JPS6056115A - Fine particle purifier for exhaust gas of diesel-engine - Google Patents

Fine particle purifier for exhaust gas of diesel-engine

Info

Publication number
JPS6056115A
JPS6056115A JP58165615A JP16561583A JPS6056115A JP S6056115 A JPS6056115 A JP S6056115A JP 58165615 A JP58165615 A JP 58165615A JP 16561583 A JP16561583 A JP 16561583A JP S6056115 A JPS6056115 A JP S6056115A
Authority
JP
Japan
Prior art keywords
exhaust gas
diesel
catalysts
ceramic
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58165615A
Other languages
Japanese (ja)
Inventor
Hiroji Watabe
渡部 洋児
Tsutomu Yamada
力 山田
Koichi Irako
伊良子 光一
Masao Ishibashi
石橋 政男
Yuichi Murakami
雄一 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP58165615A priority Critical patent/JPS6056115A/en
Publication of JPS6056115A publication Critical patent/JPS6056115A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2882Catalytic reactors combined or associated with other devices, e.g. exhaust silencers or other exhaust purification devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2250/00Combinations of different methods of purification
    • F01N2250/02Combinations of different methods of purification filtering and catalytic conversion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Abstract

PURPOSE:To efficiently purify fine particles in exhaust gas from a Diesel-engine, and as well to make it difficult to clog the purifier, by making ceramic carriers carry successively more than two kinds of ceramics different from each other from the inlet side of exhaust gas to the outlet side thereof. CONSTITUTION:For example, one kind of ceramic carriers 1 are used singularly, and a plurality of catalysts 4, 4' which differ from each other are carried by these ceramic carries in a range from the exhaust gas inlet side 2 to the exhaust outlet side 3 so that exhaust gas from a Diesel engine are made in contact, successively with more than two kinds of different catalysts. With this arrangement, as the above-mentioned catalysts, catalyst groups consist of, for example, at least one component selected from the group consisting of copper and copper compounds, at leseat one component selected from the group consisting of molybdenum, vanadium and compounds thereof, and at least one component selected from the group consisting of alkali-metallic compounds, and the like, are used. With this arrangement, fine particles in exhaust gas from a Diesel-engine are effectively purified, and the clogging of the purifier is made difficult.

Description

【発明の詳細な説明】 本発明はディーゼル排ガス微粒子浄化体に関し、更に詳
述すると排ガスが相異なる複数の浄化触媒と順次接触す
るように構成されたセラミック担体よりなるディーゼル
排ガス微粒子浄化体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a diesel exhaust gas particulate purifier, and more specifically to a diesel exhaust gas particulate purifier comprising a ceramic carrier configured so that exhaust gas sequentially contacts a plurality of different purification catalysts. be.

ディーゼルエンジンは未燃焼の炭化水素、−酸化炭素、
窒素酸化物等の環境汚染性のガスと共に特有の微粒子を
排出するものであるが、この微粒子は主成分がカーボン
からなり、多核芳香族炭化水素等を含有することから、
その排出に対して規制が行なわれようとしている。また
、この微粒子は視界を妨げるとか、粉塵を増大させるな
どの原因になることから、その浄化が望まれているもの
である。
Diesel engines emit unburned hydrocarbons, - carbon oxides,
It emits unique fine particles along with environmentally polluting gases such as nitrogen oxides, and these fine particles are mainly composed of carbon and contain polynuclear aromatic hydrocarbons, etc.
Regulations are being put in place for its emissions. Furthermore, since these fine particles obstruct visibility and increase dust, it is desirable to purify them.

従来、このディーゼルエンジンの微粒子排出物浄化対策
として、その浄化を図るため、各種のセ焼させるための
各種触媒が開発されつつある世状にある。
Conventionally, in order to purify particulate emissions from diesel engines, various types of catalysts for combustion are being developed.

この場合、ディーゼルエンジン排ガス浄化の目的で使用
される浄化体は、通常一種類の担体あるいはこの担体に
一種類の触媒系をその全面に亘って担持させたものが使
用されている。
In this case, the purifying body used for the purpose of purifying diesel engine exhaust gas is usually one type of carrier or one type of catalyst system supported on the entire surface of the carrier.

しかし、ディーゼルエンジン排ガス中に含まれる微粒子
の性状は、エンジンの運転操作状態ににっで大きく変動
するもので、排出される微粒子中の炭化水素量は一定で
なく、またその粒径の大ぎさも不定であり、更に担体に
0肴し易いもの、し難いものなど微粒子の性状は多様を
きわめるものを燃焼させ、浄化体中に微粒子の堆積(目
詰り)が生じないようにすることが望ましい。また、現
在111発途上にあ・る各種の触媒系に関しても、炭化
水素、−酸化炭素を容易に燃焼させ冑るもの、させ得な
いもの、またカーボンを燃焼させ得るもの、させ冑ない
ものがあり、更にはこれらのディーゼルエンジン排出物
を燃焼させる場合の燃焼高度が一定でなく、その性状も
種々に亘っている。更に、担体に関しても、現在種々の
ものが使用されているが、微粒子の堆積(目詰り)に起
因する圧力損失の増大をいかに軽減させ、かつ微粒子の
捕集効率の増大を図るかが問題であるが、担体を単−栴
造体により形成し、更にはこれに一種類の触媒系を担持
させ1=だ番ノでは、上述し1cような圧力損失の増大
を軽減づることと微粒子の捕集効率を増大さぜることと
の両立を図ることは困難である。
However, the properties of the particulates contained in diesel engine exhaust gas vary greatly depending on the operating conditions of the engine, and the amount of hydrocarbons in the emitted particulates is not constant, and the particle size varies greatly. Furthermore, it is desirable to burn particles that have a wide variety of properties, such as those that are easy to eat on the carrier and those that are difficult to eat, to prevent accumulation (clogging) of particles in the purifying body. . In addition, regarding the various catalyst systems that are currently under development, there are some that can easily burn hydrocarbons and carbon oxides and those that cannot, and those that can burn carbon and those that do not. Moreover, when these diesel engine exhausts are combusted, the combustion altitude is not constant and their properties vary. Furthermore, various types of carriers are currently in use, but the problem is how to reduce the increase in pressure loss caused by the accumulation (clogging) of particles and how to increase the particle collection efficiency. However, in the case where the carrier is formed from a single-layer structure and further supports one type of catalyst system, it is possible to reduce the increase in pressure loss as described in 1c above and to trap fine particles. It is difficult to balance this with increasing collection efficiency.

本発明は上記事情を改善するためになされたもので、互
に異なる触媒を単一のセラミック担体にそれぞれディー
ゼルエンジン排ガス流入側から流出側にかけて順次担持
させるか、あるいは互に異なる触媒をそれぞれ担持させ
た各担体を?!数個組み合せることによって、ディーゼ
ル排ガス中の微粒子を非常に効率よく浄化することがで
き、しかも目詰りの生じ難い浄化体を提供することを目
的とする。
The present invention has been made in order to improve the above-mentioned situation, and it is possible to support different catalysts on a single ceramic carrier in sequence from the diesel engine exhaust gas inflow side to the outflow side, or to support different catalysts respectively on a single ceramic carrier. What about each carrier? ! It is an object of the present invention to provide a purifier that can purify fine particles in diesel exhaust gas very efficiently by combining several purifiers and is less likely to be clogged.

即ち、本発明は上記目的を達成するため、互に異なる二
種以上の触媒をセラミック担体にそれぞれ排ガス流入側
から流出側にかけ−(順次担持させて、ディーゼル排ガ
スが順次互に異なる二種以上の触媒と接触するようにし
1=ものである。
That is, in order to achieve the above object, the present invention sequentially supports two or more different types of catalysts on a ceramic carrier from the exhaust gas inlet side to the outlet side. 1 = in contact with the catalyst.

以下、本発明につき更に詳しく説明する。The present invention will be explained in more detail below.

本発明に用いられる触媒としては、 (1)A:(a)銅及び銅化合物から選ばれたづくなく
とも1つ、 (13)モリブデン、バナジウム及びモリブデン化合物
、バナジウム化合物より選ばれたすくなくとも1つ、及
び (c)アルカリ金属化合物 の(a)、(b)、(C)の各成分からなる触媒系、 B:上記(a )、(b )、(C)の各成分とヂタニ
ア、γ−アルミナ、シリカ−アルミナから選ばれたりく
なくとも1つとを組み合せてなる触媒系、 C:チタン化合物、アルミニウム化合物、ジルコニウム
化合物、鉄化合物、クロム化合物等を単独で使用するか
又は複数組み合せた触媒系、(2)白金、パラジウム、
ルテニウム、ロジウム等を単独で使用するか又は複数組
み合旭た負金属触媒系、 (3)(2>成分の少なくとも1つとセリウム及び/又
はランタンとを組み合せた触媒系、(4)(1)成分の
少なくとも1つと(2)成分の少なくとも1つを組み合
せた触媒系が挙げられる。
Catalysts used in the present invention include: (1) A: (a) at least one selected from copper and copper compounds; (13) at least one selected from molybdenum, vanadium, molybdenum compounds, and vanadium compounds; , and (c) a catalyst system consisting of each of the components (a), (b), and (C) of an alkali metal compound, B: each of the components (a), (b), and (C) above and ditania, γ- A catalyst system selected from alumina, silica-alumina, or a combination of at least one of them; C: a catalyst system using a titanium compound, an aluminum compound, a zirconium compound, an iron compound, a chromium compound, etc. alone or in combination of two or more; , (2) platinum, palladium,
Negative metal catalyst system using ruthenium, rhodium, etc. alone or in combination, (3) Catalyst system combining at least one of the components (2) and cerium and/or lanthanum, (4) (1) Examples include catalyst systems that combine at least one of the components and at least one of the (2) components.

上記触媒系のうち、(1)、<4)の触媒系が主として
排ガス中の微粒子燃焼に有効な触媒であり、(2)、(
3)が主として微粒子が含有する炭化水素や排ガス中の
炭化水素、−酸化炭素等を燃焼させるのに有効な触媒で
ある。これらのうちでは、特に微粒子燃焼に(1)の触
媒系が好適に使用され、更に(1)のうちではAのもの
((a)、(b)、(c)の成分の組み合1)或いはB
のものが非常に好適に使用し得る。
Among the above catalyst systems, catalyst systems (1) and <4) are mainly effective catalysts for combustion of particulates in exhaust gas, and (2) and (
3) is an effective catalyst for burning mainly hydrocarbons contained in fine particles, hydrocarbons in exhaust gas, and carbon oxides. Among these, catalyst system (1) is particularly preferably used for particulate combustion, and among (1), catalyst system A (combination 1 of components (a), (b), and (c)) Or B
can be used very suitably.

この場合、(a )成分に用いる銅化合物としては、銅
の酸化物、硝酸塩、塩化物、臭化物等のハロゲン化物、
カルボン酸塩、亜硫酸塩、硫酸塩、リン酸m等が挙げら
れる。なa3、銅は一価のものでも二価のものでもよい
。これらのうちでは、特に銅の塩化物、硝酸塩、酸化物
などが好ましい。
In this case, the copper compounds used in component (a) include copper oxides, nitrates, chlorides, bromides, and other halides;
Examples include carboxylates, sulfites, sulfates, and phosphoric acid m. a3, copper may be monovalent or divalent. Among these, copper chlorides, nitrates, oxides, etc. are particularly preferred.

また、(b)成分は上述したようにモリブデン、バナジ
ウム、モリブデン化合物、バナジウム化合物から選ばれ
た少なくとも1つの化合物であるが、その具体例をあげ
れば、モリブデンJ5よびバナジウムの酸化物、硝酸塩
、ハロゲン化物、カルボン酸塩、亜@酸塩、リン!lI
塩および複合塩である。
In addition, as mentioned above, component (b) is at least one compound selected from molybdenum, vanadium, molybdenum compounds, and vanadium compounds, and specific examples thereof include molybdenum J5 and vanadium oxides, nitrates, and halogen Compounds, carboxylates, @ salts, phosphorus! lI
salts and complex salts.

モリブデン化合物に関しては、三酸化モリブデン、モリ
ブデン酸、モリブデン酸アンモニウム、塩化モリブデン
、硫化モリブデン、シュウ酸モリブデン、モリブデン酸
ナトリ゛ウム、モリブデン酸カリウムなどが挙げられる
。バナジウム化合物としては、金属バナジウム、バナジ
ン酸アンモニウム、二塩化バナジル、オキシ酸塩化バナ
ジウム、硫酸バナジル、五酸化バナジウム、三酸化バナ
ジウム、二塩化バナジウム、三塩化バナジウム、四塩化
バナジウム、バナジン酸リチウム、バナジン酸ナトリウ
ム、バナジン酸カリウムおよびこれらの酸化物焼成物な
どが挙げられる。また(C)成分はアルカリ金属化合物
であるが、具体的にはリチウム、ナトリウム、カリウム
、ルビジウムおよびセシウムの化合物から選ばれた少な
くとも1つである。
Examples of molybdenum compounds include molybdenum trioxide, molybdic acid, ammonium molybdate, molybdenum chloride, molybdenum sulfide, molybdenum oxalate, sodium molybdate, potassium molybdate, and the like. Vanadium compounds include metal vanadium, ammonium vanadate, vanadyl dichloride, vanadium oxyacid chloride, vanadyl sulfate, vanadium pentoxide, vanadium trioxide, vanadium dichloride, vanadium trichloride, vanadium tetrachloride, lithium vanadate, vanadate. Examples include sodium, potassium vanadate, and calcined oxides thereof. Component (C) is an alkali metal compound, specifically at least one selected from lithium, sodium, potassium, rubidium, and cesium compounds.

化合物の種類としては酸化物、硝酸塩、ハロゲン化物、
カルボン酸塩、亜硫酸塩、硫酸塩、リン酸塩などがあげ
られ、その中でも塩化物、硝酸塩などが好ましい。特に
、金属の種類として、カリウム、ナトリウム、リチウム
が好ましく、中でもそれらの塩化物がよく、塩化カリウ
ムが最も好ましい。また上記(a)、(b)および(C
)各成分の金属を複数個含むいわゆる複塩の形のものも
4N効である。上記(a)、(b)および(C)各成分
から成る触媒を調製するに当り、(a)、(b)、(C
)各成分の任意の量の水溶液を混合し、その混合液を浄
化体に担持させてもよいし、あるいは各成分の水溶液も
しくはこれらを溶解せしめる溶媒例えばアルコール等の
溶液を別個に、あるいは一部組合わせて浄化体へ順次担
持させていってもよい。熱噴射方法は(a)および/ま
たは(b)の金属成分を使用するときにも適用される。
Types of compounds include oxides, nitrates, halides,
Examples include carboxylates, sulfites, sulfates, and phosphates, among which chlorides and nitrates are preferred. Particularly, potassium, sodium, and lithium are preferable as metals, and among them, their chlorides are preferable, and potassium chloride is most preferable. In addition, the above (a), (b) and (C
) A so-called double salt containing multiple metals of each component is also 4N effective. In preparing a catalyst consisting of the above components (a), (b) and (C), (a), (b) and (C)
) It is possible to mix arbitrary amounts of aqueous solutions of each component and carry the mixed solution on a purifying body, or to separately or partially carry an aqueous solution of each component or a solution of a solvent such as alcohol to dissolve them. They may be combined and sequentially supported on the purifying body. The thermal injection method also applies when using metal components (a) and/or (b).

更に、Bの触媒、即ちAの触媒にチタニア、T−アルミ
ナおよびシリカ−アルミナから選ばれた少なくとも1つ
を組合せたものを使用することにより、より一層触媒の
効果を発揮しうる。この中でも、チタニアは好ましい結
果を与える。更に大きな特徴は、Bのものは触媒の耐熱
性が一層向上するということである。この理由としては
、Aの触媒各成分がチタニア、γ−アルミナ又はシリカ
−アルミナ表面上に広がって、有効でかつ安定な活性を
有する触媒面を形成するためであろうと考えられる。
Further, by using catalyst B, that is, catalyst A in combination with at least one selected from titania, T-alumina, and silica-alumina, the catalytic effect can be further exhibited. Among these, titania gives favorable results. An even more significant feature is that the heat resistance of the catalyst B is further improved. The reason for this is thought to be that each component of the catalyst A spreads over the titania, γ-alumina, or silica-alumina surface to form a catalytic surface with effective and stable activity.

なお、チタニア、γ−アルミナ、シリカ−アルミナは、
A触媒の各成分と混合して使用してもよいし、また予め
担体表面をこれらで被覆しておき、この上に(al(b
)、(C)各成分同時にあるいは別々に担持させてもよ
い。これらチタニア、γ−アルミナ、シリカ−アルミナ
の中でも、上記(a )、(b)、(C)各成分と複塩
をなしているもの、例えばチタン酸カリウム、チタン酸
ナトリウム等も有効であり、この場合は、これに含まれ
る(C)触媒成分番よ省略してもかまわない。
In addition, titania, γ-alumina, and silica-alumina are
It may be used by mixing with each component of catalyst A, or the surface of the carrier may be coated with these in advance and (al(b)
), (C) Each component may be supported simultaneously or separately. Among these titania, γ-alumina, and silica-alumina, those forming double salts with each of the above-mentioned components (a), (b), and (C), such as potassium titanate and sodium titanate, are also effective. In this case, the number of the catalyst component (C) contained therein may be omitted.

上記の触媒の各成分(a)、(1))、(C)は浄化体
に対し、0.01〜30重量パーセントの闇が担持され
るが、好ましくは0.1〜20重量パーセントの量であ
る。
Each component (a), (1)), and (C) of the above catalyst is carried in an amount of 0.01 to 30 weight percent, preferably 0.1 to 20 weight percent, relative to the purified body. It is.

上述した触媒は、単独系又は複合系として使用されるが
、複合系の場合、各種成分比で使用され、触媒系の成分
比を変化させることにより触媒の機能を所望に応じて極
々変化さゼることができる。
The above-mentioned catalysts are used either as a single system or as a composite system, but in the case of a composite system, they are used in various component ratios, and the function of the catalyst can be greatly changed as desired by changing the component ratio of the catalyst system. can be done.

また、前記触媒系を担持させる担体としては、各種のセ
ラミック製のものが使用され、例えばセラミックフオー
ム、セラミックハニカム、ハニカム状端末を1つ毎(封
じたつ4−ルフロー型のもの、アルミナ等の金属酸化物
よりなるペレット状のもの、セラミックファイバーより
なるものが使用されるが、特に各種の触媒を容易に担持
さ世ることができるセラミックフオームが好適に使用し
得る。
In addition, various types of ceramic carriers are used to support the catalyst system, such as ceramic foam, ceramic honeycomb, honeycomb-shaped terminals (sealed 4-flow type carriers, metals such as alumina, etc.). Pellets made of oxides and ceramic fibers are used, and ceramic foams, which can easily support various catalysts, are particularly preferred.

本発明の浄化体は、第1図に示づようにセラミック担体
1の一種を単独で使用し、これにその排ガス流入I92
から排ガス流出側3にかけ1互に異なる複数種(第1図
では二種)の触媒4,4′を担持させるようにしてもよ
く、まlこ第2図に示したように、複数個(第2図では
三個〉のセラミック担体1,1’、1″を使用し、これ
らセラミック担体1,1’、1″に互に異なる触媒4.
4’ 。
The purifying body of the present invention uses a type of ceramic carrier 1 alone as shown in FIG.
A plurality of different types (two types in FIG. 1) of catalysts 4, 4' may be supported from the exhaust gas outlet side 3 to the exhaust gas outlet side 3. In FIG. 2, three ceramic carriers 1, 1', 1'' are used, and different catalysts 4.
4'.

4″をそれぞれ担持させ、これらを組み合せるようにし
てもよい(なお、第2図に示すように三個以上のセラミ
ック担体を使用りる場合、触媒は常にセラミック担体と
同数種類とする必要はなく、互に同一の触媒を二f1以
上のセラミック担体に担持させて組み合せるよう゛にし
てもよい)。ここで、触媒及び担体の粗み合せ態様は必
ずしも制限されないが、排ガス流入側に配される触媒と
しては排ガス中の炭化水素、−酸化炭素の燃焼に好適な
触媒、特ニ前記(2)、(3)の触媒系が好ましく、ま
た排ガス流出側に配される触媒としては微粒子燃焼触媒
、特に前記(1)、(4)の触媒系が好ましい。更に、
担体は目の粗いものと綱がいものを組み合せて使用する
ことが好適で、特に排ガス流入側は目の和・いもの、排
ガス流出側は目の細がいものを配することが好ましい。
4" may be supported individually, and these may be combined. (In addition, when using three or more ceramic carriers as shown in Figure 2, it is not necessary to always use the same number of types of catalysts as the ceramic carriers.) (Instead, the same catalyst may be supported on ceramic carriers of 2 f1 or more and combined.) Here, the rough arrangement of the catalyst and carrier is not necessarily limited, but The catalyst suitable for the combustion of hydrocarbons and carbon oxides in the exhaust gas, particularly the catalyst systems of (2) and (3) above, are preferable, and the catalyst disposed on the exhaust gas outflow side is a particulate combustion catalyst. Catalysts, especially the catalyst systems (1) and (4) above, are preferred.Furthermore,
It is preferable to use a combination of a coarse mesh carrier and a rope carrier, and it is particularly preferable to use a medium mesh carrier on the exhaust gas inflow side and a narrow mesh carrier on the exhaust gas outlet side.

更に述べれば、排ガスの流入側で微粒子が含有するM化
水素及び排ガス中の炭化水素、−酸化炭素を燃焼させる
よう触媒成分を配し、かつ排出される微粒子の性質が作
用して浄化体の流入側の全面に微粒子が粘着し、このた
め担体の目を塞いで目詰りを起こし、排ガスの圧力損失
の上昇をもたらすことを防止するように担体を配するこ
とが好ましく、それ故排ガスの流入側には目の粗いセラ
ミックフオーム、セラミックベレット、セラミックハニ
カム等の微粒子の捕集に必ずしも好適で(よないが排ガ
ス中の炭化水素、−酸化炭素の燃焼に好適な担体を使用
し、これに前記(2)、(3)の負金属あるいは負金属
を主成分とした触媒系を担持させたものを配することが
好適であり、排ガス流出側には前記(1)、(4)の微
粒子燃焼に有効な触媒系を担持せしめた比較鉤目の細か
い(微粒子の補集効率に優れた)セラミック担体を配置
ることが好適である。この配列態様によれば、υ1ガス
流入側で先ず炭化水素、−酸化炭素等の成分が燃焼し、
これによってJJIガス温度が上昇し、このため排ガス
流出側で捕集された微粒子の燃焼が非常に容易となり、
排ガス浄化が効率よく行なわれる。
More specifically, a catalyst component is arranged to burn M-hydrogen contained in fine particles on the exhaust gas inflow side, as well as hydrocarbons and carbon oxides in the exhaust gas, and the properties of the discharged fine particles act to improve the purification body. It is preferable to arrange the carrier in such a way as to prevent fine particles from adhering to the entire surface of the inflow side, thereby blocking the holes of the carrier and causing clogging, resulting in an increase in the pressure loss of the exhaust gas. On the side, a carrier suitable for collecting fine particles such as coarse ceramic foam, ceramic pellet, ceramic honeycomb (although not necessarily suitable for combustion of hydrocarbons and carbon oxides in exhaust gas) is used, and the above-mentioned It is preferable to dispose a negative metal as described in (2) and (3) or a catalyst system containing negative metal as a main component, and the particulate combustion as described in (1) and (4) above is disposed on the exhaust gas outlet side. It is preferable to arrange a ceramic carrier with relatively fine hooks (excellent in particle collection efficiency) on which a catalyst system that is effective for , -components such as carbon oxide burn,
This increases the JJI gas temperature, which greatly facilitates the combustion of the particulates collected on the exhaust gas outlet side.
Exhaust gas purification is performed efficiently.

なお、本発明に使用されるセラミック担体としては、内
部連通空間を有する三次元網状骨格構造をなしたセラミ
ックフオームが好適であるが、セラミックフオームの複
数個を組み合せる場合、排ガス流入側に配置するセラミ
ックフオームは6〜50個/インチ、好適には6〜15
個/インチのセル数を有するものを使用し、排ガス流出
側には流入側よりもセル数が多く、しかも18〜150
Ill/インチ、好適には18〜80個/インチのセル
数を有するものを使用することが好ましい。
In addition, as the ceramic carrier used in the present invention, a ceramic foam having a three-dimensional network skeleton structure having an internal communication space is suitable, but when a plurality of ceramic foams are combined, they should be placed on the exhaust gas inflow side. 6 to 50 ceramic foams/inch, preferably 6 to 15
The number of cells per inch is larger on the exhaust gas outlet side than on the inlet side, and the number of cells is 18 to 150.
It is preferred to use one having a cell count of Ill/inch, preferably 18 to 80 cells/inch.

なお勿論、単一の担体の排ガス流入側に例えば負金属を
主成分とする前記触媒系(2)、(3)等を担持させ、
排ガス流出側に例えば触媒系(1)、(4)等を担持さ
せ、これらを焼成して複数の触媒を担持させた単一担体
かうなる浄化体として構成でることもできる。
Of course, the catalyst system (2), (3), etc. whose main component is a negative metal is supported on the exhaust gas inflow side of a single carrier,
For example, catalyst systems (1), (4), etc. may be supported on the exhaust gas outflow side, and these may be fired to support a plurality of catalysts, thereby forming a purifying body that is a single carrier.

なおまた、担体を組み合せる場合、その組み合U@様は
上述したものに限られず、更にセラミックフオームが各
種の触媒を担持させる目的に好適ではあるが、その他の
担体でもよく、例えばセラミックベレットを使用し、こ
のベレットを適当な容器、金属網などに収容し、これを
使用づ゛るようにしてもよい。
Furthermore, when combining carriers, the combination U@ is not limited to the above-mentioned ones, and although ceramic foam is suitable for supporting various catalysts, other carriers may be used, such as ceramic pellets. The pellet may be placed in a suitable container, metal mesh, etc., and then used.

更に、担体を配設する場合、担体を耐熱性金属網あるい
tよ緩衝材によって1つの缶に収容したり、エンジン排
ガス流出側の適宜数ケ所に担体を分配して配置するなど
、担体の配設態様も種々変更できる。
Furthermore, when arranging the carrier, the carrier may be housed in a single can with a heat-resistant metal mesh or a buffer material, or the carrier may be distributed and placed at several locations on the engine exhaust gas outlet side. The arrangement mode can also be changed in various ways.

本発明の浄化体をより効果的に実施するためには、タイ
ミングのよい高負荷、高速運転、スロットリング等のエ
ンジン操作が有効であるが、本発明に係る浄化体は、互
に異なる二種以上の触媒をセラミック担体にそれぞれ排
ガス流入側から流出側にかけて順次担持させて、ディー
ゼル排ガスが順次互に異なる二種以上の触媒と接触す゛
るようにしたことにより、従来の単一触媒、単一担体を
使用づる方法と比較して、圧力損失の上昇度がきわめて
緩やかであり、担体中でディーゼルυFガス微粒子が効
率よく燃焼づるもので、従来到達し得なかった浄化効率
、耐久性の向上が確実に図られ、より効率の高いディー
ゼル排ガス微粒子浄化が達成される。
In order to implement the purifying body of the present invention more effectively, it is effective to operate the engine with well-timed high load, high-speed operation, throttling, etc. However, the purifying body according to the present invention has two different types. By sequentially supporting the above catalysts on a ceramic carrier from the exhaust gas inflow side to the exhaust gas outflow side, diesel exhaust gas sequentially comes into contact with two or more different types of catalysts. Compared to the method that uses gas, the increase in pressure drop is extremely gradual, and the diesel υF gas particles burn efficiently in the carrier, ensuring improvements in purification efficiency and durability that were previously unattainable. As a result, more efficient diesel exhaust gas particulate purification can be achieved.

以下、実施例を示し、本発明を具体的に説明づるが、本
発明は下記の実施例に限定されるものではない。
EXAMPLES Hereinafter, the present invention will be specifically explained with reference to Examples, but the present invention is not limited to the following Examples.

[実施例] まず、下表に示すA、B、Cの3種類の内部連通空間を
有する三次元網状骨格構造のセラミックフオームを用意
した。
[Example] First, a ceramic form having a three-dimensional network skeleton structure having three types of internal communication spaces A, B, and C shown in the table below was prepared.

次いで、Aのセラミックフオームに対しては、これを塩
化白金酸5に対し塩化パラジウム2の混合比(原子比)
の水溶液に浸漬した後、150℃のオーブン中で1時間
乾燥させ、更に電気炉中で1時間焼成した。この場合、
白金とパラジウム合金の担持量は0.6g/Jである。
Next, for the ceramic foam A, it was mixed at a mixing ratio (atomic ratio) of 5 parts of chloroplatinic acid to 2 parts of palladium chloride.
After being immersed in an aqueous solution of , it was dried in an oven at 150°C for 1 hour, and further baked in an electric furnace for 1 hour. in this case,
The amount of platinum and palladium alloy supported is 0.6 g/J.

また、Bのセラミックフオームに対しては、これを塩化
銅/モリブデン蒙アンモニウム/塩化カリウム混合水溶
液とAで使用した塩化白金酸−塩化パラジウム水溶液と
の混合水?11m (Ca/Mo/に/Pt/Pd(原
子比)−4/2/410.0510.02)に浸漬費、
八と同様の操作で乾燥、焼成した。
Also, for the ceramic foam B, use the mixed water of the copper chloride/molybdenum ammonium/potassium chloride mixed aqueous solution and the chloroplatinic acid-palladium chloride aqueous solution used in A? Immersion cost in 11m (Ca/Mo/Ni/Pt/Pd (atomic ratio)-4/2/410.0510.02),
It was dried and fired in the same manner as in step 8.

また更に、Cのセラミックフオームに対しては、これを
塩化銅/モリブデン酸アンモニウム/塩化カリウム混合
水溶液(CLL/MO/に/ (原子比)=10/2/
10)に浸漬後、Aと同様の操作で乾燥、焼成した。
Furthermore, for the ceramic foam C, this was added to a mixed aqueous solution of copper chloride/ammonium molybdate/potassium chloride (CLL/MO// (atomic ratio) = 10/2/
After dipping in 10), it was dried and fired in the same manner as in A.

前記のようにして得られた触媒が担持されたセラミック
フオームA、B、Cを第2図に示すようにAを排ガス流
入側、Cを排ガス流出側、BをAとCの中間になるよう
に配し、所定の缶に収めて1.81デイーゼルエンジン
の排気口に装着後、エンジンを運転して排ガス微粒子の
捕集効率、圧力損失の上昇度を調べた。
Ceramic foams A, B, and C on which the catalysts obtained as described above are supported are placed so that A is on the exhaust gas inflow side, C is on the exhaust gas outlet side, and B is halfway between A and C, as shown in Fig. 2. After placing it in a specified can and attaching it to the exhaust port of a 1.81 diesel engine, the engine was operated to examine the exhaust gas particulate collection efficiency and the degree of increase in pressure loss.

その結果、初期圧力損失は80WIWl鵬、10時間運
転後の圧力損失は90wm)bで、この間のディーゼル
排ガス中の微粒子の捕集効率は55%であった。
As a result, the initial pressure loss was 80 wm), and the pressure loss after 10 hours of operation was 90 wm)b, and the efficiency of collecting particulates in diesel exhaust gas during this period was 55%.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のディーゼル排ガス微粒子浄化体の一実
施例を示す側面断面図、第2図は本発明の他の実施例を
示−d11断面図である。 1.1’、1″・・・・・・セラミック担体、2・・・
・・・・・・・・・排ガス流入側、3・・・・・・・・
・・・・排ガス流出側、4.4’、4″・・・・・・触
媒。 出願人 ブリデストンタイヤ株式会社 代理人 弁理士 小 島 隆 司
FIG. 1 is a side sectional view showing one embodiment of the diesel exhaust gas particulate purifier of the present invention, and FIG. 2 is a sectional view taken along line-d11 of another embodiment of the present invention. 1.1', 1''...Ceramic carrier, 2...
......Exhaust gas inflow side, 3...
...Exhaust gas outflow side, 4.4', 4"...Catalyst. Applicant: Brideston Tire Co., Ltd. Agent Patent attorney: Takashi Kojima

Claims (1)

【特許請求の範囲】[Claims] 1、互に異なる二種以上の触媒をセラミック担体にそれ
ぞれ排ガス流入側から流出側にかけて順次担持させて、
ディーゼル排ガスが順次互に異なる二・種以上の触媒と
接触するようにしたことを特徴とづるディーゼル排ガス
微粒子浄化体。
1. Two or more different types of catalysts are sequentially supported on a ceramic carrier from the exhaust gas inflow side to the exhaust gas outflow side,
A diesel exhaust gas particulate purifier characterized in that diesel exhaust gas is brought into contact with two or more different types of catalysts in sequence.
JP58165615A 1983-09-08 1983-09-08 Fine particle purifier for exhaust gas of diesel-engine Pending JPS6056115A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58165615A JPS6056115A (en) 1983-09-08 1983-09-08 Fine particle purifier for exhaust gas of diesel-engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58165615A JPS6056115A (en) 1983-09-08 1983-09-08 Fine particle purifier for exhaust gas of diesel-engine

Publications (1)

Publication Number Publication Date
JPS6056115A true JPS6056115A (en) 1985-04-01

Family

ID=15815726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58165615A Pending JPS6056115A (en) 1983-09-08 1983-09-08 Fine particle purifier for exhaust gas of diesel-engine

Country Status (1)

Country Link
JP (1) JPS6056115A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020083033A (en) * 2001-04-25 2002-11-01 한국델파이주식회사 Catalytic converter for vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020083033A (en) * 2001-04-25 2002-11-01 한국델파이주식회사 Catalytic converter for vehicle

Similar Documents

Publication Publication Date Title
JP3061399B2 (en) Diesel engine exhaust gas purification catalyst and purification method
JP3185448B2 (en) Exhaust gas purification catalyst
EP1368107B1 (en) A catalyzed diesel particulate matter exhaust filter
EP0092023B1 (en) Use of a catalyst for cleaning exhaust gas particulates
JP3952617B2 (en) Exhaust gas purification device, exhaust gas purification method and exhaust gas purification catalyst for internal combustion engine
JP2004216305A (en) Exhaust gas purification catalyst, exhaust gas purification material using same, and production method therefor
CN113181910B (en) Marine diesel engine high-sulfur tail gas particle trapping catalyst and preparation method thereof
JP5604497B2 (en) Exhaust gas purification catalyst
JPS6056115A (en) Fine particle purifier for exhaust gas of diesel-engine
JP2002102704A (en) Waste gas cleaning catalyst and waste gas cleaning material using the same
JP2577757B2 (en) Diesel exhaust gas purification catalyst
JP2003080081A (en) Catalyst for cleaning exhaust gas
JP3626999B2 (en) Exhaust gas purification material and exhaust gas purification method
JP2010227739A (en) Catalytic material and catalyst for cleaning exhaust gas from internal-combustion engine
JP3925015B2 (en) Internal combustion engine exhaust gas purification device, purification method, and purification catalyst
JP2003062432A (en) Exhaust gas cleaning method
JPS5982944A (en) Catalystic medium for eliminating fine particle in waste gas
JP2002331241A (en) Exhaust gas cleaning catalyst and exhaust gas cleaning material
JPH10272363A (en) Catalyst for exhaust gas purification
JPH08257405A (en) Catalyst for decomposition of nitrogen oxide and method for removing nitrogen oxide in exhaust gas from diesel engine by using the same
JPH07299361A (en) Catalyst for purifying exhaust gas and purifying method thereof
JPH0966223A (en) Catalyst mechanism for purifying exhaust gas and purification of exhaust gas
JPH07256113A (en) Catalyst for purification of exhaust gas
JPH08309189A (en) Combustion gas purifying material and purification of combustion gas
JPH02144148A (en) Catalyst for purification of fine particles in exhaust gas