JPS605598A - Method of producing high thermal conductive metal base printed board - Google Patents

Method of producing high thermal conductive metal base printed board

Info

Publication number
JPS605598A
JPS605598A JP11373683A JP11373683A JPS605598A JP S605598 A JPS605598 A JP S605598A JP 11373683 A JP11373683 A JP 11373683A JP 11373683 A JP11373683 A JP 11373683A JP S605598 A JPS605598 A JP S605598A
Authority
JP
Japan
Prior art keywords
thermally conductive
highly thermally
adhesive
insulating layer
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11373683A
Other languages
Japanese (ja)
Inventor
新田 功
泰彦 堀尾
田辺 謙造
尾島 信行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP11373683A priority Critical patent/JPS605598A/en
Publication of JPS605598A publication Critical patent/JPS605598A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、電子機器に利用される放熱性の優れた高熱伝
導性金属ベースプリント基板の製造方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for manufacturing a highly thermally conductive metal-based printed circuit board with excellent heat dissipation properties used in electronic equipment.

従来例の構成とその問題点 近年、電子機器分野においては、小型化、軽量化の方向
にあり、IC,MSI 、LSIなどの高発熱部品をい
かに放熱し、高密度実装するかが大きな課題となってき
ている。
Conventional configurations and their problems In recent years, the field of electronic devices has been trending toward smaller size and lighter weight, and the major issue has been how to dissipate heat from high-heating components such as ICs, MSIs, and LSIs, and how to mount them in high density. It has become to.

従来、プリント基板は、基板材料に紙フエノール樹脂積
層板あるいはガラス基材エポキシ樹脂績層板などの有機
高分子材料や、アルミナ基板などのセラミック材料が用
いられているが、いずれも熱伝導率が小さく熱放散が不
十分なため前記発熱部品を高密度に実装することができ
ない欠点があった。そこで耐熱性と熱伝導性に優れた金
属をベースとした高熱伝導性金属ベースプリント基板が
開発されてきた。この高熱伝導性金属ベースプリント基
板は導体と金属ベース間に内層される絶縁層が有機高分
子材料ででき、放熱性を良くするために3oμm〜4o
μmと薄く形成されている。
Conventionally, printed circuit boards have been made of organic polymer materials such as paper phenolic resin laminates or glass-based epoxy resin laminates, or ceramic materials such as alumina substrates, but both have low thermal conductivity. Since the heat dissipation is small and heat dissipation is insufficient, the heat generating components cannot be mounted in a high density. Therefore, highly thermally conductive metal-based printed circuit boards based on metals with excellent heat resistance and thermal conductivity have been developed. In this highly thermally conductive metal-based printed circuit board, the inner insulation layer between the conductor and the metal base is made of an organic polymer material, and is 3oμm to 4oμm in order to improve heat dissipation.
It is formed as thin as μm.

以下、図面を参照しながら従来の高熱伝導性金属ベース
プリント基板の製造方法について説明する。第1図(a
) 、 (b)は、従来の高熱伝導性金属ベースプリン
ト基板の製造工程における断面図である。
Hereinafter, a conventional method for manufacturing a highly thermally conductive metal-based printed circuit board will be described with reference to the drawings. Figure 1 (a
) and (b) are cross-sectional views in the manufacturing process of a conventional highly thermally conductive metal-based printed circuit board.

第1図(a) +”(b)で1は導体、2は絶縁層、3
は金属ベースを示している。従来の高熱伝導性金属ベー
スプリント基板の製造方法は、最初に、第1図(a)に
示すように銅箔を使用した導体1にエポキシ樹脂系、フ
ェノール樹脂系等の有機高分子接着剤を絶縁層2として
塗布したものを第1図(b)に示す金属ベース3に積層
し、加熱しながらプレスし、貼り合せられる。前記ミ有
機高分子接着剤を絶縁層2として導体1に塗布する方法
は、一般に長尺の導体1(例えば電解銅箔)をロールコ
ータ−で均一に塗布し、溶剤除去のための乾燥工程を経
て巻取るコンベアシステムによって能率よく行われてい
る。この従来の高熱伝導性金属ベースプリント基板は、
絶縁層2として打機高分子接着剤だけでなりたっている
ため、絶縁層2として粘度の低い有機高分子接着剤を3
0μm〜40μmと薄く塗布しても絶縁耐圧等の眠気的
容叶(静電容−:i′L)問題がないこと、併せて可撓
性もあることから:1)産には、量産性の最も良いロー
ルコータ−で、導体1上に前記有機高分子接着剤を塗布
しているのが実情である。しかし近年、高熱伝導性金属
ベースプリント基板において、さらに放熱特性を良くす
るために、前記絶縁層2として接着性のある有機高分子
中に高熱伝導性フィラーを分散したものが開発されてき
た。この場合、放熱特性を向上させるがために多量の高
熱伝導性フィラーを分散させるために、l’l?J記従
米の有従来分子接着剤だけでなるP3縁層に比べて塗布
時の粘度が極めて大きくなり、従って塗布中に気泡を巻
き込み、硬化後にその気泡がそのまま残存し、絶縁耐圧
に問題があり、その上硬化した絶縁層2が脆いものであ
った。また、高熱伝導性フィラーの粒子径、分散性が影
響して塗布厚み方向に塗布むらが生じゃすく、導体1と
金属ベース3を貼り合した後の接着力にむらが生じ強固
で均一な接着強度が得られないものであった。また、高
熱伝導性フィラーとして、1透電率の大きいアルミナ(
誘電率4〜4.3)°などの粉末を入れるためプリント
配線基板とした時の電気的容・廿(静心容:41)が大
きくなり、この対策に絶縁層を厚く形成する必要がある
ことなどから、この種の高熱伝導性金属ベースプリント
基板は、前記気泡によって絶縁1劇圧および接着強度が
弱い点。
In Figure 1(a) +''(b), 1 is a conductor, 2 is an insulating layer, and 3
indicates a metal base. In the conventional manufacturing method for highly thermally conductive metal-based printed circuit boards, first, as shown in Figure 1(a), an organic polymer adhesive such as epoxy resin or phenol resin is applied to a conductor 1 made of copper foil. The coated insulating layer 2 is laminated on the metal base 3 shown in FIG. 1(b), and is bonded by pressing while heating. The method of applying the organic polymer adhesive to the conductor 1 as the insulating layer 2 generally involves uniformly applying the long conductor 1 (for example, electrolytic copper foil) with a roll coater, and then performing a drying process to remove the solvent. This is done efficiently using a conveyor system that winds up the material. This conventional high thermal conductivity metal-based printed circuit board is
Since the insulating layer 2 is made of only a molded polymer adhesive, a low viscosity organic polymer adhesive is used as the insulating layer 2.
Even when applied as thin as 0 μm to 40 μm, there is no problem with drowsy appearance (electrostatic capacitance -: i'L) such as withstand voltage, and it is also flexible.1) For production, mass production is required. The reality is that the organic polymer adhesive is applied onto the conductor 1 using the best roll coater. However, in recent years, in order to further improve the heat dissipation characteristics of highly thermally conductive metal-based printed circuit boards, the insulating layer 2 has been developed in which a highly thermally conductive filler is dispersed in an adhesive organic polymer. In this case, l'l? The viscosity during coating is extremely high compared to the conventional P3 edge layer made of molecular adhesive only, and therefore air bubbles are drawn in during coating, and the bubbles remain after curing, causing problems with dielectric strength. Moreover, the cured insulating layer 2 was brittle. In addition, due to the particle size and dispersibility of the highly thermally conductive filler, uneven coating occurs in the coating thickness direction, and the adhesive force after bonding the conductor 1 and metal base 3 becomes uneven, resulting in a strong and uniform bond. It was not possible to obtain strength. In addition, as a high thermal conductivity filler, alumina (1), which has a high conductivity
Because it contains powder with a dielectric constant of 4 to 4.3)°, the electrical capacitance (static capacitance: 41) when used as a printed wiring board increases, and as a countermeasure to this, it is necessary to form a thick insulating layer. For this reason, this type of highly thermally conductive metal-based printed circuit board has weak insulation pressure and adhesive strength due to the air bubbles.

絶縁層を厚く塗布する点などの課題をr:liたす塗布
方法、貼り合せ方法が必要であり、単純に従来の口〜ル
コ〜す方法で導体・1創に塗布し、熱プレスで金属ベー
スと積層するのでは、塗布・乾燥後に導体が反ったり、
絶縁層か割れたりするなどの問題が発生ものであった。
A coating method and bonding method that overcomes issues such as applying a thick insulating layer is necessary, and it is simply applied to one conductor wound using the conventional coating method, and then applied to the metal using a heat press. When laminated with the base, the conductor may warp after coating and drying.
Problems such as cracking of the insulation layer occurred.

発明の目的 本発明は、前記欠点に鑑み接4件のある有機高分子中に
高熱伝導性フィラ〜を分散した高熱伝導性絶縁層を設け
た高熱伝導性金属ベースプリント基板を歩留り良く、容
易に吸造ができるようにするものである。
Purpose of the Invention In view of the above-mentioned disadvantages, the present invention provides a highly thermally conductive metal-based printed circuit board having a highly thermally conductive insulating layer in which a highly thermally conductive filler is dispersed in an organic polymer with high yield. This allows suction to be made.

発明の構成 上記目的を達成するために、本発明は金属ベースまたは
導体に、接着性のある有機高分子中に高熱伝導性フィラ
ーを分散した高熱伝導性接着剤からなる絶縁物を塗布、
硬化して硬化絶縁層を形成し、さらに前記硬化絶縁層に
前記高熱伝導性接着剤と同じ高熱伝導性接着剤からなる
絶縁物を塗布。
Structure of the Invention In order to achieve the above object, the present invention includes coating a metal base or a conductor with an insulator made of a highly thermally conductive adhesive in which a highly thermally conductive filler is dispersed in an adhesive organic polymer.
A cured insulating layer is formed by curing, and an insulator made of the same high thermal conductive adhesive as the high thermal conductive adhesive is further applied to the cured insulating layer.

乾燥して接着絶縁層を形成し、前記接着絶縁層に導体ま
たは金属ベースを積層し、高温の熱ロールプレスで接着
するものであり、これにより、1)IJ記砂硬化絶縁層
接着絶縁層からなる高熱伝導性絶縁層に発生する気泡に
よる絶縁耐圧の問題が解決できるとともに金属ベースと
導体間の接着力が均一で強固になる。丑だ、高熱伝導性
絶縁層を厚く形成でき、その上、金属ベース側に高熱伝
導性接着剤を塗布すれは、製造工程で高熱伝導性絶縁層
(前記高熱伝導性接着剤を硬化したもの)が割れる問題
もなくなるなど、製造が歩醒り良く容易になるものであ
る。
It is dried to form an adhesive insulating layer, a conductor or a metal base is laminated on the adhesive insulating layer, and the adhesive is bonded with a hot roll press at a high temperature. This solves the problem of dielectric strength caused by air bubbles that occur in the highly thermally conductive insulating layer, and also makes the adhesive force between the metal base and the conductor uniform and strong. If you can form a thick high thermal conductive insulating layer and also apply a high thermal conductive adhesive on the metal base side, you can create a high thermal conductive insulating layer (cured by curing the high thermal conductive adhesive) during the manufacturing process. This eliminates the problem of cracking, making manufacturing easier and faster.

実施例の説明 以下、本発明の一実施例について図面を参照しながら説
明する。
DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

第2図(a)〜(c)は、本発明の一実施例における高
熱伝導性金属ベースプリント基板の製造方法に関する各
工程における断面図である。第2図(、)〜(c)にお
いて、4は金属ベース、5は硬化絶縁層6は接着絶縁層
、7は導体を示し、第2図(、)〜(c)の過程を経な
がら、金属ベース4と導体7が硬化絶縁層5および接着
絶縁層6を介して貼り合せられ製造されるものである。
FIGS. 2(a) to 2(c) are cross-sectional views at each step of a method for manufacturing a highly thermally conductive metal-based printed circuit board in an embodiment of the present invention. In FIGS. 2(,) to (c), 4 is a metal base, 5 is a cured insulating layer 6 is an adhesive insulating layer, and 7 is a conductor. The metal base 4 and the conductor 7 are bonded together with a hardened insulating layer 5 and an adhesive insulating layer 6 interposed therebetween.

上記のようにイ(14成された本実施例の高熱伝導性金
属ベースプリント基板の製造方法について以下に説明す
る。まず第2図(−)では金属ベース4に、接着性のあ
る有機高分子中に高熱伝導性フィラーを分散した高熱伝
導性接着剤を、ブレードコータ一方法、スクリーン印刷
方法、メタルマスク印刷方法、あるいはロールコータ一
方法などのいずれかを単独または併用して塗布し、10
0’C以上の温度で乾燥・硬化する工程を経て硬化絶縁
層6を形成する。次に第2図(b)において前記と同質
の高熱伝導性接着剤および塗布方法によって接着絶縁層
6を硬化絶縁層5上に積層塗布し、50℃〜1501C
の温度で短時間接着性のある未硬化の状態に乾燥する。
The manufacturing method of the highly thermally conductive metal-based printed circuit board of this example, which was made as described above (14), will be explained below. First, in FIG. A highly thermally conductive adhesive having a highly thermally conductive filler dispersed therein is applied by any one of a blade coater method, a screen printing method, a metal mask printing method, a roll coater method, etc. alone or in combination, and 10
A cured insulating layer 6 is formed through a process of drying and curing at a temperature of 0'C or higher. Next, in FIG. 2(b), an adhesive insulating layer 6 is laminated and coated on the cured insulating layer 5 using the same high thermal conductive adhesive and coating method as described above, and the temperature is 50°C to 1501°C.
Dries briefly to an adhesive uncured state at a temperature of .

それから、第2図(c)によって銅箔等の導体7を11
」記塗布した接着絶縁層6に積層し、接着絶層6が硬化
反応を起すにたりる温度に加温した熱ロールプレス(図
示しない)に通して、接着絶縁層6に導体7を接着、貼
り合せられる。これが本発明における高熱伝導性金属ベ
ースプリント基板の製造方法の基本工程であるが、さら
に前記接着絶縁層6に導体7を接着、貼り合わせた後工
程に、接着絶縁層6が接着剤として十分その機能を果す
ように、例えば150℃以上の温度で加熱エージングす
る工程を通常の熱風循環式乾燥機または熱プレスなどを
使ってもよい。また、絶縁層6を形成する工程にも、前
記硬化絶縁層5の厚みの均一化、および高密度化などを
目的として、乾燥または硬化後に前記熱プレスまたは熱
ロールプレスで加熱しながらプレスする工程を付加する
などの工程を行う。
Then, as shown in FIG. 2(c), conductor 7 made of copper foil or the like is
The conductor 7 is bonded to the adhesive insulating layer 6 by laminating it on the adhesive insulating layer 6 coated as described above, and passing it through a heated roll press (not shown) heated to a temperature that causes the adhesive insulating layer 6 to undergo a curing reaction. Can be pasted together. This is the basic step of the method for manufacturing a highly thermally conductive metal-based printed circuit board according to the present invention.Furthermore, in the subsequent step of adhering and laminating the conductor 7 to the adhesive insulating layer 6, the adhesive insulating layer 6 is used as an adhesive. In order to achieve the desired function, the heating aging step at a temperature of 150° C. or higher may be performed using a conventional hot air circulation dryer or a hot press. Also, in the step of forming the insulating layer 6, in order to make the thickness of the cured insulating layer 5 uniform and to increase its density, there is a step of pressing while heating with the heat press or hot roll press after drying or curing. Perform processes such as adding .

以上のように本実施例によれば、硬化絶縁層5と接着絶
縁層6の、少なくとも2層を塗布することから絶縁耐圧
特性に問題となる気泡がなくなる。
As described above, according to this embodiment, since at least two layers, the cured insulating layer 5 and the adhesive insulating layer 6, are coated, there are no air bubbles that would cause problems with dielectric strength characteristics.

また、本発明の接着性のある有機高分子に高熱伝導性フ
ィラーを入れた高熱伝導接着剤は放熱特性を向上するた
め前記高熱伝導性フィラーを高配合する必要があり、粘
度が大きい。このため、塗布方法は、粘度によって上記
したブレードコータ一方法、スクリーン印刷方法、メタ
ルマスク印刷方法、あるいはロールコータ一方法の中か
ら最適な方法を単独、または併用して選択することにな
るが、どの方法によっても有機高分子接着イ1jのみで
形成された従来のものに比べ、塗布厚みの塗布むらが極
めて大きい。これは、導体7と貼り合せた時従来は、面
で加工する熱プレス方式であるため、そのま丑圧力むら
となり、接着力に大きなむらが生じる欠点となっていた
。これが本発明にみる、線で加工する熱ロールプレスに
することによって前記接着むらがなくなり接着強度が強
固になる。
In addition, the high thermal conductive adhesive of the present invention, which is made by adding a highly thermally conductive filler to an adhesive organic polymer, requires a high content of the highly thermally conductive filler in order to improve heat dissipation properties, and has a high viscosity. Therefore, depending on the viscosity, the most suitable coating method is selected from the above-mentioned blade coater method, screen printing method, metal mask printing method, or roll coater method, either alone or in combination. No matter which method is used, the unevenness in coating thickness is extremely large compared to the conventional one formed using only organic polymer adhesive 1j. This is because conventionally, when bonding with the conductor 7, a heat press method was used in which the surface was processed, resulting in uneven pressure, which resulted in a drawback of large unevenness in adhesive strength. However, according to the present invention, by using a hot roll press that processes with a wire, the above-mentioned adhesive unevenness is eliminated and the adhesive strength becomes strong.

次に前記塗布むらについては、硬化絶縁層5を形成する
過程において、塗布後プレスする工程を伺加すれば塗布
むらがなくなり、塗布厚みの均一化と高密度化が図れ、
導体7と金属ベース4間の接着強度がいっそう改善でき
るものである。次めで導体Yと金属ベース4間の接着強
度については、接着性のある有機高分子の接着機能に由
来するものであり、長時間加熱しないと接着のための硬
化反応か生じないものに関しては、接着絶縁層6と導体
7間の接着は前記熱ロールプレスだけによる接着では、
仮接着にすぎないため、加熱エージング加工を寸加して
完全硬化を図り、接着を強固なものにしている。さらに
は本実施にみるように金属ベース4側に高熱伝導性接着
剤を塗布すれば、製造工程で硬化絶縁層5、接着絶縁層
6の高熱伝導性絶縁層が割れる問題もなくなる。
Next, regarding the uneven coating, if a pressing step is added after coating in the process of forming the cured insulating layer 5, the uneven coating can be eliminated, and the coating thickness can be made uniform and the density can be increased.
The adhesive strength between the conductor 7 and the metal base 4 can be further improved. Next, regarding the adhesive strength between the conductor Y and the metal base 4, it is derived from the adhesive function of the adhesive organic polymer. The adhesion between the adhesive insulating layer 6 and the conductor 7 is achieved only by the hot roll press.
Since it is only a temporary bond, the heat aging process is increased to fully cure it, making the bond strong. Furthermore, if a highly thermally conductive adhesive is applied to the metal base 4 side as seen in this embodiment, the problem of cracking of the highly thermally conductive insulating layers of the cured insulating layer 5 and the adhesive insulating layer 6 during the manufacturing process will be eliminated.

次に塗布方法としてスクリーン印刷方法を採用した具体
的実施例について図面を参照しながら説明する。
Next, a specific example in which a screen printing method is adopted as a coating method will be described with reference to the drawings.

第3図(、)〜(e)は、スクリーン印刷方式を使って
高熱伝導性接着剤を塗布した本発明の一実施例における
高熱伝導性金属ベースプリント基板の製造方法を示した
説明図である。第3図(al〜(e)までの過程を経て
製造され、4aは金属ベース、5aは硬化絶縁層、6a
は接着絶縁層、7aは導体、8aおよび8bは熱ロール
プレス、9は補助加熱ヒータ、10aおよび10bは当
て板、11aおよび11bは熱プレスを示している。ま
ず、第3図(a)において金属ベース4a上に高熱伝導
性接着剤を100メソシユ〜300メツシユのマスクで
スクリーン印刷を行い絶縁物を塗布する。このスクリー
ン印刷方式による塗布はスキージの弾性などの関係で第
3図(、)のように周辺が厚く塗布される。
FIGS. 3(a) to 3(e) are explanatory diagrams showing a method for manufacturing a highly thermally conductive metal-based printed circuit board according to an embodiment of the present invention, in which a highly thermally conductive adhesive is applied using a screen printing method. . Manufactured through the steps shown in Fig. 3 (al to (e)), 4a is a metal base, 5a is a hardened insulating layer, 6a
7a is an adhesive insulating layer, 7a is a conductor, 8a and 8b are hot roll presses, 9 is an auxiliary heater, 10a and 10b are backing plates, and 11a and 11b are hot presses. First, as shown in FIG. 3(a), a highly thermally conductive adhesive is screen printed on a metal base 4a using a mask of 100 to 300 mesh to coat an insulator. Due to the elasticity of the squeegee, coating by this screen printing method results in thick coating at the periphery as shown in FIG. 3 (,).

元来、高熱伝導性接着剤が塗布むらの出やすい性状であ
ることを含めて考えると、前記スクリーン印刷で塗布し
た硬化絶縁層5aは、厚みの均一化を図る必要がある。
Taking into consideration the fact that highly thermally conductive adhesives are prone to uneven coating, the cured insulating layer 5a applied by screen printing needs to have a uniform thickness.

このため第3図(b)において、未硬化ないし半硬化状
態に乾燥した硬化絶縁層5aを、矢印の向きに回転して
いる加熱した熱ロールプレス8aおよび8bで軟化させ
ながらプレスし、前記硬化絶縁層5aの表面を平滑およ
び厚みの均一化を図っている。次に第3図(C)では、
同じようにスクリーン印刷方式によって高熱伝導性接着
剤を塗布し、接着絶縁層6aを形成し、未硬化の状態に
乾燥した後、第3図(d)によって導体7aを積層し貼
り合せる。第3図(d)では、熱ロールブ1/ス8dお
よび8bを高温(’120℃以上)に加熱はしているが
、接着絶縁層6aの硬化反応度には、不足するため、予
備加熱として補助加熱ヒータ9を設け、プレス前に接着
絶縁層6“を軟化した状態にしてから熱ロールプレス8
aおよび8bに挿入するようにしている。このようにし
て得られた高熱伝導性金属ベースプリント基板は、接着
絶縁層6aを完全硬化し、接着強度を向上させるために
、さらに第3図(e)に示すように高fA’t’+’ 
(120℃以上)に加熱した熱プレス11aおよび11
bを使って、金属性の当て板10aおよび10bを火花
させてプレスしな7J)ら加熱エージングを行っている
。このようにして、気泡による絶縁耐圧上の課題、高粘
度のものを高熱伝導性絶縁層として厚く塗布したい課題
、均一で強固な接着強度を得る課題等を達成する高熱伝
導性金属ベースプリント基板が得られる。
For this reason, in FIG. 3(b), the cured insulating layer 5a, which has been dried to an uncured or semi-cured state, is pressed while being softened by heated hot roll presses 8a and 8b rotating in the direction of the arrow, and the cured insulating layer 5a is The surface of the insulating layer 5a is made smooth and the thickness is made uniform. Next, in Figure 3 (C),
Similarly, a highly thermally conductive adhesive is applied using the screen printing method to form an adhesive insulating layer 6a, and after drying to an uncured state, a conductor 7a is laminated and bonded as shown in FIG. 3(d). In FIG. 3(d), although the heat rolls 8d and 8b are heated to a high temperature (above 120°C), the curing reactivity of the adhesive insulating layer 6a is insufficient, so preheating is performed. An auxiliary heater 9 is provided to soften the adhesive insulating layer 6" before pressing, and then the hot roll press 8
A and 8b are inserted. In order to completely cure the adhesive insulating layer 6a and improve the adhesive strength, the highly thermally conductive metal-based printed circuit board thus obtained has a high fA't'+ as shown in FIG. 3(e). '
Heat presses 11a and 11 heated to (120°C or higher)
The heating aging is performed by pressing the metallic backing plates 10a and 10b with sparks using 7J). In this way, we have created a highly thermally conductive metal-based printed circuit board that solves the problems of dielectric strength caused by air bubbles, the need to thickly apply a highly viscous material as a highly thermally conductive insulating layer, and the problem of achieving uniform and strong adhesive strength. can get.

次に本発明に使用するところの高熱伝導性接着剤につい
て説明する。前記高熱伝導性接着剤は、接着性のある有
機高分子中に高熱伝導性フィラーを各種添加剤と共にバ
ンバリーミキサ−、ロールミルなどの混合機を用いて混
練したペースト状の組成物である。ここで接着のある有
機高分子としては、100℃〜200℃で硬化反応をお
こして硬化する高温硬化型のもので耐熱性があることが
必要であり、例えば、シアン酸エステル樹脂、シアン酸
エステル−マレイミド樹Jltt? 、シアン酸エステ
ル−マレイミド−エポキシ樹脂なとのシアン酸エステル
系樹脂組成物、フェノール(も1脂、エポキシ樹脂、メ
ラミン樹脂、不飽和ポリエステル樹脂、ポリイミド樹脂
などの熱硬化性樹脂や、ポリビニルブチラーノペブタジ
エン樹脂などの熱可塑性樹脂で変性したシアン酸エステ
ル樹脂、シアン酸エステル−マレイミド樹脂、シアン・
酸エステルーマレイミドーエポキシ樹脂などかあけられ
る。一方高熱伝導性フィラーとしては、窒化ボロン、窒
化ケイ素、窒化アルミニウムなどの窒化物やアルミナ、
マグネシアなどの金属酸化物などがあげられる。中でも
アルミナの粉末は、熱伝導率、電気的特性が優れている
上に、形状2粒径も昧富で入手性が良く、その上高配合
に充填できる特徴かある。
Next, the highly thermally conductive adhesive used in the present invention will be explained. The highly thermally conductive adhesive is a paste-like composition obtained by kneading a highly thermally conductive filler in an adhesive organic polymer together with various additives using a mixer such as a Banbury mixer or a roll mill. The adhesive organic polymer must be of a high temperature curing type that undergoes a curing reaction at 100°C to 200°C and has heat resistance, such as cyanate ester resin, cyanate ester resin, etc. -Maleimide tree Jltt? , cyanate ester-based resin compositions such as cyanate ester-maleimide-epoxy resins, thermosetting resins such as phenol resins, epoxy resins, melamine resins, unsaturated polyester resins, polyimide resins, and polyvinyl butyrano resins. Cyanate ester resin modified with thermoplastic resin such as pbutadiene resin, cyanate ester-maleimide resin, cyanide ester resin,
Acid ester-maleimide epoxy resin etc. can be used. On the other hand, high thermal conductivity fillers include nitrides such as boron nitride, silicon nitride, and aluminum nitride, alumina,
Examples include metal oxides such as magnesia. Among them, alumina powder has excellent thermal conductivity and electrical properties, is available in a wide variety of shapes and particle sizes, and is also characterized by its ability to be packed in high proportions.

このため少なくとも本発明に使用する高熱伝導性フィラ
ーとしてはアルミナの粉末を単独もしくは他の高熱伝導
性フィラーと複合した組成でなるものが使われる。丑だ
、塗布方法を選択する決め手の1つとなる高熱伝導性接
着剤の粘度について述べる。高熱伝導性フィラーを高配
合したものが熱放散性の優れた高熱伝導性金属ベースプ
リント基板が痔られるが、塗布方法が限定されてくる。
Therefore, at least as the highly thermally conductive filler used in the present invention, a composition composed of alumina powder alone or in combination with other highly thermally conductive fillers is used. Now, let's talk about the viscosity of high thermal conductive adhesives, which is one of the deciding factors in choosing the application method. Highly thermally conductive metal-based printed circuit boards with excellent heat dissipation properties are produced by incorporating a high amount of highly thermally conductive filler, but the application method is limited.

一般に屑熱伝導性金属ベースプリント基板に使用する高
熱伝導性絶縁層は絶縁耐圧および電気的容量の関係で必
要な厚みとして、従来の14磯高分子だけで形成した絶
縁層の厚み(30ttm〜4oμm)より2倍以上、厚
くする必要がある。前記の厚みを厚くすることは、高熱
伝導性絶縁層での熱抵抗を大きくすることになるため、
その特性低下分を少なくとも加算した形で高熱伝導性フ
ィラーを高配合した高熱伝導性接着剤を作製する必要が
ある。
In general, the high thermal conductive insulating layer used for scrap thermal conductive metal-based printed circuit boards has a required thickness in relation to dielectric strength voltage and electrical capacity. ) should be at least twice as thick. Increasing the thickness described above increases the thermal resistance of the highly thermally conductive insulating layer, so
It is necessary to produce a highly thermally conductive adhesive that contains a high amount of highly thermally conductive filler to at least compensate for the decrease in properties.

これらの結果に基づくと高熱伝導性フィラーは、塗布の
容易さを含めて粒子径の分布が0.1μm〜40μmの
範囲のものが重爵比90%以上占め、これを高熱伝導性
接着剤とした時に全市計の50%以上になるように配合
したもので最低必要となる。これは粘度に換算すると、
接着性のある有機高分子材料および高熱伝導性フィラー
の神yJl lxとによって多少異なるが、1)り記6
0%の場合で100ポイズ〜500ポイズである。
Based on these results, more than 90% of highly thermally conductive fillers have a particle size distribution in the range of 0.1 μm to 40 μm, including ease of application, and this is considered a highly thermally conductive adhesive. The minimum required amount is a mixture that will account for at least 50% of the total city budget when This is converted into viscosity,
Although it differs slightly depending on the adhesive organic polymer material and the highly thermally conductive filler, 1) Riki 6
In the case of 0%, it is 100 poise to 500 poise.

次に金属ベースは、放熱性を良くするためにアルミニウ
ムまたはアルマイト処理したアルミニウムを使った方が
最も安価で放熱性の優れた高熱伝導性金属ベースプリン
ト基板が得られる。
Next, for the metal base, aluminum or alumite-treated aluminum can be used as the metal base to improve heat dissipation, which is the cheapest way to obtain a highly thermally conductive metal-based printed circuit board with excellent heat dissipation.

以上のような内容で本発明の高熱伝導性金属ベースプリ
ント基板は製造が歩留り良く容易になるものである。
As described above, the highly thermally conductive metal-based printed circuit board of the present invention can be easily manufactured with high yield.

なお、本発明の具体的実施例では、塗布方法として、最
も高粘度、すなわち、高熱伝導性フィラーを高配合した
高熱伝導性接着剤を塗布できるスクリーン印刷方式をと
りあげたが、同じく高粘度のものに適した塗布方法とし
て、同類のメタルマスク印刷またはブレードコータ方式
でも全く同じ効果が得られる。また、従来のロールコー
タ方式でも1肪記高熱伝導性接着jFOの粘度を低くし
て、硬化絶縁層を多層に形成することにより、前記同様
の効果が得られるものである。また、本実施例では高熱
伝導性接着剤を金属ベース1則に塗布しているが高熱伝
導性フィラーの配合によっては、高熱伝導性絶縁層とし
て硬化した時に曲げても容易に割れない強度のものも得
られ、導体側に塗布することも可能である。ただし、金
属ベース側に塗布する」賜金に比べ高熱伝導性フィラー
を低配合した低粘度の高熱伝導性接着剤を塗布すること
に限定されるため、高熱伝導性金属ベースプリント基板
とした時の放熱特性が若干劣るものとなる。
In the specific embodiments of the present invention, the screen printing method that can apply the highest viscosity adhesive, that is, the highly thermally conductive adhesive containing a high amount of highly thermally conductive filler, was used as the coating method. As suitable coating methods, similar metal mask printing or blade coater methods can achieve exactly the same effect. Further, even in the conventional roll coater method, the same effect as described above can be obtained by lowering the viscosity of the highly thermally conductive adhesive JFO and forming a multilayer cured insulating layer. In addition, in this example, a highly thermally conductive adhesive is applied to the metal base, but depending on the composition of the highly thermally conductive filler, it may be possible to form a highly thermally conductive insulating layer that is strong enough to not break easily even when bent. It is also possible to apply it to the conductor side. However, since it is limited to applying a low-viscosity, high-thermal-conductivity adhesive that contains a lower amount of high-thermal-conductivity filler than "Tifkin," which is applied to the metal base side, the heat dissipation when using a high-thermal-conductivity metal-based printed circuit board is limited. The characteristics will be slightly inferior.

発明の効果 以上のように本発明は、金属ベースまたは導体に接着性
のある有機高分子中に高熱伝導性フィラーを分散した高
熱伝導性接着剤からなる絶縁物を塗布、硬化した硬化絶
縁層を形成し、その硬化絶縁層に同質の高熱伝導性接着
剤を塗布、乾燥した接着絶縁層を形成し、導体丑たは金
属ベースを積層し、高温の熱ロールプレスで接着するこ
とにより、前記硬化絶縁層と接着絶縁層で構成する高熱
伝導性絶縁層での気泡による絶縁耐圧の問題、金属ベー
スと導体間の接着強度のむら、高熱伝導性絶縁層を厚く
形成したい課題等の問題を解決する優れた効果が得られ
る。
Effects of the Invention As described above, the present invention provides a cured insulating layer by coating and curing an insulator made of a highly thermally conductive adhesive in which a highly thermally conductive filler is dispersed in an organic polymer adhesive to a metal base or conductor. The cured insulating layer is coated with a homogeneous high thermal conductive adhesive, a dried adhesive insulating layer is formed, a conductor or metal base is laminated, and the cured insulating layer is bonded with a hot roll press at a high temperature. Excellent ability to solve problems such as dielectric strength problems due to air bubbles in a highly thermally conductive insulation layer composed of an insulation layer and an adhesive insulation layer, uneven adhesive strength between a metal base and a conductor, and the issue of forming a thick highly thermally conductive insulation layer. You can get the same effect.

さらに前記接着絶縁層に導体丑たは金属ベースを貼り合
せた抜工°程に加熱エージングする工程を付加すること
により、前記接着強度の向上が図れること、また硬化絶
縁層を形成する工程にも熱プレスまたは熱ロールプレス
で加熱プレスすることにより、前記硬化絶縁層の厚みの
均一化と併せて高密度化による放熱特性の向上が図れる
。そしてさらに、金属ベース側に高熱伝導性接着剤を塗
布すれば製造工程で脆い高熱伝導性絶縁層を割る問題も
解決できる。また高熱伝導性接着剤を塗布する方法とし
て、ブレードコータ一方法、スクリーン印刷方法、メタ
ルマスク印刷方法のいずれかを単独または併用して使え
は、いっそう高粘度の高熱伝導性接着剤、即ち放熱特性
のより優れた高熱伝導性接着剤を塗布できるなどの効果
が得られる。
Furthermore, by adding a heating aging process to the punching process in which the conductor or metal base is bonded to the adhesive insulating layer, the adhesive strength can be improved, and the process of forming the cured insulating layer can also be performed. By hot pressing using a hot press or a hot roll press, the thickness of the cured insulating layer can be made uniform and the heat dissipation properties can be improved by increasing the density. Furthermore, by applying a highly thermally conductive adhesive to the metal base side, the problem of cracking of the fragile highly thermally conductive insulating layer during the manufacturing process can be solved. In addition, as a method for applying high thermal conductivity adhesive, blade coater method, screen printing method, and metal mask printing method can be used alone or in combination. Effects such as being able to apply a highly thermally conductive adhesive with superior properties can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a) 、 (b)は従来の高熱伝導性金属ベー
スプリント基板の製造方法を示す断面図、第2図(a)
〜(C)は本発明の一実施例における高熱伝導性金属ベ
ースプリント基板の製造方法の工程の、概略を示す断面
図、第3図(,1〜(e)は同製造方法を説明するため
の断面図である。 4.4a・・・・・・金属ベース、5,5a・・・・・
・硬化絶縁層、6,6a・・・・・接着絶縁層、7,7
a・・・・・・導体、8a、8b・・・・・・熱ロール
プレス、9・・・・・・補助加熱ヒータ、10 a 、
 10 b・・・・・・当て板、11a。 11b・・・・・・熱フレス。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第 
1 図 ! 第2図 5 第3図
Figures 1 (a) and (b) are cross-sectional views showing a conventional method for manufacturing a highly thermally conductive metal-based printed circuit board, and Figure 2 (a).
- (C) are cross-sectional views schematically showing the steps of a method for manufacturing a highly thermally conductive metal-based printed circuit board in one embodiment of the present invention, and Figures 3 (, 1-(e) are for explaining the manufacturing method) 4.4a...metal base, 5,5a...
- Cured insulating layer, 6, 6a... Adhesive insulating layer, 7, 7
a...Conductor, 8a, 8b...Heat roll press, 9...Auxiliary heater, 10a,
10b...Packing plate, 11a. 11b...Heatless. Name of agent: Patent attorney Toshio Nakao and 1 other person
1 Figure! Figure 2 5 Figure 3

Claims (1)

【特許請求の範囲】 (1)金属ベースまたは導体に、接着性のある有機高分
子中に高熱伝導性フィラーを分散した高熱伝導性接着剤
からなる絶縁物を塗布、硬化して硬化絶縁層を形成し、
さらにその硬化絶縁層に前記高熱伝導性接着剤と同質の
高熱伝導剤からなる絶縁物を塗布、乾燥し接着絶縁層を
形成し、1)M記接着絶縁層に導体または金属ベースを
積層し、高温の熱ロールプレスで接着する高熱伝導性金
属ベースプリント基板の製造方法。 (2) 高熱ロールプレスで接着した後、加熱エージン
グする特許請求の範囲第1項記載の高熱伝導性金属ベー
スプリント基板の製造方法。 (3)金属ベースまたは導体に、接着性のある有機高分
子中に高熱伝導性フィラーを分散した高熱伝導性接着剤
を、塗布し、乾燥または硬化した後、前記高熱伝導性接
着剤をプレスして硬化絶縁層を形成し、さらにその絶縁
層に前記高熱伝導性接地剤を塗布する特許請求の範囲第
1項記載の高熱伝導性金属ベースプリント基板の製造方
法0(4) ブレードコースタ一方法、スクリーン印刷
方法あるいはメタルマスク印刷方法のいずれかを単独ま
たは併用して高熱伝導性接着剤を塗布する特許請求の範
囲第1項記載の高熱伝導性金属ベースプリント基板の製
造方法0 (6) 高熱伝導性接着剤として、全重量の50係以上
が高熱伝導性フィラーで構成され、しかも前記高熱伝導
性フィラーは粒子径01μm〜40μmのものが重量比
90%以上を占める特許請求の範囲第1項記載の高熱伝
導性金属ベースプリント基板の製造方法。
[Claims] (1) An insulator made of a highly thermally conductive adhesive in which a highly thermally conductive filler is dispersed in an adhesive organic polymer is applied to a metal base or a conductor and cured to form a cured insulating layer. form,
Furthermore, an insulator made of a high heat conductive agent having the same quality as the high heat conductive adhesive is applied to the cured insulating layer, and dried to form an adhesive insulating layer, 1) laminating a conductor or a metal base on the M adhesive insulating layer; A method for manufacturing a highly thermally conductive metal-based printed circuit board that is bonded using a high-temperature thermal roll press. (2) A method for manufacturing a highly thermally conductive metal-based printed circuit board according to claim 1, which comprises adhering with a high-temperature roll press and then heat aging. (3) Apply a highly thermally conductive adhesive in which a highly thermally conductive filler is dispersed in an adhesive organic polymer to a metal base or conductor, and after drying or curing, press the highly thermally conductive adhesive. A method for manufacturing a highly thermally conductive metal-based printed circuit board according to claim 1, wherein a hardened insulating layer is formed by using a hardened insulating layer, and the highly thermally conductive grounding agent is applied to the insulating layer. A method for manufacturing a highly thermally conductive metal-based printed circuit board according to claim 1, which comprises applying a highly thermally conductive adhesive using either a screen printing method or a metal mask printing method alone or in combination. (6) High thermal conductivity 50% or more of the total weight of the adhesive is made up of a highly thermally conductive filler, and in addition, the highly thermally conductive filler has a particle size of 01 μm to 40 μm and 90% or more of the weight ratio is described in claim 1. A method for manufacturing a highly thermally conductive metal-based printed circuit board.
JP11373683A 1983-06-23 1983-06-23 Method of producing high thermal conductive metal base printed board Pending JPS605598A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11373683A JPS605598A (en) 1983-06-23 1983-06-23 Method of producing high thermal conductive metal base printed board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11373683A JPS605598A (en) 1983-06-23 1983-06-23 Method of producing high thermal conductive metal base printed board

Publications (1)

Publication Number Publication Date
JPS605598A true JPS605598A (en) 1985-01-12

Family

ID=14619830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11373683A Pending JPS605598A (en) 1983-06-23 1983-06-23 Method of producing high thermal conductive metal base printed board

Country Status (1)

Country Link
JP (1) JPS605598A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61188996A (en) * 1985-02-18 1986-08-22 オ−ケ−プリント配線株式会社 Printed wiring board
JPH01173688A (en) * 1987-12-28 1989-07-10 Yokohama Rubber Co Ltd:The Manufacture of board for integrated circuit
WO2011040415A1 (en) * 2009-09-29 2011-04-07 日立化成工業株式会社 Multilayer resin sheet and method for producing same, method for producing multilayer resin sheet cured product, and highly thermally conductive resin sheet laminate and method for producing same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61188996A (en) * 1985-02-18 1986-08-22 オ−ケ−プリント配線株式会社 Printed wiring board
JPH01173688A (en) * 1987-12-28 1989-07-10 Yokohama Rubber Co Ltd:The Manufacture of board for integrated circuit
WO2011040415A1 (en) * 2009-09-29 2011-04-07 日立化成工業株式会社 Multilayer resin sheet and method for producing same, method for producing multilayer resin sheet cured product, and highly thermally conductive resin sheet laminate and method for producing same

Similar Documents

Publication Publication Date Title
GB2131814A (en) Anisotropically electroconductive film adhesive
JPH10173097A (en) Sheetlike substance for heat conductive substrate, its manufacture, heat conductive substrate using it and its manufacture
JP2001203313A (en) Thermal conduction substrate and manufacturing method therefor
TWI460076B (en) A substrate manufacturing method and a structure for simplifying the process
US4784893A (en) Heat conductive circuit board and method for manufacturing the same
JPS605598A (en) Method of producing high thermal conductive metal base printed board
JP2915665B2 (en) A method for manufacturing an insulating sheet and a metal wiring board using the same.
JPS605589A (en) High thermal conductive metal base printed board
JPH08202844A (en) Electronic unit and its manufacture
JPH0883979A (en) Manufacture of metal-based board
JPH07154068A (en) Adhesive sheet and production thereof, metal based wiring board employing adhesive sheet and production thereof
JPS607195A (en) Method of producing high thermal conductive metal base printed board
JPH06232552A (en) Manufacture of printed wiring board
JP2957786B2 (en) Method for manufacturing metal substrate with insulating layer
JPH08125294A (en) Metal base board and manufacture thereof
JPH07297509A (en) Metallic base substrate and its manufacture
WO2024095813A1 (en) Component mounting board, method for manufacturing component mounting board, electronic module, and method for manufacturing electronic module
JP2708821B2 (en) Electric laminate
JPH1034806A (en) Laminate material and laminate
JPS6043891A (en) High thermal conductivity metal base printed board
JPS61241149A (en) Manufacture of metallic-base printed substrate
JPS61154847A (en) Method of laminating high thermal-conductive metallic base printed substrate
JP3150415B2 (en) Metal substrate for circuit
JPH07154067A (en) Insulating adhesive layer structure for metal based board
JPH02130146A (en) Electrical laminate