JPS6051528A - Separation of gaseous mixture by spiral gas stream - Google Patents

Separation of gaseous mixture by spiral gas stream

Info

Publication number
JPS6051528A
JPS6051528A JP15909983A JP15909983A JPS6051528A JP S6051528 A JPS6051528 A JP S6051528A JP 15909983 A JP15909983 A JP 15909983A JP 15909983 A JP15909983 A JP 15909983A JP S6051528 A JPS6051528 A JP S6051528A
Authority
JP
Japan
Prior art keywords
pipe
pipeline
gas
feeder
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15909983A
Other languages
Japanese (ja)
Inventor
Kiyoyuki Horii
清之 堀井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP15909983A priority Critical patent/JPS6051528A/en
Publication of JPS6051528A publication Critical patent/JPS6051528A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cyclones (AREA)
  • Air Transport Of Granular Materials (AREA)

Abstract

PURPOSE:To separate various gaseous mixtures without using a solvent, an adsorbent and high pressure gas, by sending a gas mixture into a pipeline in a non- compressed state while imparting only a vector in the long axis direction of said pipeline to the same to form a stable spiral gas stream. CONSTITUTION:A feeder 4, of which the diameter is reduced from a wide opening diameter, is provided to the inlet 12 of a pipeline 1 and a gaseous mixture guided from a blower is sent into the feeder from a send-in pipe 41. The gas sent into the feeder 4 is converted to a parallel stream through the ring shaped passage between the inner wall of the feeder 4 and the outer wall of a gas stream guide 42 and directed to the pipe line inlet 12. That is, the gaseous mixture is sent into the pipeline 1 in a non-compressed state while only a vector substantially in the long axis direction of said pipeline 1 is imparted thereto. In this state, a spiral gas stream is stably formed from the outlet of the feeder 4 to the pipeline outlet 12. A compressed gas layer 3 is formed to the part in the vicinity of the inner wall 11 of the pipeline 1 in a ring shape by centrifugal force based on the revolving stream. Therefore, a gas molecule having large mass is gathered to the part in the vicinity of the pipe axis while a molecule having small mass is gathered to the part in the vicinity of the pipeline wall 11.

Description

【発明の詳細な説明】 (目的及び背景) 本発明は螺旋気流による混合ガスの分離方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION (Objective and Background) The present invention relates to a method for separating a mixed gas using a spiral air flow.

ガスや液体が渦を巻く現象は、例えば竜巻、台風の目、
渦潮など広く自然界に存在する。
Phenomena in which gas or liquid swirls are, for example, the eye of a tornado or typhoon.
It exists widely in the natural world, such as whirlpools.

工業的にガスや液体を輸送する場合にも条件次第で渦が
発生するが、これは圧力損失を伴なう好ましくない現象
として、出来るだけ発生を避けるような工夫がなされて
きた。
Vortices are generated depending on the conditions when industrially transporting gases and liquids, but this is an undesirable phenomenon that involves pressure loss, and efforts have been made to avoid its occurrence as much as possible.

本発明者は、このような渦現象に関心を持って基礎的な
研究を行なって来たところ、渦を巻きつつ旋回軸方向に
進行する螺旋気流という形態において各種の工業的利用
が可能であることを見出した。本発明はその各種利用法
の中の程合カスの分離に関するものである。
The present inventor has been interested in such vortex phenomena and has conducted basic research, and has found that various industrial applications are possible in the form of a spiral airflow that moves in the direction of the rotation axis while swirling. I discovered that. The present invention relates to the separation of waste particles among its various uses.

(構成) 即ち本発明は、混合ガスを非圧縮状態で木質的に管路の
長袖方向のベクトルのみを与えて管路に送入し、管路内
に管路断面に関しては旋回流をなしつつ管路長軸方向に
進行する安定な螺旋気流を形成させることよりなる混合
ガスの分離方法である。
(Structure) That is, in the present invention, the mixed gas is fed into the pipe in an uncompressed state while giving only a vector in the long sleeve direction of the pipe, and while forming a swirling flow in the cross section of the pipe. This is a method for separating mixed gas by forming a stable spiral airflow that advances in the longitudinal direction of the pipe.

螺旋気流の利用はこれまで工業的に取り上げられたこと
のない未開拓の分野であるので、まず螺旋気流とは如何
なるものであるかを説明する。
Since the use of spiral airflow is an unexplored field that has never been taken up industrially, we will first explain what a spiral airflow is.

人工的に旋回流を発生させるだめの方法として一般的に
考えられるのは、管内にその内周の切線方向から高速で
気流を送入する方法で、サイクロンその他にも応用され
ている。
A commonly thought method for artificially generating a swirling flow is to introduce airflow into a pipe at high speed from the tangential direction of the inner periphery, and this method is also applied to cyclones and other devices.

本発明者は当初この方法を試みたが、気流の送入口付近
では旋回流が形成されても、管路が長い場合には次第に
減衰して安定に維持することができないことが判明した
The inventor initially tried this method, but found that even if a swirling flow was formed near the airflow inlet, it would gradually attenuate and could not be maintained stably if the pipe line was long.

そこで更に研究を重ねた結果、−I+圧縮状態で本質的
に管路の長袖方向のベクトルのみを与えて気流を管路に
送入し気流平均速度を高めてゆくと。
As a result of further research, it was determined that in the -I+ compressed state, the airflow was sent into the pipe by essentially giving only a vector in the long sleeve direction of the pipe to increase the average air velocity.

管路内に管路断面に関しては旋回流をなしつつ管路長軸
方向に進行する安定な螺旋気流が形成されることを見出
した。
It has been found that a stable spiral airflow is formed in the pipe that progresses in the longitudinal direction of the pipe while forming a swirling flow in the cross section of the pipe.

更に具体的に説明すると、非圧縮状態で本質的に管路の
長袖方向のベクトルのhを与えて気流を管路に送入する
ということは、管路人11で圧力落差を伴なう9激な膨
張または収縮を生じさせることなく、また意図的に旋回
運動を促すようなベクトルを一切与えることなく、いわ
ばf6・路の長袖方向にピストンフローのような状態で
気流か滑らかに流線を乱さずに送入されるようにするこ
とを意味する。それ故送人気流に脈動があることは好ま
しくない。圧力落差を生ぜずまた軸方向に渦を巻くよう
な現象を起させずに所定の気流平均速度を与えるために
は、ブロワ−行から導かれたガスを直らに管路に送入せ
ずに、広い[j径のフィーターから徐々に径を綿小して
管路に送入するような方法を用いるのが々fましい。
To explain more specifically, sending the airflow into the pipe by essentially giving a vector h in the long sleeve direction of the pipe in an uncompressed state means that the pipe operator 11 has a pressure drop of 9. The airflow smoothly disturbs the streamlines in a state similar to a piston flow in the long direction of the f6 path, so to speak, without causing any expansion or contraction, and without giving any vector that intentionally promotes rotational movement. This means that the data will be sent without being sent. Therefore, it is undesirable for there to be pulsations in the flow rate. In order to provide a predetermined average air velocity without creating a pressure drop or causing a phenomenon such as swirling in the axial direction, the gas led from the blower row should not be directly fed into the pipe line. It is most preferable to use a method in which the diameter is gradually reduced from a wide diameter feeder and then fed into the pipe.

このような状態で送入した場合、気流はそのままピスト
ン20−の状!!8.を保ちつつ出口まで進行Tること
か予想されるが、意外にも気流平均速度を高めてゆき概
ね20 m /秒置」−とすると、管路断面に対しては
旋回流をなしつつ管路長軸方向に進行する螺旋気流が生
成していることが確認された。もちろん螺旋気流そのも
のはガスであるから肉眼では直接観察できないが、次に
述べる実験により螺旋気流の存在を確認できる。
If it is delivered in this condition, the airflow will remain in the shape of the piston 20-! ! 8. It is expected that the air flow will advance to the outlet while maintaining the same flow rate, but surprisingly, the average velocity of the airflow increases to about 20 m/sec. It was confirmed that a spiral airflow traveling in the longitudinal direction was generated. Of course, since the spiral airflow itself is a gas, it cannot be directly observed with the naked eye, but the existence of a spiral airflow can be confirmed by the experiment described below.

°この場合、管路出口が大気に解放されている時は?)
1・路入口の圧力がゲージ圧で1. K g / c 
m 2を越えることはない。
°In this case, when the pipe outlet is open to the atmosphere? )
1. The pressure at the entrance to the passage is gauge pressure. Kg/c
It will not exceed m2.

実験1 第1図に示すように、内径1.5インチの透明プラスチ
ックチューブを用いた管路lに垂jμ部分を設け、前記
の条件に従って送入した気流が下部から上部へと流れる
ようにする。そこで′6路人口から合成樹脂ペレ・ント
(径5迅m、長さ5mmの円柱状)を送入すると、気流
速度が十分に速U)場合にはペレットはこの垂直管路を
下部から上部へ瞬間的に通過するが、気流速度を調節し
てペレ・ン)・に働く重力による下向きのベクトルと気
流によるJl向きのベクトルが釣合うようにすると、ペ
レッI・は垂直管中の一定位置、例えば第11ΔのA−
A′の位置に留り、その運動が肉眼で観察できるように
なる。第2図は第1図のA−A ′線における断面図で
あるが、ペレット2は矢印で、1\すような旋回運動を
していることがわかる。A−A ′部分を手で押えてせ
ばめてやると、この部分の流速が増加するのでペレット
は上方へ飛ひ出し、やや」二部の釣合点B−B ′へ移
動してこの断面での旋回運動を続行する。この場合ペレ
ット2は・Z内壁11に直接接触してはいない。即ち管
内壁11に近い部分には旋回流に基く遠心力により圧縮
された気層3か環状に形成されている(図では環状気層
の厚みを誇張して描いているが、実際は1mm以下、ミ
クロンオーダーの厚みである)。従って・・!レットは
環状気層との境界部分で螺旋気流の」二向きベクトルと
重力の下向きパ・りトルの釣合のもとに一定+面で螺旋
気流の回転ベクトルにより旋回している。この釣合状態
から気流の流速を増せば、ペレット自身も螺旋流を描き
つつ出ロ方向に進むことは容易に理解できるであろう。
Experiment 1 As shown in Figure 1, a conduit l made of a transparent plastic tube with an inner diameter of 1.5 inches is provided with a hanging section so that the airflow introduced according to the above conditions flows from the bottom to the top. . Therefore, when a synthetic resin pellet (cylindrical shape with a diameter of 5 mm and a length of 5 mm) is introduced from the 6th channel, if the airflow velocity is sufficiently high (U), the pellet will pass through this vertical pipe from the bottom to the top. However, if the air velocity is adjusted so that the downward vector due to gravity acting on Pellet I and the vector in the Jl direction due to the airflow are balanced, Pellet I will be at a fixed position in the vertical pipe. , for example, A- of the 11th Δ
It remains at position A' and its movement can be observed with the naked eye. FIG. 2 is a sectional view taken along the line A-A' in FIG. 1, and it can be seen that the pellet 2 is making a turning motion as shown by the arrow. If you press the A-A' part with your hand and tighten it, the flow velocity in this part will increase, so the pellet will fly upwards and move slightly to the equilibrium point B-B' in the second part, and the Continue the circling motion. In this case, the pellet 2 is not in direct contact with the Z inner wall 11. That is, in a portion close to the inner wall 11 of the tube, an annular air layer 3 compressed by the centrifugal force based on the swirling flow is formed (the thickness of the annular air layer is exaggerated in the figure, but it is actually less than 1 mm). The thickness is on the order of microns). Therefore...! At the boundary with the annular air layer, the let is rotated by the rotating vector of the spiral airflow in a constant positive plane based on the balance between the two-way vector of the spiral airflow and the downward direction of gravity. It is easy to understand that if the velocity of the airflow is increased from this balanced state, the pellets themselves will move in the exit direction while drawing a spiral flow.

この状態から徐々に垂直管を創めシこ傾けてゆくと、一
定平面で旋回していたペレットは旋回を続けながら上昇
を開始しく即ちピッチの短い螺旋流を描イことになる)
、管の傾きが有る限度に達すると、9激に吸い込まれる
ように出1」方向(この場合上方)へ飛んで行き見えな
くなる。
From this state, if you gradually create a vertical tube and tilt it, the pellets that had been swirling in a fixed plane will start to rise while continuing to swirl, creating a spiral flow with a short pitch.)
When the inclination of the tube reaches a certain limit, it flies in the direction of exit 1'' (upward in this case), as if being sucked into a 9-point explosion, and disappears from view.

実験2 内径1 、5インチの透明プラスチックチューブを用い
て、出口を大気に解放した長さ200mの管路を敷設し
た。管路は途中にカーブや若干の高低を有してい゛た。
Experiment 2 A 200 m long conduit with an outlet open to the atmosphere was constructed using a transparent plastic tube with an inner diameter of 1.5 inches. The pipeline had curves and slight elevations along the way.

管路入口に第3図のような構造のフィーダー4を設け、
空気送入管41から送入された空気が管路の軸方向に乱
れのないピストン流となり、そのまま徐々に縮小されて
管路入口12に達するようにし、管路における気流=+
’均速度が26m/秒になるようにした。この111ノ
の!6・路入口部のゲージ圧は0.1Kg/cm2であ
った。
A feeder 4 having a structure as shown in Fig. 3 is provided at the entrance of the pipe,
The air introduced from the air supply pipe 41 becomes an undisturbed piston flow in the axial direction of the pipe, and is gradually reduced as it is until it reaches the pipe inlet 12, so that the air flow in the pipe is +
'The uniform speed was set to 26 m/sec. This 111 no! 6. Gauge pressure at the entrance of the passage was 0.1 Kg/cm2.

フィーダー4の軸心に沿って挿入した粒塊送入管42か
ら実験1で用いた合成樹脂ペレットを通続的に供給し、
管路の途中をストロボライトで照らして観察したところ
、ペレットが螺旋を描きつつ出口方向に進行しているこ
とを確認できた。
The synthetic resin pellets used in Experiment 1 were continuously supplied from the pellet feed pipe 42 inserted along the axis of the feeder 4,
When observing the middle of the conduit with a strobe light, it was confirmed that the pellets were moving in a spiral direction toward the exit.

ざらに管壁に近いところで連動しているペレットに比べ
て、管の中心に近いところを通るペレットは速度が速く
、追い抜き現象を示していることが1iJl察できた。
It was found that the pellets passing closer to the center of the tube had a faster speed than the pellets moving roughly closer to the tube wall, indicating an overtaking phenomenon.

なおF記粒塊送入管42の外壁は送入管41から供給さ
れた空気を軸方向に進行させる気流カイトの働きを兼ね
ている。
Note that the outer wall of the granule feed pipe 42 also functions as an air flow kite that causes the air supplied from the feed pipe 41 to advance in the axial direction.

またこの実験を長詩間続けたにも拘らず、プラスチック
チューブの柔らかい内壁に傷は全くつかず、ペレットか
内壁に直接接触していないことも確認できた。
Furthermore, even though this experiment continued for a long time, the soft inner wall of the plastic tube was not damaged at all, and it was confirmed that the pellets were not in direct contact with the inner wall.

以」二の実験から明らかなように、管路内部には安定な
螺旋気流が形成されている。螺旋気流を管路断面に投影
して見れば旋回運動であり、その回転に伴う遠心力によ
り内部のカス粒子は外側に投げ出される結果、管内壁に
沿って圧縮された薄い気層を形成し、内部はガス音度が
低く圧力は負圧になる。しかも実験2から推定されるよ
うに螺旋気流の管軸方向の進行速度は管の中心部に近づ
くほど速くなる。−カガス雀度は管の中心部に近づくほ
ど小さくなる。ところがt場の密度Jあるいは「動的富
度」は管の中心部分が殻も人きく、単位面積当りの気体
分子の移動量は最も多い。これはカス富度が低いことと
矛盾するように思われるかも知れないが、例えば高速道
路においては車両間隔が大きいにも拘らず単位時間に通
過する車両台数は混雑している一般道路よりも多い!1
9を考えれば容易に理解できるであろう。即ち静止系と
運動系とでは密度に関する観念が異なる。このようにし
て管内の各部においてはt場のエネルギーAと!運動の
エネルギー」の合計量が一定になるようなバランス状態
が保たれ、V:旋気流が安定してイI存するものと推定
される。
As is clear from the following two experiments, a stable spiral airflow is formed inside the pipe. When the spiral airflow is projected onto the cross section of the pipe, it shows a swirling motion, and the centrifugal force accompanying the rotation throws the internal particles outward, forming a compressed thin air layer along the inner wall of the pipe. Inside, the gas noise level is low and the pressure is negative. Moreover, as estimated from Experiment 2, the traveling speed of the spiral airflow in the tube axis direction becomes faster as it approaches the center of the tube. -Kagasu sparrow degree becomes smaller as it gets closer to the center of the tube. However, the density J or "dynamic enrichment" of the t-field is the highest in the center of the tube, where the amount of gas molecules transferred per unit area is greatest. This may seem contradictory to the fact that the abundance of debris is low, but for example, on expressways, the number of vehicles passing per unit time is greater than on congested general roads, even though the distance between vehicles is large. ! 1
This can be easily understood if we consider 9. In other words, the concept of density is different between a stationary system and a moving system. In this way, in each part of the tube, the t-field energy A! It is presumed that a balanced state is maintained in which the total amount of kinetic energy is constant, and that the swirling current exists stably.

本質的に管路の長軸方向のベクトルのみを与えた気流を
一定速度以上で管路に送入しただけで何故に回転方向の
ベクトルが発生するのかということは、まだ理論的に説
明し得る段階には達していない。台風などの場合には、
上昇気流に対して地球の自転の力か働いて旋回流を発生
させると説明されているが、本発明の場合におい−Cは
必ずしもその理論を適用することは出来ない。螺旋気流
の廻る方向、即ち左巻か左巻かは、時により異り一定し
ていない(竜巻の場合も左巻と左巻があるという)、し
かし台風も竜巻もその発生原因は非圧縮状態の(熱上昇
)気流であることを考えれば、?σ路内での非圧縮状態
の気流が旋回連動を行なうことは不思議でない。現段階
で言えることは、現実に管路に螺旋気流が発生し安定に
存在していること、旋回運動の結果生ずる遠心力の影響
及び軸方向の運動に伴なうコリオリの力も加わってガス
粒子は外側へ投げ出され管壁に沿って薄い動きの少ない
環状の気層を形成していること、管の中心部に近いほど
気圧が低く、気流進行速度が速く、また工動的密度jが
高いこと等である。
It is still theoretically possible to explain why a vector in the direction of rotation is generated simply by sending an airflow with essentially only a vector in the long axis direction of the pipe into the pipe at a constant speed or higher. It has not reached that stage. In case of a typhoon, etc.
It is explained that the force of the earth's rotation acts on the updraft to generate a swirling flow, but this theory cannot necessarily be applied to -C in the case of the present invention. The direction in which a spiral airflow rotates, i.e. whether it is left-handed or left-handed, varies from time to time and is not constant (it is said that in the case of tornadoes, there are left-handed and left-handed twists), but the cause of both typhoons and tornadoes is the uncompressed state. Given that the (heat rise) airflow is? It is no wonder that the uncompressed airflow in the σ path performs rotational movement. What can be said at this stage is that a spiral airflow actually occurs and exists stably in the pipe, and that gas particles are is thrown outward, forming a thin annular air layer with little movement along the pipe wall; the closer to the center of the pipe, the lower the air pressure, the faster the airflow speed, and the higher the industrial density j. This is the case.

現段階においてはJfli定の域を出ないが、カス粒子
は遠心力により管壁に押し付けられてはいるものの、管
軸、即ち旋回軸の最も気圧の低い部分に向って常に流れ
込もうというポテンシャルを有しており、現実に分子レ
ベルではそのような動きを生じていることは予想できる
。これは丁度竜巻の中心や台風の目に四方から空気が流
れ込む動きと同様であり、管路入口の僅かな形状の差に
よって発生した回転方向のベクトルがこの為に強調され
て安定な螺旋気流を生成するのではないかとも考えられ
る。
At this stage, Jfli is still a constant, but although the waste particles are pressed against the tube wall by centrifugal force, there is a potential that they will always flow toward the lowest pressure part of the tube axis, that is, the rotation axis. It can be predicted that such movements actually occur at the molecular level. This is just like the movement of air flowing into the center of a tornado or the eye of a typhoon from all sides, and the vector in the rotational direction generated by the slight difference in the shape of the pipe entrance is emphasized for this reason, creating a stable spiral airflow. It is thought that it may be generated.

これに対して工業的に空気輸送などで一般に用いられて
いる条件、即ち圧縮した空気を弁などを通じて断熱膨張
的に圧力落差のある状態で送入したのでは乱流を生じる
だけで安定な旋回流は生じない。
On the other hand, under the conditions commonly used in industrial pneumatic transport, i.e., compressed air is fed through a valve or the like with a pressure drop in an adiabatic expansion manner, only turbulence occurs, resulting in stable swirling. No flow occurs.

さきに、螺旋気流の場合は管路入口と管路出口との差圧
はl K g / c m 2を越えることはないと述
べたが、この点について更に詳細に説明する。
Earlier, it was stated that in the case of a spiral airflow, the differential pressure between the pipe inlet and the pipe outlet does not exceed 1 K g/cm 2 , but this point will be explained in more detail.

管路人口と出口との差圧は、主として管径、管路長、気
流速度の関数になる。近似的に、」えば、管路長が2倍
になれば差圧は2倍になり、また気流速度を2倍にして
も差圧は2倍になる。逆に管径が大きくなれば差圧は減
少する方向になり、14径が小さいうちは管径の2乗に
反比例して減少するが、管径が大になるにつれて影響度
は小さくなる。
The differential pressure between the pipe population and the outlet is primarily a function of pipe diameter, pipe length, and air velocity. Approximately, for example, if the pipe length is doubled, the differential pressure will be doubled, and if the airflow velocity is doubled, the differential pressure will be doubled. Conversely, as the pipe diameter increases, the differential pressure tends to decrease, and while the 14 diameter is small, it decreases in inverse proportion to the square of the pipe diameter, but as the pipe diameter increases, the degree of influence becomes smaller.

例をいイつか挙げると、管if 20 c m 、管路
長Loom、平均気流平均気流速度25蒔/入口圧は約
0.05Kg/cm”となる。又管径1.5インチ(3
,81cm)、管路長200m、平均気流速度26m/
秒の時の入口圧は、実験2に示した通り0.1Kg、/
cm2であった。
To give a few examples, the pipe if 20 cm, the pipe length Loom, the average air flow average air velocity 25/inlet pressure is about 0.05 Kg/cm. Also, the pipe diameter is 1.5 inches (3
, 81cm), pipe length 200m, average air velocity 26m/
As shown in Experiment 2, the inlet pressure at the time of 0.1 kg, /
It was cm2.

この割合で計算すると、管路が非常に長い場合又は管径
が非常に細い場合には、人口圧が1Kg/ c m 2
以上になることもあり得るが、本発明者等の知見による
と、人口と出口の圧力差が1Kg/ c m 2迄が管
内でdiIA旋気流が安定に存在する限工業的に利用す
る場合は、負荷の変動、出口側圧力の変化、その他の制
御困難な要因が働くことも考えらるので、実用限界とし
てはこの7割位の数字、即ち管路入口と管路出口との差
圧が0.7K g / c m 2以下になるようにシ
ステム設計するのが好ましい。但し螺旋気流系において
はエム体輸送に関する従来の化学工学諸式を適用するこ
とは出来ない。
Calculating at this rate, if the pipe is very long or the pipe diameter is very thin, the population pressure will be 1 kg/cm 2
However, according to the findings of the present inventors, when the pressure difference between the population and the outlet is up to 1 kg/cm2, the diIA whirlpool stably exists in the pipe for limited industrial use. , load fluctuations, changes in outlet side pressure, and other factors that are difficult to control may come into play, so the practical limit is about 70% of this number, that is, the differential pressure between the pipe inlet and pipe outlet. It is preferable to design the system so that it is 0.7 K g/cm 2 or less. However, conventional chemical engineering formulas regarding em-body transport cannot be applied to spiral air flow systems.

螺旋気流が発生する気流平均速度は概ね20m/秒以上
と述べたが、これもガスの種類、管径、その他の要因に
より変化し得るので、限界値を実験的にめ、それに安全
率をかけてシステム設計するのが望ましい。
As stated above, the average air velocity at which spiral airflow occurs is approximately 20 m/s or more, but this can vary depending on the type of gas, pipe diameter, and other factors, so the limit value must be determined experimentally and a safety factor applied to it. It is desirable to design the system based on

管路入口のフィーダーは、木質的に管路の長袖方向のベ
クトルのみを与えた気流を管路に送入できる構造にする
必要があり、その1例を第3図に示す。フィーダー4は
直管状で、その一端は閉鎖されており、その閉鎖端43
に近い場所にブロワ−などから送られたガスの送入管、
41を設ける。
The feeder at the entrance of the conduit must have a structure that can send into the conduit an airflow that only has a vector in the long sleeve direction of the conduit, and one example of this is shown in FIG. The feeder 4 has a straight tube shape, and one end thereof is closed, and the closed end 43
A gas supply pipe sent from a blower, etc. to a location near the
41 will be provided.

混合ガスの導入部は管路より太くし、徐々にロート44
状にせばめて管路lと同じ(i↑径にして)妾続するの
が効果的である。ロート部の形状tよ一葉双曲面回転体
状等が好ましい。さら番とフィーダー4の管軸に沿って
、閉鎖端側から気流ガイ1ζ゛42を挿入設置する。カ
ス送入管41から送り込まれたガスはフィーダー内壁と
気流ガイド42の外壁との間の環状通路を通って平行流
となりt6・路人口12に向う。このような状態でフィ
ーダーの出1−Jから管路入口にかけて螺旋気流が発生
し、g路の全長にわたって安定に存在する。なお上記気
流ガイl” 42は、実験2で粒塊送入管として用いた
ものに盲栓をすることにより構成し得る。
The introduction part of the mixed gas is made thicker than the pipe, and gradually the funnel 44
It is effective to narrow it down and connect it to the same diameter as pipe l (i↑diameter). It is preferable that the shape of the funnel portion is in the form of a single-lobed hyperboloid of revolution. The air flow guide 1ζ'42 is inserted and installed from the closed end side along the tube axis of the countersunk and feeder 4. The gas sent from the waste feed pipe 41 passes through the annular passage between the inner wall of the feeder and the outer wall of the airflow guide 42, and becomes a parallel flow toward t6 and the passageway 12. In this state, a spiral airflow is generated from the feeder outlet 1-J to the pipe entrance, and exists stably over the entire length of the g-path. Note that the airflow guide 1'' 42 can be constructed by plugging the tube used as the granule feeding tube in Experiment 2.

このようにして形成された安定な螺旋気流は種々の興味
深い特性を有しているが、混合ガスで螺旋%流を形成さ
せたところガス分子の質重、に応して分離が行なわれて
いることが見出された。
The stable spiral air flow formed in this way has various interesting properties, but when a spiral flow is formed with a mixed gas, separation occurs depending on the mass and weight of the gas molecules. It was discovered that

この場合螺旋気流の旋回軸、即ち管も11に近1.X部
分1こ質量の大きなガス分子が集まり、管壁tこ近(1
部分には質量の小さな分子が集まる。この分離は混合ガ
スが管路を出口方向に進行するに従って進行する。また
管路の特定断面における組成分布は半径上の位置によっ
て連続的に変化し、同心円的に同一組成が存在する。
In this case, the axis of rotation of the spiral airflow, that is, the tube, is also close to 11. Gas molecules with a large mass gather at the X part, and near the tube wall t (1
Molecules with small mass gather in the area. This separation progresses as the gas mixture progresses through the conduit toward the outlet. Further, the composition distribution in a specific cross section of the pipe continuously changes depending on the radial position, and the same composition exists concentrically.

混合ガスを構成する個々のガス分子の質量差が大きい時
は比較的短い距fs、(管路長)で分離が行なわれるが
、負星差が小さい時は距離を長く″するか、下方から上
方へ向う管路を使用し螺旋気流のピッチを短くして実質
的に管路が長い場合と同じ効果を与える等の方法を用い
ることによりシャープな分離を行なうことができる。
When the mass difference between the individual gas molecules that make up the mixed gas is large, separation is performed over a relatively short distance fs (pipe length), but when the negative star difference is small, the distance is increased or the separation is performed from below. Sharp separation can be achieved by using methods such as using an upwardly directed conduit and shortening the pitch of the spiral airflow to provide essentially the same effect as a long conduit.

螺旋気流域において分離されたガスを取り出す方法とし
ては、管路出口にで管軸に平行に細いパイプを設置して
質量の大きいガスを取り出す方法のほか、管路出口に近
い管壁部分から質量の小さいガスを少しずつ抜き出す方
法も考えられる。
The gas separated in the spiral air region can be taken out by installing a thin pipe parallel to the pipe axis at the outlet of the pipe and taking out the gas with a large mass. Another possibility is to extract small amounts of gas little by little.

管路出口における分離ガスの取得を管軸部分のせまい範
囲に限定するほど、シャープに分離された質量の大きい
ガスを得ることができる。
The more narrowly the separation gas is obtained at the outlet of the pipe, the more sharply separated gas with a large mass can be obtained.

(実施例1) 8インチガス管(直径20cm)で100m(7)ルー
プ管路を設置し、アルゴン50容量%、ヘリウム50容
遍%の混合カスを気流qi均速瓜20m/秒になるよう
に管路入口から送入して螺旋気流を形成させた。実験装
置の概要を第4図に示す。
(Example 1) A 100 m (7) loop pipe was installed using an 8-inch gas pipe (diameter 20 cm), and a mixture of 50% by volume of argon and 50% by volume of helium was heated so that the air flow rate was 20 m/sec. was introduced from the pipe entrance to form a spiral airflow. Figure 4 shows an outline of the experimental equipment.

被験混合ガスのシールトチエン八−5内にフィーダー4
を設置しく42は気流ガイド)、チェンバー5内の混合
ガスをブロワ−6でフィーダー4に供1合するようにし
た。フィーダー4はチェンバー外に設置した管路7に接
続し、管路7はループ状に折り返してその出ロア1を再
びチェンバー内に解放するように設置した。このように
すれば央部のガスで長時間の試験を行なうことができる
Feeder 4 is installed in sealed chain 8-5 for test mixed gas.
(42 is an air flow guide), and the mixed gas in the chamber 5 is fed to the feeder 4 by the blower 6. The feeder 4 was connected to a conduit 7 installed outside the chamber, and the conduit 7 was installed so as to be folded back into a loop to release its output lower 1 into the chamber again. In this way, long-term tests can be conducted using the central gas.

管路出ロア1の中心部にサンプル採取/1′?8を設け
てガスを外部に導き組成分析を行なった。また採取管の
管径を変えて組成の変化を調べた。
Collect sample at the center of pipe exit lower 1/1'? 8 was installed to guide the gas to the outside for compositional analysis. We also investigated changes in composition by changing the diameter of the collection tube.

サンプル採取管の直径を2cmとした時のアルゴン濃度
は95容童%(標準偏差σ−4,5容量%)であり、直
径を4cmとした時のアルゴン濃度は85容量%(e4
準偏差σ=4.5容量%)で(効果) (1)溶剤、吸着剤、または高圧を使用することなく混
合ガスの分離ができる。
When the diameter of the sample collection tube is 2 cm, the argon concentration is 95% by volume (standard deviation σ-4, 5% by volume), and when the diameter is 4cm, the argon concentration is 85% by volume (e4).
Standard deviation σ = 4.5% by volume) (Effects) (1) Mixed gases can be separated without using solvents, adsorbents, or high pressure.

(2)装置が簡単で、ブロワ−と管路だけで混合ガスの
分離ができる。
(2) The device is simple, and mixed gas can be separated using only a blower and pipes.

(3)常温で液体の混合組成物もガス化する条件下では
本発明方法で分離できる。質¥差により分離するので、
通昂の蒸留では共佛況合物を作り分離できないような成
分も分離できる。
(3) Even a mixed composition that is liquid at room temperature can be separated by the method of the present invention under conditions where it is gasified. Separated by quality difference,
Tonggong's distillation creates a complex of common Buddhas and can separate components that cannot be separated.

【図面の簡単な説明】[Brief explanation of drawings]

′ft51図及び第2図は垂直管路で下から上へ流れる
螺旋気流を形成させた時に小さな粒体が同一平面で旋回
運動を行うことを説明するための図であり、第3図は管
路入口へガスの供給を行うためのフィーダーの構造の1
例を示す説明図である。また第4図は本発明方法を実験
したシステムの説明図である。 特許出願人 堀 井 清 之 代理人 弁理士 青 麻 昌 二 第 1 図
'ft51 Figure and Figure 2 are diagrams to explain that when a spiral airflow flowing from bottom to top is formed in a vertical pipe, small particles perform a swirling motion on the same plane. 1. Structure of a feeder for supplying gas to the road entrance
It is an explanatory diagram showing an example. FIG. 4 is an explanatory diagram of a system in which the method of the present invention was tested. Patent applicant Kiyoyuki Horii Agent Patent attorney Masa Aoma Figure 1

Claims (1)

【特許請求の範囲】[Claims] 混合ガスを非圧縮状態で木質的に管路の長袖方向のベク
トルのみを与えて管路に送入し、管路内に管路断面に関
しては旋回流をなしつつ管路長軸方向に進行する安定な
螺旋気流を形成させることよりなる混合ガスの分離方法
The mixed gas is fed into the pipe in an uncompressed state with only a vector in the long sleeve direction of the pipe, and the gas flows in the pipe in the long axis direction while forming a swirling flow in the cross section of the pipe. A method for separating a mixed gas by forming a stable spiral airflow.
JP15909983A 1983-09-01 1983-09-01 Separation of gaseous mixture by spiral gas stream Pending JPS6051528A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15909983A JPS6051528A (en) 1983-09-01 1983-09-01 Separation of gaseous mixture by spiral gas stream

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15909983A JPS6051528A (en) 1983-09-01 1983-09-01 Separation of gaseous mixture by spiral gas stream

Publications (1)

Publication Number Publication Date
JPS6051528A true JPS6051528A (en) 1985-03-23

Family

ID=15686211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15909983A Pending JPS6051528A (en) 1983-09-01 1983-09-01 Separation of gaseous mixture by spiral gas stream

Country Status (1)

Country Link
JP (1) JPS6051528A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63264154A (en) * 1987-04-20 1988-11-01 Isao Tonuma Device for enriching oxygen
WO2002068094A1 (en) * 2001-02-23 2002-09-06 Japan Science And Technology Corporation Separating apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63264154A (en) * 1987-04-20 1988-11-01 Isao Tonuma Device for enriching oxygen
WO2002068094A1 (en) * 2001-02-23 2002-09-06 Japan Science And Technology Corporation Separating apparatus

Similar Documents

Publication Publication Date Title
US6776825B2 (en) Supersonic separator apparatus and method
RU2229922C2 (en) Nozzle, inertial separator and method of supersonic separation of component
US2806551A (en) Centrifugal dust collector with laminar gas flow
CN1145513C (en) Removing gaseous component from fluid
US5104520A (en) Apparatus and method for separating constituents
AU621894B2 (en) Vortex tube separating device
DE60213442T2 (en) CYCLONE SEPARATOR WITH SWIVEL GENERATOR IN THE INLET AREA
US6280502B1 (en) Removing solids from a fluid
EA015603B1 (en) Cyclonic separator and method for degassing a fluid mixture
EA014604B1 (en) Cyclonic separator for degassing liquid and a method for degassing a fluid mixture
US4057908A (en) Method and apparatus for drying damp powder
US4279627A (en) Fine particle separation apparatus
US2719631A (en) Methods of and devices for effecting centrifugal separation
US6514322B2 (en) System for separating an entrained immiscible liquid component from a wet gas stream
JPS6051528A (en) Separation of gaseous mixture by spiral gas stream
US20130318933A1 (en) Dynamic cyclone separator, with an axial flow and having a variable configuration
US4097375A (en) Hydrocyclone separator
US3567194A (en) Wet approach venturi scrubber
JPS6051581A (en) Method of separating powdered and granular lump
US2702632A (en) Particle classification
JPS6054729A (en) Process for promoting chemical reaction using spiral gas stream
JPS6053792A (en) Separation of heat effected by spiral airflow
SE516013C2 (en) Method and apparatus for mixing a flowing gas and a powdered material
GB2409990A (en) A system for separating an entrained immiscible liquid from a wet gas stream
SU1143473A1 (en) Cyclone apparatus