JPS6054729A - Process for promoting chemical reaction using spiral gas stream - Google Patents

Process for promoting chemical reaction using spiral gas stream

Info

Publication number
JPS6054729A
JPS6054729A JP16121483A JP16121483A JPS6054729A JP S6054729 A JPS6054729 A JP S6054729A JP 16121483 A JP16121483 A JP 16121483A JP 16121483 A JP16121483 A JP 16121483A JP S6054729 A JPS6054729 A JP S6054729A
Authority
JP
Japan
Prior art keywords
pipe
spiral
gas
reaction
airflow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16121483A
Other languages
Japanese (ja)
Inventor
Kiyoyuki Horii
清之 堀井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP16121483A priority Critical patent/JPS6054729A/en
Priority to KR1019840005315A priority patent/KR850002437A/en
Priority to CA000462304A priority patent/CA1244067A/en
Priority to EP19840110434 priority patent/EP0138015B1/en
Priority to DE8484110434T priority patent/DE3470916D1/en
Priority to AU32668/84A priority patent/AU3266884A/en
Priority to BR8404395A priority patent/BR8404395A/en
Publication of JPS6054729A publication Critical patent/JPS6054729A/en
Priority to US07/045,187 priority patent/US4762148A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15DFLUID DYNAMICS, i.e. METHODS OR MEANS FOR INFLUENCING THE FLOW OF GASES OR LIQUIDS
    • F15D1/00Influencing flow of fluids
    • F15D1/0015Whirl chambers, e.g. vortex valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G53/00Conveying materials in bulk through troughs, pipes or tubes by floating the materials or by flow of gas, liquid or foam
    • B65G53/34Details
    • B65G53/52Adaptations of pipes or tubes
    • B65G53/526Adaptations of pipes or tubes with means for special treatment to facilitate transport
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G53/00Conveying materials in bulk through troughs, pipes or tubes by floating the materials or by flow of gas, liquid or foam
    • B65G53/34Details
    • B65G53/58Devices for accelerating or decelerating flow of the materials; Use of pressure generators

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Engineering & Computer Science (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Air Transport Of Granular Materials (AREA)

Abstract

PURPOSE:To promote chemical reaction by forming spiral gas stream in a pipe by introducing non-compressed gas to whcih only a vector in the longitudinal axial direction is given and allowing the gas itself to function as a component for a reaction or introducing a reaction component into the pipe. CONSTITUTION:A loop-shaped pipe 7 is connected to a sealed chamber 5 for a gaseous mixture, and a gaseous mixture is introduced using a blower 6 through a feeder 4 into the pipe 7. In this stage, only a vector in the longitudinal direction of the pipe 7 is given to the gaseous mixture in the non-compressed state, so the gaseous mixture is introduced into the pipe 7 forming spiral gas stream proceeding to the longitudinal axial direction of the pipe 7 while forming spiral flow with regard to the sectional direction of the pipe 7. Desired chemical reaction is promoted with the gas forming the spiral gas stream of itself as reaction component, or by introducing a component for the desired reaction into the spiral gas stream zone from a stream guide 42. By this constitution, chemical reaction which is never normally carned out at ordinary temp. or under ordinary pressure is performed.

Description

【発明の詳細な説明】 (目的及び背景) 本発明は螺旋気流による化学反応の促進方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION (Purpose and Background) The present invention relates to a method for promoting a chemical reaction using a spiral air flow.

ガスや液体が渦を巻く現象は、例えば竜巻、台風の目、
渦潮など広く自然界に存在する。
Phenomena in which gas or liquid swirls are, for example, the eye of a tornado or typhoon.
It exists widely in the natural world, such as whirlpools.

工業的にガスや液体を輸送する場合にも条件次第で渦が
発生するが、これは圧力損失を伴なう好ましくない現象
として、出来るだけ発生を避けるような工夫がなされて
きた。
Vortices are generated depending on the conditions when industrially transporting gases and liquids, but this is an undesirable phenomenon that involves pressure loss, and efforts have been made to avoid its occurrence as much as possible.

本発明者は、このような渦現象に関心を持って基礎的な
研究を行なって来たところ、渦を巻きつつ旋回軸方向に
進行する螺旋気流という形態において各種の工業的利用
が可能であることを見出した。本発明はその各種利用法
の中の化学反応の促進方法に関するものである。
The present inventor has been interested in such vortex phenomena and has conducted basic research, and has found that various industrial applications are possible in the form of a spiral airflow that moves in the direction of the rotation axis while swirling. I discovered that. The present invention relates to a method for promoting chemical reactions among its various uses.

(構成) 即ち本発明は、ガスを非圧縮状態で本質的に管路の長袖
方向のベクトルのみを与えて管路に送入し、管路内に管
路断面に関しては旋回流をなしつつ管路長軸方向に進行
する安定な螺旋気流を形成させ、その螺旋気流を形成し
ているガス自身を反応成分とするか、または所望の反応
成分を螺旋気流域に導入することよりなる化学反応の促
進方法である。
(Structure) That is, in the present invention, the gas is fed into the pipe in an uncompressed state with essentially only a vector in the long sleeve direction of the pipe, and the gas is introduced into the pipe while forming a swirling flow in the cross section of the pipe. A chemical reaction that involves forming a stable spiral airflow that advances in the direction of the long axis of the path, using the gas itself forming the spiral airflow as a reaction component, or introducing a desired reaction component into the spiral air region. This is a promotion method.

螺旋気流の利用はこれまで工業的に取りにげられたこと
のない未開拓の分野であるので、まず螺旋気流とは如何
なるものであるかを説明する。
Since the use of spiral airflow is an unexplored field that has never been taken up industrially, we will first explain what a spiral airflow is.

人工的に旋回流を発生させるための方法とじて一般的に
考えられるのは、管内にその内周の切線方向から高速で
気流を送入する方法で、サイクロンその他にも応用され
ている。
A commonly thought method for artificially generating a swirling flow is to introduce airflow into a pipe at high speed from the tangential direction of the inner circumference, and this method is also applied to cyclones and other devices.

不発間者は当初この方法を試みたが、気流の送入ロイ・
j近では旋回流が形成されても、管路が長い場合には次
第に減衰して安定に維持することができないことが判明
した。
The duds initially tried this method, but the air flow
It has been found that even if a swirling flow is formed near j, if the pipe is long, it gradually attenuates and cannot be maintained stably.

そこで更に研究を重ねた結果、非圧縮状態で本質的に管
路の長袖方向のベクトルのみを与えて気流を管路に送入
し気流平均速度を高めてゆくと、管路内に管路断面に関
しては旋回流をなしつつ管路長軸方向に進行する安定な
螺旋気流が形成されることを見出した。
As a result of further research, we found that if we increase the average air velocity by sending airflow into the pipe by giving only a vector essentially in the long sleeve direction of the pipe in an uncompressed state, the cross section of the pipe It has been found that a stable spiral airflow is formed that travels in the long axis direction of the pipe while forming a swirling flow.

更にノ一体重に説明すると、非圧縮状態で木質的に管路
の長軸方向のヘク(・ルのみを与えて気流を管路に送入
するということは、管路入口で圧力落差を伴なう急激な
膨Φまたは収縮を生じさせることなど、また意図的に旋
回運動を促すようなベクトルを一切与えることなく、い
わば管路の長軸方向にピストンフローのような状態で気
流が滑らかに流線を乱さずに送入されるようにすること
を音吐する。それ故送入気流に脈動があることは好まし
くない。圧力落差を生ぜずまた軸方向に渦を巻くような
現象を起させずに所定の気流平均速度を与えるためには
、ブロワ−等から導かれたカスを直ちに管路に送入せず
に、広い口径のフィーダーから徐々に径を縮小して管路
に送入するような方法を用いるのが好ましい。
To explain further, sending airflow into the pipe by giving only hectares in the long axis direction of the pipe in an uncompressed state means that a pressure drop is generated at the pipe entrance. The airflow is smooth in a state similar to a piston flow in the long axis direction of the pipe, without causing any sudden expansion or contraction, or by intentionally applying any vector that promotes rotational movement. The purpose of sound ejection is to ensure that the air is injected without disturbing the streamlines. Therefore, it is undesirable to have pulsations in the incoming airflow. In order to give a predetermined average airflow speed without causing the waste to flow, the waste introduced from a blower etc. is not sent into the pipe line immediately, but is gradually reduced in diameter from a wide diameter feeder and sent into the pipe line. It is preferable to use a method that does this.

このような状態で送入した場合、気流はそのままピスト
ンフローの状態を保ちっつ出[コまで進行することが予
想されるが、意外にも気流W均速度を高めてゆき概ね2
0m/秒以りとすると、′を路断面に対しては旋回流を
なしつつ管路長軸方向に進行する螺旋気流か生成してい
ることが確認された。もちろん螺旋気流そのものはカス
であるから肉眼では直接観察できないが、次に述へる実
験により螺旋気流の存在を確認できる。
If the airflow is introduced in such a state, it is expected that the airflow will continue to maintain the piston flow state and proceed to the point where it comes out.However, surprisingly, the uniform velocity of the airflow W will increase and the
It was confirmed that when the velocity was set to 0 m/sec or more, a spiral airflow was generated that proceeded in the long axis direction of the pipe while forming a swirling flow with respect to the pipe cross section. Of course, the spiral airflow itself cannot be directly observed with the naked eye because it is a waste, but the existence of the spiral airflow can be confirmed by the experiment described below.

この場合、管路出口が大気に解放されている時は管路入
口の圧力がゲージ圧でI K g / c m 2を越
えることはない。
In this case, when the outlet of the line is open to the atmosphere, the pressure at the inlet of the line does not exceed I K g/cm 2 in gauge pressure.

実験1 第1図に示すように、内径1.5インチの透明プラスチ
ックチューブを用いた管路1に垂直部分を設け、前記の
条件に従って送入した気流が下部から上部へと流れるよ
うにする。そこで管路入口から合成樹脂ペレット(径5
mm、長さ5 m mの円柱状)を送入すると、気流速
度が十分に速い場合にはペレッ)・はこの垂直管路を下
部から上部へ瞬間的に通過するが、気流速度を調節して
ペレットに働く重力による下向きのベクトルと気流によ
る一F向きのベクトルが釣合うようにすると、ペレット
は垂直管中の一定位置、例えば第1図のA−1A′の位
置に留り、その運動が肉眼で観察できるようになる。第
2図は第1図のA−A ′線における断面図であるが、
ペレット2は矢印で示すような旋回運動をしていること
がわかる。A−A ’部分を手で押えてせばめてやると
、この部分の流速か増加するのでペレットは上方へ飛び
出し、やや−L部の釣合点B−B ′へ移動してこの断
面での旋回運動を続行する。この場合ペレット2は管内
壁11に直接接触してはいない。即ち管内壁11に近い
部分には旋回流に基〈遠心力により圧縮された気層3が
環状に形成されている(図では環状気層の厚みを誇張し
て描いているが、実際は1mm以下、ミクロンオーダー
の厚みである)。従ってペレットは環状気層との境界部
分で螺旋気流の」二向きベクトルと重力の下向きベクト
ルの釣合のもとに一定平面で螺旋気流の回転ベクトルに
より旋回している。この釣合状態から気流の流速を増せ
ば、ペレット自身も螺旋流を描きつつ出口方向に進むこ
とは容易に理解できるであろう。
Experiment 1 As shown in FIG. 1, a vertical section is provided in a conduit 1 made of a transparent plastic tube with an inner diameter of 1.5 inches, so that the air flow introduced according to the conditions described above flows from the bottom to the top. Therefore, synthetic resin pellets (diameter 5
When a pellet (cylindrical) with a length of 5 mm and a length of 5 mm is injected, if the air velocity is fast enough, the pellet) will instantly pass through this vertical pipe from the bottom to the top, but if the air velocity is adjusted. If the downward vector due to the gravity acting on the pellet is balanced with the 1F vector due to the airflow, the pellet will remain at a fixed position in the vertical tube, for example at the position A-1A' in Figure 1, and its movement will be becomes visible to the naked eye. FIG. 2 is a cross-sectional view taken along line A-A' in FIG.
It can be seen that the pellet 2 is making a swirling motion as shown by the arrow. If you hold down the A-A' part with your hand and tighten it, the flow velocity in this part will increase, so the pellet will fly upwards and move slightly to the equilibrium point B-B' in the -L part, causing a swirling movement in this cross section. Continue. In this case, the pellet 2 is not in direct contact with the tube inner wall 11. That is, in a portion close to the inner wall 11 of the tube, an annular air layer 3 is formed that is compressed by centrifugal force based on the swirling flow (the thickness of the annular air layer is exaggerated in the figure, but it is actually less than 1 mm). , the thickness is on the order of microns). Therefore, at the boundary with the annular air layer, the pellet is rotated by the rotating vector of the spiral airflow in a constant plane under the balance between the two-way vector of the spiral airflow and the downward vector of gravity. It is easy to understand that if the flow velocity of the airflow is increased from this equilibrium state, the pellets themselves will also move toward the exit while drawing a spiral flow.

この状ymから徐々に垂直管を斜めに傾けてゆくと、一
定平面で旋回していたペレットは旋回を続けながら上昇
を開始しく即ちピッチの短い螺旋流を描くことになる)
、管の傾きが有る限度に達すると、急激に吸い込まれる
ように出口方向(この場合」二方)へ飛んで行き見えな
くなる。
When the vertical tube is gradually tilted diagonally from this state ym, the pellets that were swirling in a fixed plane will start to rise while continuing to swirl, that is, they will draw a spiral flow with a short pitch.)
When the inclination of the tube reaches a certain limit, it suddenly flies toward the exit (in this case, two directions) as if being sucked in, and becomes invisible.

実験2 内径1.5インチの透明プラスチックチューブを用いて
、出口を大気に解放した長さ200mの管路を敷設した
。管路は途中にカーブや若干の高低を有していた。管路
入口に第3図のような構造のフィーダー4を設け、空気
送入管41から送入された空気が管路の軸方、向に乱れ
のないピストン流となり、そのまま徐々に縮小されて管
路入口12に達するようにし、管路における気流平均速
度が26m/秒になるようにした。この時の管路入口部
のゲージ圧は0.1Kg/cm2であった。
Experiment 2 Using a transparent plastic tube with an inner diameter of 1.5 inches, a 200 m long conduit with an outlet open to the atmosphere was laid. The pipeline had curves and slight elevations along the way. A feeder 4 having a structure as shown in Fig. 3 is provided at the entrance of the pipe, and the air introduced from the air supply pipe 41 becomes an undisturbed piston flow in the axial direction of the pipe, and is gradually reduced as it is. The average air velocity in the pipe was 26 m/sec. At this time, the gauge pressure at the inlet of the pipe was 0.1 Kg/cm2.

フィーダー4の軸心に沿って挿入した粒塊送入管42か
ら実験1で用いた合成樹脂ベレ・ントを連続的に供給し
、管路の途中をストロボライトで照らして観察したとこ
ろ、ペレットが螺旋を描きつつ出口方向に進行している
ことを確認できた。
The synthetic resin beads used in Experiment 1 were continuously supplied from the pellet inlet pipe 42 inserted along the axis of the feeder 4, and when the middle of the pipe was illuminated with a strobe light and observed, the pellets were observed. I was able to confirm that it was moving in a spiral direction towards the exit.

ざらに管壁に近いところで運動しているペレットに比べ
て、管の中心に近いところを通るペレットは速度が速く
、追い抜き現象を示していることが観察できた。なお上
記粒塊送入管42の外壁は送入管41から供給された空
気を軸方向に進行させる気流ガイドの働きを兼ねている
It was observed that compared to pellets moving roughly close to the tube wall, pellets moving closer to the center of the tube moved faster, indicating an overtaking phenomenon. The outer wall of the agglomerate inlet pipe 42 also serves as an airflow guide for causing the air supplied from the inlet pipe 41 to advance in the axial direction.

またこの実験を長時間続けたにも拘らず、プラスチック
チューブの柔らかい内壁に傷は全くつかず、ペレ・ント
が内壁に直接接触していないことも確認できた。
Furthermore, even though this experiment was continued for a long time, the soft inner wall of the plastic tube was not damaged at all, and it was confirmed that the pellets were not in direct contact with the inner wall.

以上の実験から明らかなように、管路内部には安定な螺
旋気流が形成されている。螺旋気流を管路断面に投影し
て見れば旋回運動であり、その回転に伴う遠心力により
内部のガス粒子は外側に投げ出される結果、管内壁に沿
って圧縮された薄い気層を形成し、内部はガス密度が低
く圧力は負圧になる。しかも実験2から推定されるよう
に螺旋気流の管軸方向の進行速度は管の中心部に近づく
ほど速くなる。一方ガス雀度は管の中心部に近づくほど
小さくなる。ところが1場の密度JあるいはI動的密度
jは管の中心部分が最も大きく、単位面積当りの気体分
子の移動量は最も多い。これはガス密度が低いことと矛
盾するように思われるかも知れないが、例えば高速道路
においては車両間隔が大きいにも拘らず中位時間に通過
する車両台数は混雑している一般道路よりも多い事を考
えれば容易に理解できるであろう。即ち静画系と運動系
とでは密度に関する観念が異なる。このようにして管内
の各部においては「場のエネルギー」とi′運動のエネ
ルギー」の合計部が一定になるようなバランス状態が保
たれ、螺旋気流が安定して存在するものと推定される。
As is clear from the above experiments, a stable spiral airflow is formed inside the pipe. When the spiral airflow is projected onto the cross section of the pipe, it shows a swirling motion, and the centrifugal force accompanying the rotation causes the gas particles inside to be thrown outward, forming a compressed thin layer of air along the inner wall of the pipe. The gas density inside is low and the pressure is negative. Moreover, as estimated from Experiment 2, the traveling speed of the spiral airflow in the tube axis direction becomes faster as it approaches the center of the tube. On the other hand, the gas flow rate decreases as it approaches the center of the tube. However, the field density J or I dynamic density j is greatest at the center of the tube, and the amount of gas molecules moving per unit area is greatest. This may seem to contradict the fact that the gas density is low, but for example, on a highway, the number of vehicles passing in a median time is greater than on a congested regular road, despite the large distance between vehicles. It will be easy to understand if you think about it. In other words, the concept of density is different between the still image system and the motion system. In this way, a balanced state is maintained in which the sum of "field energy" and "i' motion energy" is constant in each part of the pipe, and it is presumed that a spiral airflow exists stably.

木質的に管路の長袖方向のベクトルのみを与えた気流を
一定速度以とで管路に送入しただけで何故に回転方向の
ベクトルが発生するのかということは、まだ理論的に説
明し得る段階には達していない。台風などの場合には、
上昇気流に対して地球の自転の力が働いて旋回流を発生
させると説明されているが、本発明の場合においては必
ずしもその理論を適用することは出来ない。螺旋気流の
廻る方向、即ち左巻か左巻かは、時により異り一定して
いない(竜巻の場合も左巻と左巻があるという)。しか
し台風も竜巻もその発生原因は非圧縮状態の(熱上昇)
気流であることを考えれば、管路内での非圧縮状態の気
流が旋回運動を行なうことは不思議でない。現段階で言
えることは、現実に管路に螺旋気流が発生し安定に存在
していること 旋回運動の結果束ずる遠心力の影響及び
軸方向の運動に伴なうコリオリの力も加わってガス粒子
は外側へ投げ出され管壁に沿って薄い動きの少ない環状
の気層を形成していること、管の中・0部に近いほど気
圧が低く、気流進行速度が速く、また「動的密度jが高
いこと等である。
It is still theoretically possible to explain why a vector in the rotational direction is generated by simply sending an airflow with only a vector in the long sleeve direction of the pipe into the pipe at a certain speed or higher due to wood structure. It has not reached that stage. In case of a typhoon, etc.
Although it is explained that the force of the Earth's rotation acts on the updraft to generate a swirling flow, this theory cannot necessarily be applied to the present invention. The direction in which a spiral airflow rotates, that is, whether it winds to the left or the left, varies from time to time and is not constant (in the case of tornadoes, there are also left-handed and left-handed spirals). However, the cause of both typhoons and tornadoes is the incompressible state (heat rise).
Considering that it is an airflow, it is not surprising that the uncompressed airflow inside the pipe performs a swirling motion. What we can say at this point is that a spiral airflow actually occurs in the pipe and exists stably.The influence of the centrifugal force that bunches up as a result of the swirling movement and the Coriolis force that accompanies the axial movement also causes the gas particles to is thrown outward, forming a thin annular air layer with little movement along the tube wall. For example, it is high.

現段階においては推定の域を出ないが、ガス粒子は遠心
力により管壁に押し付;すられてはいるものの、管軸、
即ち旋回軸の最も気圧の低い部分に向って常に流れ込も
うというポテンシャルを有しており、現実に分子レベル
ではそのような動きを生じていることは予想できる。こ
れは丁度竜巻の中心や台風の目に四方から空気が象れ込
む動きと同様であり、管路入口の僅かな形状の差によっ
て発生した回転方向のベクトルがこの為に強調されて安
定な螺旋気流を生成するのではないかとも考えられる。
Although it is only a guess at this stage, the gas particles are pushed against the tube wall by centrifugal force;
In other words, it has the potential to always flow toward the part of the axis of rotation with the lowest atmospheric pressure, and it can be predicted that such movement actually occurs at the molecular level. This is just like the movement of air from all sides into the center of a tornado or the eye of a typhoon, and the vector in the rotational direction generated by the slight difference in the shape of the pipe entrance is emphasized for this reason, creating a stable spiral. It is also thought that it may generate air currents.

これに対して工業的に空気輸送などで一般に用いられて
いる条件、即ち圧縮した空気を弁などを通して断熱膨張
的に圧力落差のある状態で送入したのでは乱流を生じる
だけで安定な旋回流は生じない。
On the other hand, under the conditions commonly used in industrial pneumatic transport, i.e., compressed air is fed through a valve or the like with a pressure drop in an adiabatic expansion manner, only turbulence occurs, resulting in stable swirling. No flow occurs.

さきに、螺旋気流の場合は管路ノ・口と管路出口との差
圧は1Kg/cm2を越えることはないと述べたが、こ
の点について更に詳細に説明する。
Earlier, it was stated that in the case of a spiral air flow, the differential pressure between the pipe inlet and the pipe outlet does not exceed 1 kg/cm2, but this point will be explained in more detail.

管路入口と出口との差圧は、主として管径、管路長、気
流速度の関数になる。近似的に言えば、管路長が2倍に
なれば差圧は2倍になり、また気流速度を2倍にしても
差圧は2倍になる。逆に管径が大きくなれば差圧は減少
する方向になり、管径が小さいうちは管径の2乗に反比
例して減少するが、管径が大になるにつれて影響度は小
さくなる。
The differential pressure between the pipe inlet and outlet is primarily a function of pipe diameter, pipe length, and air velocity. Approximately speaking, if the pipe length is doubled, the differential pressure will be doubled, and even if the airflow velocity is doubled, the differential pressure will be doubled. Conversely, as the pipe diameter increases, the differential pressure tends to decrease; while the pipe diameter is small, it decreases in inverse proportion to the square of the pipe diameter, but as the pipe diameter increases, the degree of influence becomes smaller.

例をいくつか挙げると、管径20 c m 、管路長1
(10m、平均気流速度25m/秒の時の入口圧は約C
1,05Kg/am2となる。又管径1.5インチ(3
,81cm)、管路長200 m 、平均気流速度26
m/秒の時の入口圧は、実験2に示した通りO,1Kg
/cm2であった・この割合で計算すると、管路が非常
に長い場合又は管径が非常に細い場合には、入口圧が1
Kg/Cm2以上になることもあり得るが1本発明者等
の知見によると、入口−と出口の圧力差がIKg/ c
 m 2迄が管内で螺旋気流が安定に存在する限界であ
る。
To give some examples: pipe diameter 20 cm, pipe length 1
(The inlet pressure at 10 m and an average air velocity of 25 m/s is approximately C.
It becomes 1,05Kg/am2. Also, the pipe diameter is 1.5 inches (3
, 81 cm), pipe length 200 m, average air velocity 26
The inlet pressure at m/sec is O, 1Kg as shown in Experiment 2.
/cm2 - Calculating with this ratio, if the pipe line is very long or the pipe diameter is very small, the inlet pressure will be 1
Although it may be more than Kg/Cm2, according to the knowledge of the present inventors, the pressure difference between the inlet and the outlet is IKg/c
Up to m 2 is the limit at which a spiral airflow can stably exist within the pipe.

工業的に利用する場合は、負荷の変動、出口側圧力の変
化、その他の制御困難な要因が働くことも考えらるので
、実用限界としてはこの7割位の数字、即ち管路入口と
管路出口との差圧が0.7Kg/Cm2以下になるよう
にシステム設a1するのが好ましい。但し螺旋気流系に
おいては気体輸送に関する従来の化学工学諸式を適用す
ることは出来ない。
When used industrially, load fluctuations, changes in outlet pressure, and other factors that are difficult to control may come into play, so the practical limit is a figure of around 70%, that is, the difference between the pipe inlet and the pipe. It is preferable to set up the system a1 so that the differential pressure between the outlet and the outlet is 0.7 Kg/Cm2 or less. However, conventional chemical engineering formulas regarding gas transport cannot be applied to spiral air flow systems.

螺旋気流が発生する気流平均速度は概ね20m/秒以上
と述べたが、これもガスの種類、管径、その他の要因に
より変化し得るので、限界値を実験的にめ、それに安全
率をかけてシステム設計するのが望ましい。
As stated above, the average air velocity at which spiral airflow occurs is approximately 20 m/s or more, but this can vary depending on the type of gas, pipe diameter, and other factors, so the limit value must be determined experimentally and a safety factor applied to it. It is desirable to design the system based on

管路入口のフィーダーは、本質的に管路の長袖方向のベ
クトルのみを与えた気流を管路に送入できる構造にする
必要があり、その1例を第3図に示す。フィークー4は
直管状で その一端は閉鎖されており、その閉鎖端43
に近い場所にブロワ−などから送られたガスの送入管4
1を設ける。
The feeder at the entrance of the conduit must have a structure that can feed into the conduit an airflow that essentially has only a vector in the long sleeve direction of the conduit, and one example of this is shown in FIG. Feeku 4 has a straight tube shape and one end is closed, and the closed end 43
Gas inlet pipe 4 sent from a blower etc. to a location close to
1 will be provided.

程合ガスの導入部は管路より太くし、徐々にロー l−
44状にゼばめて管路lと同じ管径にして接続するのが
効果的である。ロート部の形状は一葉双曲面回転体状等
が好ましい。さらにフィーダー4の管軸に沿って、閉鎖
端側から固・液原料送入管兼気流ガイド42を挿入設置
する。ガス送入管41から送り込まれたガスはフィーダ
ー内壁と気流ガイド42の外壁との間の環状通路を通っ
て平行流となり管路人口12に向う。このような状態で
フィーダーの出口から管路入口にかけて螺旋気流が発生
し、管路の全長にわたって安定に存在する。なお上記固
・液原料送入管兼気流ガイド42は、気−無反応の場合
には盲栓しておけばよい。
The introduction part of the gas is made thicker than the pipe line, and gradually lowered.
It is effective to fit the pipe in a 44-shape and connect it with the same pipe diameter as the pipe l. The shape of the funnel portion is preferably a single-lobed hyperboloid of revolution. Further, along the tube axis of the feeder 4, a solid/liquid raw material feed tube/airflow guide 42 is inserted and installed from the closed end side. The gas sent from the gas feed pipe 41 passes through the annular passage between the inner wall of the feeder and the outer wall of the air flow guide 42, and flows in parallel toward the pipe port 12. In this state, a spiral airflow is generated from the outlet of the feeder to the inlet of the pipe, and exists stably over the entire length of the pipe. Note that the above-mentioned solid/liquid raw material feed pipe/air flow guide 42 may be closed with a blind plug in case there is no gas reaction.

このようにり、て形成された安定な螺旋気流は種々の興
味深い特性を有しているが、この螺旋気流を形成してい
るガス自身(常温で液体の原料をガス化条件で使用する
場合を含む)を反応成分とするか、または所望の反応成
分を螺旋気流域に導入したところ、常圧、常温下では通
常進行しないとされている化学反応が起きていることが
認められた。
The stable spiral airflow formed in this way has various interesting properties, but the gas itself that forms this spiral airflow (when using liquid raw materials at room temperature under gasification conditions) When a desired reaction component was introduced into the spiral air region, it was observed that a chemical reaction that does not normally proceed under normal pressure and temperature was observed to occur.

液体または固体の反応原料は、第3図に示したようなフ
ィーダーの固・液原料送入管42に供給すれば螺旋気流
域の中心部に導入される。液体原料の場合はミストとな
って螺旋気流域に存在しミスト相互で反応するか、また
は螺旋気流を形成しているガスと反応するか、あるいは
螺旋気流域でガス化して同様な反応を行なう。固体原料
の場合は反応性を高めるよう微粉の形で供給することが
好ましいが、本発明者が行なった別の実験によると固く
て脆い粒塊の場合には螺旋気流域で破砕現象を生じてい
ることか認められるので、必ずしも微粉に限られるもの
ではない。螺旋気流域に導入された固体粒子は螺旋気流
を形成しているガス成分、または同時に送入された液体
成分等と反応する。
When a liquid or solid reaction raw material is supplied to a solid/liquid raw material inlet pipe 42 of a feeder as shown in FIG. 3, it is introduced into the center of the spiral air region. In the case of a liquid raw material, the mist exists in the spiral air region and reacts with each other, or reacts with the gas forming the spiral air flow, or it is gasified in the spiral air region and a similar reaction occurs. In the case of solid raw materials, it is preferable to supply them in the form of fine powder to increase reactivity, but according to another experiment conducted by the present inventor, in the case of hard and brittle granules, a crushing phenomenon occurs in the spiral air region. It is recognized that there are some particles, so it is not necessarily limited to fine powder. The solid particles introduced into the spiral air flow react with the gas component forming the spiral air flow or the liquid component introduced at the same time.

螺旋気流中で何故このような反応が進行するのかという
理由についてはまだ推定の城を出ないが既述した如く螺
旋気流の中心部においては「場のV fti Jが非常
に高くなっていること、また螺旋気流の中心部が高度の
真空に近くなっているために個々の分子の反応活性が非
常に高くなっていることが大きな理由ではないかと考え
られる。
The reason why such a reaction proceeds in a spiral airflow is still unclear, but as mentioned above, in the center of a spiral airflow, the field V fti J is extremely high. It is also thought that a major reason for this is that the center of the spiral airflow is close to a high vacuum, so the reaction activity of individual molecules is extremely high.

(実施例1) 8インチガス管(直径20cm)で100mのループ管
路を設置し、水素67容量%、窒素33容量%の混合ガ
スを気流平均速度20m/秒になるように管路入口から
送入した。実験装置の概要を第4図に示す。
(Example 1) A 100 m loop pipe line was installed using an 8-inch gas pipe (diameter 20 cm), and a mixed gas of 67% by volume of hydrogen and 33% by volume of nitrogen was flowed from the pipe entrance at an average air velocity of 20 m/sec. Sent. Figure 4 shows an outline of the experimental equipment.

被験混合ガスのシールドチェンバー5内に第3図に示し
たようなフィーダー4を設置し、チエンへ−5内の混合
ガスをブロワ−6でフィーダー4に供S合するようにし
た。
A feeder 4 as shown in FIG. 3 was installed in the shield chamber 5 for the mixed gas to be tested, and the mixed gas in the chain 5 was fed to the feeder 4 by a blower 6.

フィーダー4はチェンl叱、−外に設置した管路7に接
続し、管路7はループ状に折り返してその出ロア1を再
びチェンバー内に解放するように設置した。このように
すれば少量の被験カスで長時間の試験を行なうことがで
きる。
The feeder 4 was connected to a conduit 7 installed outside the chain, and the conduit 7 was installed so as to turn back into a loop and release the lower outlet 1 into the chamber again. In this way, a long test can be carried out using a small amount of test material.

管路出ロア1の中心部己サンプル採取管8を設けてガス
を外部に導き組成分析を行なったところ少量のアンモニ
アが検出された。
A sample collection tube 8 was provided in the center of the lower conduit outlet 1 to guide the gas to the outside for compositional analysis, and a small amount of ammonia was detected.

実施例2 実施例1と同じ実験装置を使用し、カス成分を全量水素
にして螺旋気流を形成させた。その螺旋気流域に固・液
原料送入管42から酸化鉄粉を送入したところ、管路出
口から少量の還元鉄粉が取り出された。
Example 2 Using the same experimental equipment as in Example 1, the entire residue component was converted to hydrogen to form a spiral airflow. When iron oxide powder was fed into the spiral air region from the solid/liquid raw material feed pipe 42, a small amount of reduced iron powder was taken out from the pipe outlet.

上記実施例1及び2かられかるように、常温・常圧では
進行しない、あるいは進行しにくい反応を螺旋気流を用
いて促進することができるが、本発明の実施条件は常温
・常圧に限られるものではなく、管路を加熱して高温反
応を行なわせたり、第4図に示したような装置を用いて
管路人【−1と出口の差圧をl K g / c m 
2以下に保ちつつしかも全体を加圧系にして高圧反応を
行なわせたりすることもできる。
As can be seen from Examples 1 and 2 above, reactions that do not proceed or are difficult to proceed at room temperature and normal pressure can be promoted using a spiral air flow, but the implementation conditions of the present invention are limited to room temperature and normal pressure. Rather than heating the pipe to cause a high-temperature reaction, or using a device such as the one shown in Figure 4, the pressure difference between the pipe and the outlet can be reduced to 1 K g/cm
It is also possible to carry out a high-pressure reaction while maintaining the pressure at 2 or less and using a pressurized system as a whole.

(効果) (1)常温常圧では通常進行しない反応を行なわせるこ
とができる。
(Effects) (1) Reactions that normally do not proceed at room temperature and pressure can be carried out.

(2)装置が簡単で、ブロワ−と管路だけで反応を行な
わせることができる。
(2) The apparatus is simple, and the reaction can be carried out using only a blower and a pipe.

(3)螺旋気流を形成させるための圧力が低いので、使
用エネルギーが少ない。
(3) Since the pressure for forming the spiral airflow is low, less energy is used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は垂直管路で下から」二へ流れる螺旋
気流を形成させた時に小さな粒体が同一平面で旋回運動
を行うことを説明するための図であり、第3図は管路入
口へガスの供給を行うためのフィーダーの構造の1例を
示す説明図である。また第4図は本発明方法を実験した
システムの説明図である。 #許出願人 堀 井 清 之 代理人 弁理士 青 麻 昌 二
Figures 1 and 2 are diagrams for explaining that when a spiral airflow flowing from the bottom to the bottom is formed in a vertical pipe, small particles perform a swirling motion on the same plane. FIG. 2 is an explanatory diagram showing an example of the structure of a feeder for supplying gas to a pipe inlet. FIG. 4 is an explanatory diagram of a system in which the method of the present invention was tested. #Applicant Kiyoshi Horii Agent Patent attorney Shoji Aoma

Claims (1)

【特許請求の範囲】[Claims] l ガスを非圧線状態で木質的に管路の長袖方向のベク
トルのみを与えて管路に送入し、管路内に管路断面に関
しては旋回流をなしつつ管路長軸方向に進行する安定な
螺旋気流を形成させ、その螺旋気流を形成しているガス
自身を反応成分とするか、または所望の反応成分を螺旋
気流域に導入することよりなる化学反応の促進方法。
l The gas is fed into the pipe in a non-pressure state with only a vector in the long sleeve direction of the pipe, and the gas flows in the long axis direction of the pipe while forming a swirling flow in the cross section of the pipe. A method for promoting a chemical reaction, which comprises forming a stable spiral air flow, and using the gas forming the spiral air flow itself as a reaction component, or introducing a desired reaction component into the spiral air region.
JP16121483A 1983-09-03 1983-09-03 Process for promoting chemical reaction using spiral gas stream Pending JPS6054729A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP16121483A JPS6054729A (en) 1983-09-03 1983-09-03 Process for promoting chemical reaction using spiral gas stream
KR1019840005315A KR850002437A (en) 1983-09-03 1984-08-30 Apparatus and method for generating and using spiral airflow in a pipeline
CA000462304A CA1244067A (en) 1983-09-03 1984-08-31 Apparatus and method for the generation and utilization of a spiral gas stream in a pipeline
EP19840110434 EP0138015B1 (en) 1983-09-03 1984-09-03 Apparatus and method for generating a spiral gas stream in a pipeline
DE8484110434T DE3470916D1 (en) 1983-09-03 1984-09-03 Apparatus and method for generating a spiral gas stream in a pipeline
AU32668/84A AU3266884A (en) 1983-09-03 1984-09-03 Spiral gas stream generation
BR8404395A BR8404395A (en) 1983-09-03 1984-09-03 APPARATUS AND PROCESS FOR THE GENERATION OF A FLOW OF EMESPIRAL GAS IN A PIPE AND APPARATUS AND PROCESS FOR THE TRANSPORT OF SOLID PARTICLES THROUGH A FLOW OF SPIRAL GAS IN A PIPE AND PROCESS FOR DRYING OR CONDENTING SOLID PARTICLES IN SOLID SOLID CONTENT. COMPANIES OF VOLATILE METERIES AND APPLIANCE FOR THE TRANSPORT AND DEHYDRATION OF SOLID PARTICLES DEPOSITED IN THE WATER FUND AND PROCESS FOR THE SPRAYING OF SOLID PARTICLES AND PROCESS TO PROMOTE A CHEMICAL REACTION
US07/045,187 US4762148A (en) 1983-09-03 1987-05-01 Apparatus and method for the generation and utilization of a spiral gas stream in a pipeline

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16121483A JPS6054729A (en) 1983-09-03 1983-09-03 Process for promoting chemical reaction using spiral gas stream

Publications (1)

Publication Number Publication Date
JPS6054729A true JPS6054729A (en) 1985-03-29

Family

ID=15730776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16121483A Pending JPS6054729A (en) 1983-09-03 1983-09-03 Process for promoting chemical reaction using spiral gas stream

Country Status (1)

Country Link
JP (1) JPS6054729A (en)

Similar Documents

Publication Publication Date Title
JPS6258100A (en) Device for producing spiral flow in conduit
US4057908A (en) Method and apparatus for drying damp powder
KR920006687B1 (en) Method for transferring short fibers
US3309785A (en) Apparatus for forming a gas-solids suspension
KR850002438A (en) Method and apparatus for generating and using spiral lift in conduits
JPS6054729A (en) Process for promoting chemical reaction using spiral gas stream
JP2506108B2 (en) Multi-stage Coanda spiral flow generator
FI63780C (en) SAETTING OF ORGANIZATION ATT OF THE PARTICULARS TO THE SUSPENSION OF SUSPENSION STRUCTURES AV ETT AEMNE I PULVERFORM OCH REAKTIONSGAS
Kato et al. Effective dry desulfurization by a powder-particle fluidized bed
JPS6051528A (en) Separation of gaseous mixture by spiral gas stream
JPS62264120A (en) Transportation of solid particle
JPS6051581A (en) Method of separating powdered and granular lump
JPS6053792A (en) Separation of heat effected by spiral airflow
US4131439A (en) Device for the dedusting of dust-containing gases
JPH081200B2 (en) Double cylinder Coanda spiral flow device
JPS6031437A (en) Transportation method for grains by spiral air stream
JPS6137961B2 (en)
JPS63154522A (en) Coanda spiral flow producing device
JPS6093032A (en) Spiral air stream producting device for transport of solid particles
JPS6056723A (en) Device for blowing stable spiral air-stream in pipe line
JP2599133B2 (en) Coanda spiral flow generator
JPS6093033A (en) Solid particles supply device to spiral air stream zone
JPS6048825A (en) Transportation of granular material through reinforced spiral air current
JP2560032B2 (en) Granular body manufacturing method
JPS61119513A (en) Solid particle transporter through spiral gas flow