JPS6055015B2 - Flaw detection equipment using ultrasonic waves - Google Patents

Flaw detection equipment using ultrasonic waves

Info

Publication number
JPS6055015B2
JPS6055015B2 JP13425479A JP13425479A JPS6055015B2 JP S6055015 B2 JPS6055015 B2 JP S6055015B2 JP 13425479 A JP13425479 A JP 13425479A JP 13425479 A JP13425479 A JP 13425479A JP S6055015 B2 JPS6055015 B2 JP S6055015B2
Authority
JP
Japan
Prior art keywords
couplant
tire
ultrasonic
flaw detection
probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13425479A
Other languages
Japanese (ja)
Other versions
JPS5658661A (en
Inventor
博之 武田
一男 山田
泉 小林
弘之 岡島
茂 梶山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Electric Power Co Inc
Chubu Electric Power Co Inc
Hitachi Ltd
Mitsubishi Power Ltd
Tokyo Electric Power Co Holdings Inc
Original Assignee
Babcock Hitachi KK
Tohoku Electric Power Co Inc
Tokyo Electric Power Co Inc
Chubu Electric Power Co Inc
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK, Tohoku Electric Power Co Inc, Tokyo Electric Power Co Inc, Chubu Electric Power Co Inc, Hitachi Ltd filed Critical Babcock Hitachi KK
Priority to JP13425479A priority Critical patent/JPS6055015B2/en
Publication of JPS5658661A publication Critical patent/JPS5658661A/en
Publication of JPS6055015B2 publication Critical patent/JPS6055015B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】 本発明は超音波を用いた探傷装置に係り、、特に被検
体と超音波探触子との間に供給する接触媒質を少量とす
るのに好適な接触媒質供給装置を備えた超音波を用いた
探傷装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a flaw detection device using ultrasonic waves, and in particular to a couplant supply device suitable for supplying a small amount of couplant between an object and an ultrasonic probe. The present invention relates to a flaw detection device using ultrasonic waves equipped with.

原子力発電所等の圧力容器、配管およびこれらの接続
部であるノズル部を超音波探傷する場合、従来から手作
業を主体とした探傷が行われていたが、検査員の放射線
被曝の低減および採取データの再現性向上等のため、遠
隔自動超音波探傷装置の必要性が大きくなつている。
When performing ultrasonic flaw detection on pressure vessels, piping, and nozzles that connect these in nuclear power plants, etc., flaw detection has traditionally been carried out mainly by hand, but it is now possible to reduce the radiation exposure of inspectors and sample samples. In order to improve data reproducibility, there is a growing need for remote automatic ultrasonic flaw detection equipment.

そのため、特に、自動化のため超音波探触子の開発が各
方面で進められているが、小型化、被検体に対する超音
波的に完全な接触、汎用性および探傷精度の向上等困難
な問題が多く、現在のところこれらを満足できるものは
開発されていない。特に、原子力発電所では、被検体と
超音波探触子とを超音波的に良好に接触させるため両者
の間に供給する接触媒質の量を極力少なくすることが要
求されているが、従来のものは、接触媒質を多量に使用
しなければ超音波探傷ができないという欠点があり、そ
れの改良が望まれている。第1図は、従来から一般に使
用されている剛体型超音波探触子の構成図で、可変角探
触子の場合を示してある。
For this reason, the development of ultrasonic probes is progressing in various fields, especially for automation, but difficult issues such as miniaturization, complete ultrasonic contact with the test object, versatility, and improvement of flaw detection accuracy are still being faced. Currently, nothing has been developed that satisfies many of these requirements. In particular, at nuclear power plants, it is required to minimize the amount of couplant supplied between the specimen and the ultrasonic probe in order to achieve good ultrasonic contact between the two. However, there is a drawback that ultrasonic flaw detection cannot be performed without using a large amount of couplant, and improvements are desired. FIG. 1 is a block diagram of a rigid ultrasonic probe that has been commonly used, and shows the case of a variable angle probe.

ケース1内の超音波探触子2からの超音波ビームは、シ
ュー3を経て被検体5の内部に至り、欠陥等による反射
エコーが受信されるが、この場合、探触子2とシュー3
との間の空間およびシュー3と被検体5の表面との間の
空間には、超音波を良好に伝えるため、水、グリセリン
等の接触媒質を流して、これらの間を超音波的に完全に
接触させるようにしている。すなわち、接触媒質は、外
部からケース1内に導き、探触子2とシュー3との間の
空間を満した後、シュー3に設けられたノズル穴4から
、図示矢印の方向に流し、シュー3と被検体5の表面と
の間を通つて外部へ放出される構成にしてある。したが
つて、被検体5の表面が溶接部のように波状の凹凸があ
る場合は、シュー3と被検体5との間に大きなギャップ
が生ずるため、多量の接触媒質を流さねばならず、また
、被検体5の表面が平滑であつても、接触媒質の量はか
なり多くなる。なお、図示を省略してあるが、探触子2
の軸はケース1内に内蔵されたモータの軸とギヤ結合さ
れていて、探触子2を回動させる可変角探触子としてあ
るが、この場合、探触子2の軸の端部を中空とし、この
部分にケース1内に連通する孔を設けておいて、探触.
子2の軸に接触媒質を供給するためのバイブを接続して
ある。また、探触子2としては送受信を分けた分割型探
触子が用いてある。これに対して第2図に示すタイヤ型
超音波探触子も多用されている。
The ultrasonic beam from the ultrasonic probe 2 in the case 1 passes through the shoe 3 and reaches the inside of the object 5, and a reflected echo due to a defect etc. is received.
In order to transmit ultrasonic waves well, a couplant such as water or glycerin is flowed into the space between the shoe 3 and the surface of the subject 5 to completely transmit ultrasonic waves between them. I try to bring it into contact with. That is, the couplant is introduced into the case 1 from the outside, fills the space between the probe 2 and the shoe 3, and then flows through the nozzle hole 4 provided in the shoe 3 in the direction of the arrow shown in the figure, and flows through the shoe 3. 3 and the surface of the subject 5 and is emitted to the outside. Therefore, if the surface of the specimen 5 has wavy irregularities such as a weld, a large gap will be created between the shoe 3 and the specimen 5, requiring a large amount of couplant to flow. Even if the surface of the specimen 5 is smooth, the amount of couplant will be considerably large. Although not shown, the probe 2
The shaft is gear-coupled with the shaft of a motor built into the case 1, and is used as a variable angle probe that rotates the probe 2. In this case, the end of the shaft of the probe 2 is It is hollow, and a hole communicating with the inside of the case 1 is provided in this part for the probe.
A vibrator for supplying the couplant is connected to the shaft of the child 2. Further, as the probe 2, a split type probe is used in which transmission and reception are separated. On the other hand, a tire-shaped ultrasonic probe shown in FIG. 2 is also widely used.

タイヤ型超音波探触子の場;合は、超音波探触子6を収
納したタイヤ7を被検体5上を回転させて探触子6を移
動させる構成になつているので、第1図の構成の探触子
の場合のように、探触子内部から接触媒質を導出するこ
とができないので、従来は、タイヤ7の回転進行方一向
の直前にノズル8を設け、ノズル8からタイヤ7と被検
体5との間に接触媒質を供給するようにしていた。第2
図に示す探触子は、タイヤ7として柔軟性があるコム状
のものを使用すると、被検体5の表面の凹凸に追従でき
、かつ、タイヤ7と被検体5との接触面積が小さいので
、第1図の場合より接触媒質の量を少なくできる利点が
あるが、ノズル8から放出される接触媒質をタイヤ7と
被検体5との間に効率よく供給することが困難てあり、
接触媒質を無駄に消費し、結局、接触媒質の供給量を多
くしなければならないという欠点がある。本発明は上記
に鑑みてなされたものであつて、Lその目的とするとこ
ろは、最小限の接触媒質で超音波探触子と被検体との間
に介在させる構造物と被検体との間を超音波的に良好に
接触させることができる接触媒質供給装置を備えた超音
波を用いた探傷装置を提供することにある。本発明の特
徴は、超音波探触子と被検体との間に介在させた構造物
の被検体に接触する部分と被検体とのうちの少なくとも
一方に少なくとも1個の接触媒質が供給される回転体か
ら接触媒質を供給するようにした点にある。
In the case of a tire-type ultrasonic probe, since the configuration is such that the probe 6 is moved by rotating a tire 7 housing the ultrasonic probe 6 over the subject 5, as shown in FIG. Since it is not possible to extract the couplant from inside the probe as in the case of a probe having the configuration shown in FIG. A couplant was supplied between the sample and the subject 5. Second
The probe shown in the figure can follow the unevenness of the surface of the subject 5 by using a flexible comb-shaped tire 7, and the contact area between the tire 7 and the subject 5 is small. Although there is an advantage that the amount of couplant material can be reduced compared to the case of FIG. 1, it is difficult to efficiently supply the couplant material discharged from the nozzle 8 between the tire 7 and the test object 5.
The disadvantage is that the couplant is wasted and a large amount of couplant must be supplied. The present invention has been made in view of the above, and an object of the present invention is to connect a structure interposed between an ultrasonic probe and a subject with a minimum amount of couplant and the subject. It is an object of the present invention to provide a flaw detection device using ultrasonic waves, which is equipped with a couplant supply device that can bring the particles into good ultrasonic contact with each other. A feature of the present invention is that at least one couplant is supplied to at least one of a portion of a structure interposed between an ultrasound probe and a subject that contacts the subject and the subject. The main feature is that the couplant is supplied from the rotating body.

以下本発明を第3図ないし第5図に示した実施例を用い
て詳細に説明する。第3図は本発明の超音波を用いた探
傷装置の超音波探触子部分の一実施例を示す平面図、第
4図は第3図のA−A線断面図で、タイヤ型超音波探触
子の場合を示してある。
The present invention will be explained in detail below using the embodiments shown in FIGS. 3 to 5. Fig. 3 is a plan view showing an embodiment of the ultrasonic probe part of the flaw detection device using ultrasonic waves according to the present invention, and Fig. 4 is a sectional view taken along the line A-A in Fig. 3. The case of a probe is shown.

第3図、第4図において、9は超音波を送受信する超音
波探触子、10は柔軟性があるコム状物質より構成され
たタイヤで、タイヤ10内に水またはグリセリン等の接
触媒質が充填された状態で超音波探触子9が内蔵されて
いる。11はホルダーで、タイヤ10はホルダー11に
回転自在に支持されているシャフト12にホィール13
を介して保持されている。
3 and 4, 9 is an ultrasonic probe that transmits and receives ultrasonic waves, 10 is a tire made of a flexible comb-like substance, and the tire 10 has a couplant such as water or glycerin inside it. The ultrasonic probe 9 is built-in in a filled state. Reference numeral 11 denotes a holder, and the tire 10 has a wheel 13 attached to a shaft 12 rotatably supported by the holder 11.
is held through.

14はタイヤ10が図示R方向に回転してx方向に移動
するときにタイヤ10の前方に位置し、かつ、タイヤ1
0の外周に接触するように設けられた回転体で、回転体
14は、毛細管現象が生ずる内面から外面に通する微細
な空間がある繊維質の部材で円筒形に構成されており、
ホルダー11に回転自在に支持されているシャフト15
に取りつけてあつて、シャフト15を介してホース16
から供給される接触媒質をタイヤ10の表面に供給でき
るようにしてある。
14 is located in front of the tire 10 when the tire 10 rotates in the R direction shown in the figure and moves in the x direction;
The rotating body 14 is a rotating body provided so as to be in contact with the outer periphery of the rotating body 14. The rotating body 14 is a cylindrical fibrous member with a minute space passing from the inner surface to the outer surface where capillary action occurs.
A shaft 15 rotatably supported by the holder 11
is attached to the hose 16 via the shaft 15.
The couplant supplied from the tire 10 can be supplied to the surface of the tire 10.

次に動作について説明する。Next, the operation will be explained.

超音波探触子9のX方向の走査に応じてタイヤ10はR
方向に回転しながら移動する。一方、超音波探触子9は
、常に被検体5に一定の角度で向いており、超音波探触
子9からの超音波ビームは、タイヤ10内の接触媒体、
タイヤ10を通して被検体5に入射される。このとき、
回転体14は、タイヤ10に接触しているから、タイヤ
10の回転とともに回転し、かつ、回転体14の内面か
ら外面へ毛細管現象によつて導出されたバイブ16から
回転体14に供給された接触媒質をタイヤ10の表面に
供給する。したがつて、タイヤ10と被検体5との接触
面は、常に接触媒質で満され、超音波的に良好な接触状
態に保たれる。しかも、接触媒質に無駄がないように供
給できるから、第2図の場合に比較して、接触媒質の供
給量が少なくて済む。上記したように、本発明の実施例
によれば、接触媒質の供給量を少なくすることができ、
また、タイヤ10と被検体5との接触面を常に超音波的
に良好な接触状態に保持することができるから、超音波
探傷性能を高めることができる。なお、実験によれば、
接触媒質の必要量は、第2図の場合の約1150以下で
あつた。また、接触媒質を供給するための装置の構造は
非常に簡単であり、探触子駆動装置全体を小型化てきる
。なお、第3図、第4図に示した実施例では、回転体1
4が1個になつているが、超音波探触子9を一方向のみ
でなく、両方向(前後)に走査する場合があり、この場
合は、回転体14をタイヤ10の前後に1個ずつ設ける
ようにするのがよい。
The tire 10 is rotated in accordance with the scanning of the ultrasonic probe 9 in the X direction.
Move while rotating in the direction. On the other hand, the ultrasonic probe 9 is always facing the subject 5 at a constant angle, and the ultrasonic beam from the ultrasonic probe 9 is transmitted to the contact medium in the tire 10.
The light is incident on the subject 5 through the tire 10. At this time,
Since the rotating body 14 is in contact with the tire 10, it rotates with the rotation of the tire 10, and is supplied to the rotating body 14 from the vibrator 16 led out from the inner surface of the rotating body 14 to the outer surface by capillary action. A couplant is provided to the surface of the tire 10. Therefore, the contact surface between the tire 10 and the subject 5 is always filled with couplant and maintained in a good ultrasonic contact state. Moreover, since the couplant can be supplied without wasting it, the amount of couplant to be supplied can be smaller than in the case of FIG. 2. As described above, according to the embodiments of the present invention, the amount of couplant supplied can be reduced;
Moreover, since the contact surface between the tire 10 and the test object 5 can always be maintained in a good ultrasonic contact state, the ultrasonic flaw detection performance can be improved. Furthermore, according to the experiment,
The amount of couplant required was less than about 1150 in the case of FIG. Furthermore, the structure of the device for supplying the couplant is very simple, and the entire probe drive device can be miniaturized. In addition, in the embodiment shown in FIGS. 3 and 4, the rotating body 1
However, there are cases where the ultrasonic probe 9 is scanned not only in one direction but in both directions (front and back), and in this case, the rotating body 14 is installed one each at the front and rear of the tire 10 It is better to provide one.

また、回転体14は繊維質の部材に限定されるものでな
く、例えば、多孔質のスポンジ、あるいは、円筒形の剛
体の内面から外面に通じる多数の微細な孔があけてある
ものであつてもよい。さらに、実施例ては、回転体14
の内部に接触媒質を供給するようにしてあるが、回転体
14が接触媒質を含浸できる部材で構成されているとき
は、外部から接触媒質を供給するようにしてもよく、こ
れらにより効果が変ることはない。この場合、回転体1
4は円筒形である必要はなく、円柱形であつてもよい。
また、第3図、第4図にはタイヤ型超音波探触子の場合
を示してあるが、第5図に示すようにすることにより、
本発明を剛体型超音波探触子に適用することが可能であ
る。
Further, the rotating body 14 is not limited to a fibrous member, but may be, for example, a porous sponge or a cylindrical rigid body with many fine holes communicating from the inner surface to the outer surface. Good too. Furthermore, in the embodiment, the rotating body 14
Although the couplant is supplied to the inside of the rotating body 14, if the rotating body 14 is made of a member that can be impregnated with the couplant, the couplant may be supplied from the outside, and the effect will change depending on the configuration. Never. In this case, the rotating body 1
4 does not need to be cylindrical, and may be cylindrical.
In addition, although FIGS. 3 and 4 show the case of a tire-type ultrasonic probe, by making it as shown in FIG.
The present invention can be applied to rigid ultrasound probes.

第5図aは縦断面図、bは平面図であつて、第5図にお
いては、超音波探触子17と被検体5との間にシュー1
8が介在させてあつて、シュー18が被検体5に接触す
るようになつているが、この場合は、シュー18内に図
に示すように多孔質の回転体19,20を回転体19,
20の表面がシュー18の被検体5との接触面と一致す
るように内蔵させ、回転体19,20はそれぞれケース
21に軸受22,23によつて回転自在に支持する。一
方、ケース21内に超音波探触子17を支持しているシ
ャフト24に接続してあるバイブ25より供給される接
触媒質は、シャフト24に設けてある連通孔26よりケ
ース21内に流れ込み、超音波探触子17とシュー18
との間の空間を埋めるとともに回転体19,20に供給
される。回転体19,20に供給された接触媒質は、回
転体19,20の回転にともなつて、それぞれ回転体1
9,20から被検体5に供給される。したがつて、シュ
ー18と被検体5とが超音波的に良好な接触状態に保持
され、かつ、第3図、第4図の場合と同様、接触媒質の
供給量を少なくできる。以上説明したように、本発明に
よれば、最小限の接触媒質で超音波探触子と被検体との
間に介在させてある構造物と被検体との間を超音波的に
良好に接触させることができ、超音波探傷性能を高める
ことができるという顕著な効果がある。
FIG. 5 a is a longitudinal sectional view, and b is a plan view. In FIG.
8 is interposed so that the shoe 18 comes into contact with the subject 5. In this case, porous rotating bodies 19, 20 are placed inside the shoe 18 as shown in the figure.
The rotating bodies 19 and 20 are rotatably supported in the case 21 by bearings 22 and 23, respectively. On the other hand, the couplant supplied from the vibrator 25 connected to the shaft 24 supporting the ultrasonic probe 17 inside the case 21 flows into the case 21 through the communication hole 26 provided in the shaft 24. Ultrasonic probe 17 and shoe 18
It is supplied to the rotating bodies 19 and 20 while filling the space between them. As the rotors 19 and 20 rotate, the couplant supplied to the rotors 19 and 20 is transferred to the rotor 1, respectively.
9 and 20 to the subject 5. Therefore, the shoe 18 and the subject 5 are maintained in a good ultrasonic contact state, and the amount of couplant supplied can be reduced as in the case of FIGS. 3 and 4. As explained above, according to the present invention, good ultrasonic contact can be made between the object and the structure interposed between the ultrasound probe and the object with a minimum amount of couplant. This has the remarkable effect of improving ultrasonic flaw detection performance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の剛体型超音波探触子の構成図、第2図は
従来のタイヤ型超音波探触子の使用説明図、第3図は本
発明の超音波を用いた探傷装置の超音波探触子部分の一
実施例を示す平面図、第4図は第3図のA−A線断面図
、第5図は本発明の7他の実施例を示す構成図である。
Fig. 1 is a configuration diagram of a conventional rigid type ultrasonic probe, Fig. 2 is an explanatory diagram of the use of a conventional tire type ultrasonic probe, and Fig. 3 is a diagram of the flaw detection device using ultrasonic waves of the present invention. FIG. 4 is a plan view showing one embodiment of the ultrasonic probe portion, FIG. 4 is a sectional view taken along the line A--A in FIG. 3, and FIG. 5 is a configuration diagram showing seven other embodiments of the present invention.

Claims (1)

【特許請求の範囲】 1 超音波探触子と被検体との間に該被検体と接触して
移動する構造物を介在させてあるものにおいて、前記構
造物の前記被検体に接触する部分と前記被検体とのうち
の少なくとも一方に接触媒質を供給する少なくとも1個
の前記接触媒質が供給される回転体を備えていることを
特徴とする超音波を用いた探傷装置。 2 構造物が回転自在のゴム状のタイヤであつて、回転
体が前記タイヤの外周に接触して回転する内面に通じる
微細な空間を有する円筒体で構成されていて該円筒体内
部に接触媒質が供給されている特許請求の範囲第1項記
載の超音波を用いる探傷装置。 3 回転体が接触媒質を含浸可能な部材で構成されてい
る特許請求の範囲第1項または第2項記載の超音波を用
いた探傷装置。
[Scope of Claims] 1. In a device in which a structure that moves in contact with the subject is interposed between the ultrasound probe and the subject, a portion of the structure that comes into contact with the subject; A flaw detection apparatus using ultrasonic waves, comprising: a rotary body to which at least one couplant is supplied, the rotary body supplying the couplant to at least one of the specimens. 2 The structure is a rotatable rubber tire, and the rotating body is composed of a cylindrical body having a fine space communicating with the inner surface of the tire that rotates in contact with the outer periphery of the tire, and a couplant is contained inside the cylindrical body. A flaw detection device using ultrasonic waves according to claim 1, wherein: 3. The ultrasonic flaw detection device according to claim 1 or 2, wherein the rotating body is made of a member capable of being impregnated with a couplant.
JP13425479A 1979-10-19 1979-10-19 Flaw detection equipment using ultrasonic waves Expired JPS6055015B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13425479A JPS6055015B2 (en) 1979-10-19 1979-10-19 Flaw detection equipment using ultrasonic waves

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13425479A JPS6055015B2 (en) 1979-10-19 1979-10-19 Flaw detection equipment using ultrasonic waves

Publications (2)

Publication Number Publication Date
JPS5658661A JPS5658661A (en) 1981-05-21
JPS6055015B2 true JPS6055015B2 (en) 1985-12-03

Family

ID=15123991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13425479A Expired JPS6055015B2 (en) 1979-10-19 1979-10-19 Flaw detection equipment using ultrasonic waves

Country Status (1)

Country Link
JP (1) JPS6055015B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020137141A1 (en) * 2018-12-28 2020-07-02 三菱重工エンジニアリング株式会社 Pipe inspection apparatus and pipe inspection method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59208458A (en) * 1983-05-13 1984-11-26 Nippon Steel Corp Ultrasonic wave probe device
JPS6280553A (en) * 1985-10-03 1987-04-14 Kanto Tokushu Seiko Kk Ultrasonic flaw inspection method for cylindrical body
US9027406B2 (en) * 2011-05-16 2015-05-12 General Electric Company Transducer apparatus and method for assembling a transducer apparatus
WO2018211558A1 (en) * 2017-05-15 2018-11-22 三菱電機株式会社 Ultrasound measuring device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020137141A1 (en) * 2018-12-28 2020-07-02 三菱重工エンジニアリング株式会社 Pipe inspection apparatus and pipe inspection method

Also Published As

Publication number Publication date
JPS5658661A (en) 1981-05-21

Similar Documents

Publication Publication Date Title
CA2127221C (en) Method for the ultrasonic inspection of pipe and tubing and a transducer assembly for use therewith
US4541434A (en) Ultrasonic scanning apparatus
CN101959556B (en) Therapy head for use with ultrasound system
US20110072905A1 (en) Membrane-Coupled Ultrasonic Probe System for Detecting Flaws in a Tubular
US20050126293A1 (en) Cylindrically-rotating ultrasonic phased array inspection method for resistance spot welds
JPH0315463B2 (en)
US3205702A (en) Ultrasonic coupling device
JPS5858619B2 (en) Improved wheel probe for ultrasonic testing
JPS6055015B2 (en) Flaw detection equipment using ultrasonic waves
CA1084727A (en) Device for wiping optical window in turbidimeter or similar optical instrument for examining liquid sample
EP0186014B1 (en) Apparatus for adjustably mounting ultrasonic testing devices
US3854326A (en) Rotary ultrasonic testing apparatus
RU2492465C2 (en) Scanning device
GB2014311A (en) A Device for Ultrasonic Inspection of the Quality of a Tubular Part
JPS6252820B2 (en)
EP1798550B1 (en) Device for inspecting the interior of a material
JPH0215447Y2 (en)
JPH0377056A (en) Ultrasonic inspection device
JPH1038864A (en) Ultrasonic flaw detector
JPS60228958A (en) Apparatus for holding ultrasonic flaw detector for piping
JPH09251011A (en) Rotary tire type ultrasonic probe
US20240085381A1 (en) Compact, portable phased array scanning housing
JPH0437949B2 (en)
JPH01187448A (en) Ultrasonic test apparatus for internal structure of object
JPS629267A (en) Ultrasonic test equipment