like "g" can be used sufficiently. The material of the rod-shaped insulator 3 may be any electrical conductor, such as iron and its alloys, aluminum and its alloys, copper and its alloys, nickel and its alloys, titanium and its alloys, zinc and its alloys, etc. Steel and non-ferrous metal materials are used. In addition, it may be made of glass having an electrical conductor or an organic material. It is necessary to select from these materials depending on the purpose of use of the heating element, the temperature of use, the conditions of use, etc., but in the embodiment of the present invention, Fe-Cr-A1 material is used from the viewpoint of heat resistance. did. In addition, the method for forming the electrical insulating layer 2 of the rod-shaped insulator 3 used plasma spraying, similar to the coating of the electrical insulating layer 9, 9'' on the electrical resistors 4, 4'', but paint with electrical insulation properties and heat-resistant enamel may also be used. Sufficient electrical insulation was obtained.

1000℃以上の高温使用においてはプラズマ溶射皮膜
が熱衝撃に対しても良く耐えた。
When used at high temperatures of 1000°C or higher, the plasma sprayed coating resisted thermal shock well.

また耐熱塗料は1000゜C以下の使用には充分耐える
。そしてまた耐熱ホーローは600℃以下の使用には適
している。以上のように電気絶縁層の被覆形成は使用条
件によつて使い分けが必要である。
Furthermore, heat-resistant paints can withstand use at temperatures below 1000°C. Furthermore, heat-resistant enamel is suitable for use at temperatures below 600°C. As described above, it is necessary to selectively form an electrically insulating layer depending on the conditions of use.

また電気絶縁被覆層の厚みは5μ以上あれば電気絶縁性
は保持できるが、被覆層の厚みが厚すぎると熱衝撃に対
して被覆層に亀裂が発生しやすくなるため好ましくは5
〜500μ以内にすべきである。
In addition, if the thickness of the electrically insulating coating layer is 5μ or more, electrical insulation can be maintained, but if the thickness of the coating layer is too thick, cracks will easily occur in the coating layer due to thermal shock, so it is preferably 5μ or more.
It should be within ~500μ.

前記棒状絶縁体3と電気抵抗発熱体5,5″との接続は
溶接、ネジ止め、ロウ付、カシメ等の方法を検討した結
果、いずれの方法でも可能であつたが、用途により使い
分ける必要がある。
After considering methods such as welding, screwing, brazing, and caulking to connect the rod-shaped insulator 3 and the electric resistance heating elements 5, 5'', it was found that any method could be used, but it is necessary to use different methods depending on the purpose. be.

また電気絶縁被覆層の最も大きな特徴はその多孔質層に
ある。
The most significant feature of the electrically insulating coating layer is its porous layer.

すなわち、基材と酸化物層を密着し、かつ高温で過酷な
熱サイクルに耐え得るようにするために、酸化物層を多
孔質体とすることによつて熱膨張係数の極端な相違の緩
衝作用をさせている所にある。したがつて過酷な熱サイ
クル試験においても剥離することなく電気絶縁層として
の効果を発揮することができる。また酸化物層の下地処
理用としての合金層の形成も効果的である。
In other words, in order to bond the base material and the oxide layer and to withstand harsh thermal cycles at high temperatures, the oxide layer is made porous to buffer extreme differences in coefficient of thermal expansion. It is in the place where it is working. Therefore, it can function as an electrical insulating layer without peeling even in severe thermal cycle tests. It is also effective to form an alloy layer as a base treatment for the oxide layer.

すなわち前述したように基材と酸化物層の極端な熱膨張
係数の差のために密着強度に問題がある時には〔これは
使用温度、使用状態等によつて各々決定される〕、基材
と熱膨張係数が比較的類似した合金粉末を酸化物層の下
地に溶射被覆してその上に酸化物層を溶射させるもので
、そのようにすると基材と下地処理用の合金層の熱膨張
係数が類似するために密着強度が強くなり、かつ金属層
の表面積が拡大するため、金属層と酸化物層との密着強
度は増大し、かつ熱サイクル強度も増大する。この場合
、金属層の表面積が拡大するため、若干酸化増量(度合
)が増加する傾向にあり、用途により使い分けが必要で
ある。ところがこの場合においても、金属外部層には必
ず酸化物層で電気絶縁層を設けなければ本発明の効果は
発揮し得ないものである。
In other words, as mentioned above, when there is a problem in adhesion strength due to the extreme difference in thermal expansion coefficient between the base material and the oxide layer [this is determined by the usage temperature, usage conditions, etc.], An alloy powder with relatively similar thermal expansion coefficients is thermally sprayed onto the base of the oxide layer, and the oxide layer is then thermally sprayed on top of it. Since they are similar, the adhesion strength becomes stronger, and the surface area of the metal layer increases, so the adhesion strength between the metal layer and the oxide layer increases, and the thermal cycle strength also increases. In this case, since the surface area of the metal layer is expanded, the oxidation weight gain (degree) tends to increase slightly, so it is necessary to use it properly depending on the application. However, even in this case, the effects of the present invention cannot be exerted unless an electrically insulating layer made of an oxide layer is provided on the outer metal layer.

この場合に用いる粉体としては基材に近い粉体が好まし
く、Fe−Cr−Al,Ni−C樗の合金が良好な結果
が得られた。なお、本発明の実施例て適用される電気絶
縁性を有する酸化物層としては、高温で安定し、かつ・
溶射に使用される粉体であれば電気絶縁層として効果が
あることも確認した。
The powder used in this case is preferably a powder close to the base material, and good results were obtained with alloys of Fe-Cr-Al and Ni-C. Note that the oxide layer having electrical insulation properties applied in the embodiments of the present invention is stable at high temperatures and...
It was also confirmed that the powder used for thermal spraying is effective as an electrical insulating layer.

また高温で導電性を有する酸化物も一部にはあるが、金
属発熱体の導電率から比較して少なく無視できる値であ
り、実際には問題なく効果を発揮した。すなわち本発明
・の実施例で実施したイツトリア安定化によるジルコニ
アも高温で導電性を生ずる酸化物であるが、何ら問題は
なかつた。電気絶縁性を有する酸化物層として適用でき
る酸化物としては、Al2O3,Y2O3,SlO2,
、Fe2O3,TiO2,CaO,Na2O,)八03
L120,Cr203,Zr02,Mg0,Be0,N
i0,′11102,Hf02La203,Ce02等
の金属酸化物もしくはスピネル型構造を有する複酸化物
よりなる材料、例えばMgAl2O4,FeAl2O4
,COAl2O4,ZnA]204,MgCr204等
の群から一部もしくはそれ以上選択したものを含有した
材料が良かつた。以上のように本発明によれば、次のよ
うな種々のすぐれた特長を有する。(1)1本の発熱体
で数種類の電気容量が得られる。
Furthermore, although there are some oxides that have conductivity at high temperatures, the conductivity of the metal heating element is small and can be ignored, and the effect was actually achieved without any problems. That is, although the zirconia stabilized with yttria used in the examples of the present invention is also an oxide that exhibits conductivity at high temperatures, no problems were caused. Examples of oxides that can be used as an oxide layer having electrical insulation properties include Al2O3, Y2O3, SlO2,
, Fe2O3, TiO2, CaO, Na2O, )803
L120, Cr203, Zr02, Mg0, Be0, N
Materials made of metal oxides such as i0, '11102, Hf02La203, Ce02 or double oxides having a spinel structure, such as MgAl2O4, FeAl2O4
, COAl2O4, ZnA]204, MgCr204, and the like. As described above, the present invention has the following various excellent features. (1) Several types of capacitance can be obtained with one heating element.

(2)発熱体の電源端子を一方向に集中できる。(2) The power terminals of the heating element can be concentrated in one direction.

(3)小型、高容量にできる。(4)同一電気容量で発
熱体の発熱温度を従来の発熱体に比べて高くできる。
(3) Small size and high capacity can be achieved. (4) The heat generation temperature of the heating element can be made higher than that of conventional heating elements with the same electric capacity.

(5)電気抵抗体の径が限定されない。(5) The diameter of the electrical resistor is not limited.

(6)断線不良、耐電圧不良、絶縁抵抗不良も大巾に改
善できる。
(6) Wire disconnection defects, withstand voltage defects, and insulation resistance defects can be greatly improved.

(7)製造コストが安い。(7) Manufacturing costs are low.

(8)応用製品の小型化、高温化、ならびに発熱体の温
度制御の簡素化等製品の付加価値を大巾に向上させるこ
とができる。
(8) The added value of products can be greatly improved, such as miniaturization of applied products, higher temperatures, and simplified temperature control of heating elements.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図、第3図は本発明の発熱体の各実施例を
示す断面図、第4図は本発明の発熱体の回路構成図、第
5図A,b,c,d,e,f,gは棒状絶縁体の各種形
状を示す断面図である。 1・・・・・・電気伝導体、2・・・・・・電気絶縁層
、3・・・・棒状絶縁体、4,4″・・・・・電気抵抗
体、5,5″・・・・・電気抵抗発熱体、9,9Z・・
・・電気絶縁層。
Figures 1, 2, and 3 are cross-sectional views showing each embodiment of the heat generating element of the present invention, Figure 4 is a circuit diagram of the heat generating element of the present invention, and Figures 5 A, b, c, and d. , e, f, and g are cross-sectional views showing various shapes of rod-shaped insulators. 1... Electric conductor, 2... Electric insulating layer, 3... Rod-shaped insulator, 4,4''... Electric resistor, 5,5''... ...Electric resistance heating element, 9,9Z...
...Electrical insulation layer.

Claims (1)

【特許請求の範囲】[Claims] 1 電気伝導体の表面に電気絶縁層を被覆形成した絶縁
体と、この絶縁体に電気抵抗体を巻回し、かつ表面に電
気絶縁層を被覆形成した複数個の電気抵抗発熱体とを有
し、前記電気抵抗発熱体のそれぞれの一端を電気伝導体
の一部分と電気的に接続して各電気抵抗発熱体をそれぞ
れ切換え作動せしめるように構成したことを特徴とする
発熱体。
1 An insulator having an electrically conductive surface covered with an electrically insulating layer, and a plurality of electrical resistance heating elements each having an electrically resistive material wound around the insulating material and having an electrically insulating layer covering its surface. . A heating element, characterized in that one end of each of the electrical resistance heating elements is electrically connected to a portion of an electrical conductor to switch and operate each electrical resistance heating element.
JP14547178A 1978-11-25 1978-11-25 heating element Expired JPS6057662B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14547178A JPS6057662B2 (en) 1978-11-25 1978-11-25 heating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14547178A JPS6057662B2 (en) 1978-11-25 1978-11-25 heating element

Publications (2)

Publication Number Publication Date
JPS5572387A JPS5572387A (en) 1980-05-31
JPS6057662B2 true JPS6057662B2 (en) 1985-12-16

Family

ID=15386003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14547178A Expired JPS6057662B2 (en) 1978-11-25 1978-11-25 heating element

Country Status (1)

Country Link
JP (1) JPS6057662B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60218786A (en) * 1984-04-13 1985-11-01 松下電器産業株式会社 Sheathed heater
JP2874204B2 (en) * 1989-08-04 1999-03-24 松下電器産業株式会社 Heating element

Also Published As

Publication number Publication date
JPS5572387A (en) 1980-05-31

Similar Documents

Publication Publication Date Title
US4808490A (en) Plasma sprayed film resistor heater
KR100506023B1 (en) Heater-sensor complex
US6137089A (en) Heating element
US4620086A (en) Dual coated radiant electrical heating element
JPS6057662B2 (en) heating element
JPS58225592A (en) Panel heater
US2966430A (en) Electric resistance elements
JP2503077B2 (en) Electric heater and heating method using the same
CN109253467B (en) Flame rod
JPS6019117B2 (en) heating element
CN214594176U (en) Heating body and atomizing device
JP3216737B2 (en) Spray heating element for composite particles and its manufacturing method
JPH05205858A (en) Resistance heater and manufacture thereof
JPS6351003B2 (en)
US3213522A (en) Domestic appliance
JPH0311072B2 (en)
JPS599805B2 (en) ignition heater
JPH0147870B2 (en)
JPH02147166A (en) Heating element assembling body for electric soldering iron and electric soldering iron
JPH01107486A (en) Insulated heating element
JP2000195649A (en) Inorganic insulated heater and its manufacture
JPH04356361A (en) Soldering iron and its manufacture
JPH01107485A (en) Insulated heating element
JPH05266973A (en) Tubular heater and manufacture thereof
JPH0435879B2 (en)