JPS6051616B2 - Refrigeration equipment - Google Patents

Refrigeration equipment

Info

Publication number
JPS6051616B2
JPS6051616B2 JP15539478A JP15539478A JPS6051616B2 JP S6051616 B2 JPS6051616 B2 JP S6051616B2 JP 15539478 A JP15539478 A JP 15539478A JP 15539478 A JP15539478 A JP 15539478A JP S6051616 B2 JPS6051616 B2 JP S6051616B2
Authority
JP
Japan
Prior art keywords
refrigerant
control
pipe
pressure
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15539478A
Other languages
Japanese (ja)
Other versions
JPS5579965A (en
Inventor
二郎 柚田
通真 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP15539478A priority Critical patent/JPS6051616B2/en
Publication of JPS5579965A publication Critical patent/JPS5579965A/en
Publication of JPS6051616B2 publication Critical patent/JPS6051616B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Description

【発明の詳細な説明】 本発明は冷媒を吸入し圧縮し吐出する圧縮装置と、冷
媒凝縮装置と、蒸発装置と、冷媒絞り装置を有し、上記
圧縮装置の冷媒吐出量の制御に応動して上記冷媒絞り装
置の冷媒流量を確実に制御すると共に効率の良い冷凍装
置を提供することを目的とするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention includes a compression device that takes in, compresses, and discharges refrigerant, a refrigerant condensing device, an evaporator, and a refrigerant throttling device, and responds to control of the amount of refrigerant discharged from the compression device. It is an object of the present invention to provide an efficient refrigeration system that reliably controls the refrigerant flow rate of the refrigerant expansion device.

近年、冷凍装置の圧縮機はシリンダ内のピストンが往
復運動して冷媒を圧縮する往復動式圧縮装置から、シリ
ンダ内のピストンが回動運動して冷媒を圧縮する回動式
圧縮機が主流をなすようになつてきており、また冷凍負
荷に応じて圧縮機の吐出冷媒量を制御し冷凍装置の能力
を制御する要望が生じてきた。
In recent years, the mainstream of compressors for refrigeration equipment has changed from reciprocating compressors in which a piston in a cylinder moves back and forth to compress refrigerant, to rotary compressors in which a piston in a cylinder rotates to compress refrigerant. In addition, there has been a demand for controlling the amount of refrigerant discharged from the compressor in accordance with the refrigeration load to control the capacity of the refrigeration system.

そのため、上記回転式圧縮機のシリンダに吐出冷媒量を
調節するために連通孔を設け、シリンダ内の冷媒を上記
連通孔より圧縮機の吸気管へ還流させる能力制御圧縮機
が提案されている。しかし、このような能力制御圧縮機
を冷凍装置に組込んだ場合、圧縮機の能力制御に応じて
冷媒の絞り抵抗を変化させなければ冷媒回路のバランス
がくずれ、蒸発器での未蒸発の冷媒液が圧縮機に吸込ま
れたり、また、冷媒の蒸発圧力が上昇しすぎ、冷媒蒸発
温度が上昇する。この結果、蒸発器の熱交換量が極端に
低下するなどの不都合が生じる。このために、従来では
、圧縮機の能力制御に応じて上記冷媒の絞り抵抗を電磁
弁にて変化させることが提案されているが、この電磁弁
は高価である上に、制御用に電気エネルギーが必要であ
り冷凍装置のエネルギーの消費が大きくなると共に最大
の欠点は圧縮機の能力制御信号により上記電磁弁を開閉
するため、圧縮機の能力制御が正常に作動しない状態で
も上記冷媒の絞り抵抗が変化し、その結果上記のような
不都合が生じ、圧縮機が破損する恐れがある。 本発明
はこのような難点を改良するもので、以下本発明をその
実施例を示す図面を参考に説明する。
Therefore, a capacity control compressor has been proposed in which a communication hole is provided in the cylinder of the rotary compressor to adjust the amount of refrigerant discharged, and the refrigerant in the cylinder is returned to the intake pipe of the compressor through the communication hole. However, when such a capacity-controlled compressor is incorporated into a refrigeration system, unless the refrigerant throttling resistance is changed in accordance with the compressor capacity control, the balance of the refrigerant circuit will be lost, and unevaporated refrigerant will flow in the evaporator. If the liquid is sucked into the compressor or the evaporation pressure of the refrigerant increases too much, the refrigerant evaporation temperature increases. As a result, inconveniences occur such as an extremely reduced amount of heat exchanged by the evaporator. To this end, it has conventionally been proposed to use a solenoid valve to change the throttling resistance of the refrigerant in accordance with compressor capacity control, but this solenoid valve is expensive and requires electrical energy for control. The biggest drawback is that the solenoid valve is opened and closed by the compressor capacity control signal, so even when the compressor capacity control is not operating normally, the refrigerant throttling resistance increases. As a result, the above-mentioned disadvantages may occur and the compressor may be damaged. The present invention is intended to improve these drawbacks, and will be described below with reference to drawings showing embodiments thereof.

第1図は本発明の冷凍装置の一実施例であり、1は回
転式圧縮機で、2は図示しないハウジングに収容される
圧縮装置を示す。
FIG. 1 shows an embodiment of the refrigeration system of the present invention, where 1 is a rotary compressor and 2 is a compressor housed in a housing (not shown).

この圧縮装置2はシリンダ3を有し、このシリンダ3内
に形成されるシリンダ室4にはピストン5が偏心して収
容され、ピストン5は回転軸6の偏心部7に連結し図中
矢印方向に偏心回転自在である。またシリンダ室4周壁
一部に案内溝8が設けられ、ばね9により弾性的に付勢
された仕切ベーン10が移動自在に嵌合し、仕切ベーン
10の先端は上記ピストン5の周壁に接触している。上
記仕切ベーン10の近傍には冷媒吸入部である吸込孔1
1が設けられ後述する吸込管12に接続されている。ま
た仕切ベーン10の近傍には吐出室13が設けられ、こ
の吐出室13とシリンダ室4を連通する吐出孔14と、
この吐出孔14を開閉する吐出弁15と、この吐出弁1
5の弁押え16が設けられている。上記吐出室13は後
述する吐出管17と連通している。シリンダ3には上記
吸込孔11から上記ピストン5の偏心回転方向の上記吐
出孔14までのシリンダ3周壁一部に能力制御装置18
に連通する制御孔19が設けられ、能力制御装置18は
この制御孔19を開閉する制御バルブ20とこの制御バ
ルブ20を開ける方向に付勢するばね21よりなり、図
中一点鎖線で記載した前記制御バルブ20は上記制御孔
19を開けた状態を示す。上記制御バルブ20は所定圧
力以上がかかつた時に上記制御孔19を閉成し、また、
所定圧力以下のときに開放するようになつておりこの制
御圧力を制御管22より供給している。上記吐出管17
は冷媒凝縮器23、冷媒絞り装置2牡蒸発器25と順次
接続され上記吸込管12と連通されている。
This compression device 2 has a cylinder 3, and a piston 5 is eccentrically accommodated in a cylinder chamber 4 formed within the cylinder 3. The piston 5 is connected to an eccentric portion 7 of a rotating shaft 6 and is connected to an eccentric portion 7 of a rotating shaft 6 in the direction of the arrow in the figure. Eccentrically rotatable. Further, a guide groove 8 is provided in a part of the circumferential wall of the cylinder chamber 4, into which a partition vane 10 elastically biased by a spring 9 is movably fitted, and the tip of the partition vane 10 contacts the circumferential wall of the piston 5. ing. A suction hole 1 which is a refrigerant suction part is located near the partition vane 10.
1 is provided and connected to a suction pipe 12 which will be described later. Further, a discharge chamber 13 is provided near the partition vane 10, and a discharge hole 14 that communicates the discharge chamber 13 with the cylinder chamber 4,
A discharge valve 15 that opens and closes this discharge hole 14, and this discharge valve 1.
Five valve holders 16 are provided. The discharge chamber 13 communicates with a discharge pipe 17, which will be described later. A capacity control device 18 is provided on a part of the cylinder 3 peripheral wall from the suction hole 11 to the discharge hole 14 in the direction of eccentric rotation of the piston 5.
A control hole 19 communicating with the control hole 19 is provided, and the capacity control device 18 includes a control valve 20 that opens and closes the control hole 19, and a spring 21 that biases the control valve 20 in the direction of opening. The control valve 20 is shown with the control hole 19 opened. The control valve 20 closes the control hole 19 when a predetermined pressure or more is applied, and
It is designed to open when the pressure is below a predetermined pressure, and this control pressure is supplied from the control pipe 22. The above discharge pipe 17
is sequentially connected to a refrigerant condenser 23, a refrigerant throttle device 2, and an evaporator 25, and is communicated with the suction pipe 12.

上記冷媒絞り装置24は第1キャピラリチューブ26、
第2キャピラリチューブ27、絞り制御弁28よりなり
、第2キャピラリチューブ27と絞り制御弁28の並列
回路に第1キャピラリチューブ26が直列に接続されて
いる。また、上記制御管22は三方弁29を介して、高
圧管30により上記吐出管17と連通し、かつまた低圧
管31により上記吸込管12と連通し、三方弁29の切
換により上記制御管22に上記圧縮装置2の吐出冷媒出
力および吸込冷媒圧力がかかるようにしている。
The refrigerant expansion device 24 includes a first capillary tube 26,
It consists of a second capillary tube 27 and a throttle control valve 28, and the first capillary tube 26 is connected in series to a parallel circuit of the second capillary tube 27 and the throttle control valve 28. Further, the control pipe 22 communicates with the discharge pipe 17 through a high-pressure pipe 30 and the suction pipe 12 through a low-pressure pipe 31 via a three-way valve 29, and by switching the three-way valve 29, the control pipe 22 The discharge refrigerant output and suction refrigerant pressure of the compression device 2 are applied to the compressor 2.

上記絞り制御弁28は第2図に示すように、ダイヤフラ
ム32と一体となつて動く弁33と、この弁33が制御
時に当接する弁座34、および上記ダイヤフラム32を
付勢するばね35よりなり、上記制御管22に連通する
圧力導入管36の冷媒圧力により上記ダイヤフラム32
が変位し、上記弁33と弁座34の開閉を行ない、流入
管37から流出管38への冷媒の流れを制御する。
As shown in FIG. 2, the throttle control valve 28 is made up of a valve 33 that moves together with a diaphragm 32, a valve seat 34 that this valve 33 comes into contact with during control, and a spring 35 that biases the diaphragm 32. , the diaphragm 32 due to the refrigerant pressure in the pressure introduction pipe 36 communicating with the control pipe 22
is displaced to open and close the valve 33 and valve seat 34, thereby controlling the flow of refrigerant from the inflow pipe 37 to the outflow pipe 38.

第2図は上記流入管37より流出管38への冷媒の流れ
が矢印のように生じ上記第1キャピラリチューブ26と
上記蒸発器25が連通する状態を示している。次に第1
図の冷凍装置の動作を説明する。
FIG. 2 shows a state in which the refrigerant flows from the inflow pipe 37 to the outflow pipe 38 as shown by the arrow, and the first capillary tube 26 and the evaporator 25 communicate with each other. Next, the first
The operation of the refrigeration system shown in the figure will be explained.

回転式圧縮機1が高能力運転する場合には、三方弁29
は第1図の実線で示すように制御管22が高圧管30と
連通され、制御管22の圧力は圧縮機1の吐出圧力とな
る。
When the rotary compressor 1 operates at high capacity, the three-way valve 29
As shown by the solid line in FIG. 1, the control pipe 22 is communicated with the high pressure pipe 30, and the pressure of the control pipe 22 becomes the discharge pressure of the compressor 1.

その結果、制御バルブ20は制御孔19を閉成し、圧縮
装置2のシリンダ室4の冷媒ガスはすべてピストン5で
圧縮され、吐出孔14より吐出されて吐出管17より凝
縮器23に入り凝縮液化する。一方、絞り制御弁28の
制御管22と連通している圧力導入管36には圧縮機1
の吐出圧力である高圧がかかり、第2図に示すようにダ
イヤフラム32を押圧し、弁33を弁座34より開放す
る。この結果、上記凝縮液化した冷媒液は冷媒絞り装置
24の第1キャピラリチューブ26、上記絞り制御弁2
8の直列回路を通過し、絞り抵抗の小さい状態で減圧膨
脹し、蒸発器25で吸熱蒸発し、吸入管12より吸入孔
11に吸入される。このようにして冷凍装置は冷媒絞り
装置24の抵抗を小さくして冷媒の循環量の大きい状態
に対応する。次に上記三方弁29を破線のように切り換
えて、制御管22と低圧管31を連通させ、能力制御装
置18の制御バルブ20に低圧圧力をかければばね21
により制御孔19は開放となり、シリンダ室4内の冷媒
はピストン5で圧縮され、一部は上記制御孔19より制
御管22へとバイパスされ、残りの冷媒は、さらに圧縮
され上記吐出孔より吐出管17へと吐出され、圧縮装置
2から吐出冷媒量を減小させ、この吐出管17へ吐出さ
れた冷媒は冷媒凝縮器23で液化凝縮される。
As a result, the control valve 20 closes the control hole 19, and all the refrigerant gas in the cylinder chamber 4 of the compression device 2 is compressed by the piston 5, discharged from the discharge hole 14, enters the condenser 23 through the discharge pipe 17, and is condensed. liquefy. On the other hand, the pressure introduction pipe 36 communicating with the control pipe 22 of the throttle control valve 28 is connected to the compressor 1.
A high pressure, which is the discharge pressure of , is applied, pressing the diaphragm 32 and opening the valve 33 from the valve seat 34 as shown in FIG. As a result, the condensed and liquefied refrigerant liquid flows through the first capillary tube 26 of the refrigerant throttle device 24 and the throttle control valve 2.
8 in series, expands under reduced pressure with a small throttle resistance, absorbs heat and evaporates in the evaporator 25, and is sucked into the suction hole 11 through the suction pipe 12. In this manner, the refrigeration system reduces the resistance of the refrigerant expansion device 24 to cope with a state in which the amount of refrigerant circulated is large. Next, the three-way valve 29 is switched as shown by the broken line to communicate the control pipe 22 and the low pressure pipe 31, and when low pressure is applied to the control valve 20 of the capacity control device 18, the spring 21
The control hole 19 is opened, and the refrigerant in the cylinder chamber 4 is compressed by the piston 5. A portion of the refrigerant is bypassed from the control hole 19 to the control pipe 22, and the remaining refrigerant is further compressed and discharged from the discharge hole. The refrigerant is discharged into the pipe 17 to reduce the amount of refrigerant discharged from the compression device 2 , and the refrigerant discharged into the discharge pipe 17 is liquefied and condensed in the refrigerant condenser 23 .

一方、圧力導入管36の圧力は低圧圧力となるため、絞
り制御弁28は第3図のような作動状態となり弁33は
弁座34に当接し閉成する。この結果、上記液化凝縮し
た冷媒液は冷媒絞り装置24において第1キャピラリチ
ューブ26と第2キャピラリチューブ27の直列回路を
通過し絞り抵抗の大きな状態で減圧膨脹し、蒸発器25
に流入し吸熱蒸発して吸入管12を通過後、圧縮装置2
の吸入孔11への吸入される。このようにして冷媒絞り
装置24の絞り抵抗は大きい状態になり回転式圧縮機1
の能力制御による冷媒吐出量の減少に対応し、その結果
、冷媒の蒸発圧力は適当な値となり、冷媒循環量の低下
に見合う十分な冷凍能力を発揮し効率良い運転が行なわ
れる。
On the other hand, since the pressure in the pressure introduction pipe 36 becomes low pressure, the throttle control valve 28 enters the operating state as shown in FIG. 3, and the valve 33 comes into contact with the valve seat 34 and is closed. As a result, the liquefied and condensed refrigerant liquid passes through the series circuit of the first capillary tube 26 and the second capillary tube 27 in the refrigerant throttling device 24, is decompressed and expanded with a large throttling resistance, and is expanded in the evaporator 25.
After passing through the suction pipe 12 after absorbing heat and evaporating, the compressor 2
is inhaled into the suction hole 11. In this way, the throttling resistance of the refrigerant throttling device 24 becomes large, and the rotary compressor 1
As a result, the evaporation pressure of the refrigerant becomes an appropriate value, and sufficient refrigerating capacity is exhibited to compensate for the decrease in the refrigerant circulation amount, resulting in efficient operation.

上記三方弁29は一般に電磁弁が使用されるが、電磁石
へのリード線の断線、あるいは、電磁石への電源が正常
に制御されても三方弁29が切り換わらないような場合
には、前記制御管22の圧力は変化しないために能力制
御装置18は切り換わらず、絞り制御弁28は変化しな
い。
Generally, a solenoid valve is used as the three-way valve 29, but if the lead wire to the electromagnet is broken or the three-way valve 29 does not switch even if the power to the electromagnet is normally controlled, the control Since the pressure in the pipe 22 does not change, the capacity control device 18 does not switch and the throttle control valve 28 does not change.

すなわち、冷媒絞り装置24の抵抗のみが変化し冷凍装
置の冷媒回路のバランスがくずれて冷凍装置の信頼性が
低下したり、効率が悪化するようなことはない。第4図
は本発明の他の一実施例であり、第1図の冷凍装置と異
なる点は第1図の圧縮装置2のシリンダ室4内の圧縮行
程中の冷媒に冷媒液を注入し圧縮冷媒温度の過度の上昇
を防止したものである。
In other words, only the resistance of the refrigerant expansion device 24 changes, and the balance of the refrigerant circuit of the refrigeration system is not disrupted, thereby reducing the reliability or efficiency of the refrigeration system. FIG. 4 shows another embodiment of the present invention, and the difference from the refrigeration system shown in FIG. This prevents excessive rise in refrigerant temperature.

すなわち、第4図において、シリンダ室4に開口する注
入孔39を吐出孔14の近傍に設け、この注入孔39は
注入管46により冷媒注入制御装置40を介して冷媒凝
縮器23の出口管41に連通されている。上記冷媒注入
制御装置40は第3キャピラリチューブ42と、第4キ
ャピラリチューブ43との直列回路と、この第4キャピ
ラリチューブ43と並列回路をなす冷媒絞り制御弁44
よりなり、この冷媒絞り制御弁44は前記絞り制御弁2
8と同様の構造のものであり、その制御圧力導入管45
は前記圧力導入管36と同様に制御管22と連通してい
る。この結果、三方弁29により制御管22と高圧管3
0が連通され、上述した能力制御装置18の作動により
、回転式圧縮−機1が高能力運転すると共に冷媒絞り制
御弁44は絞り制御弁28と同様に内部に設けられた弁
が開放となり、第4キャピラリチューブ43と冷媒絞り
制御弁44の並列回路の抵抗は小さくなり、冷媒注入制
御装置40の抵抗を小さくする。この結果冷媒凝縮器2
3で凝縮液化した冷媒液の一部は上記冷媒注入制御装置
40で適当に減圧され注入孔39よりシリンダ室4のピ
ストン5による圧縮行程中の冷媒に注入され、冷却して
圧縮冷媒の温度上昇を減じる。次に三方弁29を切り換
え、制御管22と低圧管31を連通すれば、上述のよう
に能力制御装置18は作動する。すなわち制御バルブ2
0が開放となり、シリンダ室4での圧縮・行程中の冷媒
の一部は上記制御管22に流出し、吐出管17へ吐出さ
れる冷媒量を減少させ、回転式圧縮機1は低能力運転と
なる。この時制御管22は低圧圧力となつているため上
記冷媒絞り制御弁44は上記絞り制御弁28と同様に内
部に設けられた弁が閉成し冷媒注入制御装置40の抵抗
は増大し注入孔39よりシリンダ室4へ注入される冷媒
量を減少させる。この結果、注入孔39より注入された
冷媒が上記制御孔19より制御管22へ流出する無効冷
媒量を減じ効率のよい運転が可能となる。以上の説明か
ら明らかなように上記冷媒注入制御装置40は制御管2
2の圧力を検知して冷媒流量を制御するものであるから
、能力制御装置18の作動に応動して冷媒流量を制御す
るために回転式圧縮機1が高能力運転しているにもかか
わらず冷媒注入制御装置40の抵抗が大きくなり十分な
冷媒注入量が得られずに圧縮冷媒の温度上昇が激しくな
り回転式圧縮機1が過熱したり、あるいは、回転式圧縮
機1が低能力運転しているにもかかわらず冷媒注入制御
装置40の抵抗が小さい状態で注入冷媒量が多く、無駄
に制御孔19より制御管22へ流出する冷媒量が増加し
効率の悪い運転を行なつたりするようなことはない。第
5図は本発明のさらに他の実施例で、第4図の絞り制御
装置24と冷媒注入制御装置40を兼用した冷媒制御装
置47を設けた冷凍装置である。この冷媒制御装置47
は上述の絞り制御弁28を使用し、そめ流入管37を冷
媒凝縮器23の出口管41と接続し、流出管38は第5
キャピラリチューブ48を介して蒸発器25に接続され
、また、上記絞り制御弁28は第6キャピラリチューブ
49と並列に接続されている。また、絞り制御弁28の
流出管38と第7キャピラリチューブ50を介して注入
管46と連通している。その他、回転式圧縮機1、冷媒
縮器23、蒸発器25などの冷凍装置の構成部品は第4
図のものと作用・構成は同じである。この冷媒装置の動
作を説明すると、三方弁29によつて制御管22の圧力
を高圧圧力あるいは低圧圧力に切り換える。
That is, in FIG. 4, an injection hole 39 that opens into the cylinder chamber 4 is provided near the discharge hole 14, and this injection hole 39 is connected to the outlet pipe 41 of the refrigerant condenser 23 via an injection pipe 46 via a refrigerant injection control device 40. is communicated with. The refrigerant injection control device 40 includes a series circuit of a third capillary tube 42 and a fourth capillary tube 43, and a refrigerant throttle control valve 44 that forms a parallel circuit with the fourth capillary tube 43.
This refrigerant throttle control valve 44 is similar to the throttle control valve 2.
8, and its control pressure introduction pipe 45
Similarly to the pressure introduction pipe 36, it communicates with the control pipe 22. As a result, the three-way valve 29 connects the control pipe 22 and the high pressure pipe 3.
0 is communicated, and as a result of the operation of the capacity control device 18 described above, the rotary compressor 1 is operated at high capacity, and the refrigerant throttle control valve 44, which is provided inside the same as the throttle control valve 28, is opened. The resistance of the parallel circuit of the fourth capillary tube 43 and the refrigerant throttle control valve 44 is reduced, and the resistance of the refrigerant injection control device 40 is reduced. As a result, refrigerant condenser 2
A part of the refrigerant liquid condensed and liquefied in step 3 is appropriately depressurized by the refrigerant injection control device 40, and is injected from the injection hole 39 into the refrigerant in the cylinder chamber 4 during the compression stroke by the piston 5, where it is cooled and the temperature of the compressed refrigerant rises. decrease. Next, when the three-way valve 29 is switched and the control pipe 22 and the low pressure pipe 31 are communicated with each other, the capacity control device 18 is activated as described above. i.e. control valve 2
0 is opened, a part of the refrigerant being compressed and stroked in the cylinder chamber 4 flows out into the control pipe 22, reducing the amount of refrigerant discharged to the discharge pipe 17, and the rotary compressor 1 is operated at low capacity. becomes. At this time, since the control pipe 22 is at a low pressure, the refrigerant throttling control valve 44, which is provided inside the refrigerant throttling control valve 28, is closed, and the resistance of the refrigerant injection control device 40 increases, causing the injection hole to close. 39 to reduce the amount of refrigerant injected into the cylinder chamber 4. As a result, the refrigerant injected through the injection hole 39 reduces the amount of ineffective refrigerant flowing out from the control hole 19 to the control pipe 22, allowing efficient operation. As is clear from the above description, the refrigerant injection control device 40
Since the refrigerant flow rate is controlled by detecting the pressure of The resistance of the refrigerant injection control device 40 increases, and a sufficient amount of refrigerant cannot be injected, causing a rapid rise in the temperature of the compressed refrigerant, causing the rotary compressor 1 to overheat, or the rotary compressor 1 to operate at low capacity. Even though the resistance of the refrigerant injection control device 40 is small, the amount of refrigerant injected is large, and the amount of refrigerant that wastefully flows out from the control hole 19 into the control pipe 22 increases, resulting in inefficient operation. Nothing happens. FIG. 5 shows still another embodiment of the present invention, which is a refrigeration system equipped with a refrigerant control device 47 that serves both the aperture control device 24 and the refrigerant injection control device 40 shown in FIG. This refrigerant control device 47
uses the above-mentioned throttle control valve 28, connects the inflow pipe 37 to the outlet pipe 41 of the refrigerant condenser 23, and connects the outflow pipe 38 to the fifth
It is connected to the evaporator 25 via a capillary tube 48, and the throttle control valve 28 is connected in parallel to a sixth capillary tube 49. It also communicates with the injection pipe 46 via the outflow pipe 38 of the throttle control valve 28 and the seventh capillary tube 50 . In addition, the components of the refrigeration system such as the rotary compressor 1, refrigerant condenser 23, and evaporator 25 are
The operation and configuration are the same as those shown in the figure. To explain the operation of this refrigerant device, the three-way valve 29 switches the pressure of the control pipe 22 to high pressure or low pressure.

その結果、回転式圧縮機1は高能力運転あるいは低能力
運転を切り換えると同時に絞り制御弁28の開放、閉成
が制御され冷媒制御装置47の抵抗が小さくなりあるい
は大きくなつて回転式圧縮機1の能力に応じて冷媒凝縮
器23から蒸発器25へ流入する冷媒の絞り抵抗を変化
させると共に、注入管46から回転式圧縮機1へ注入さ
れる冷媒流量を大きくあるいは小さくしている。すなわ
ち注入管46へ流入する注入冷媒は回転式圧縮機1が高
能力運転の場合は抵抗の小さい絞り制御弁28を通過し
、第7キャピラリチューブ50で減圧され、また、回転
式圧縮機1が低能力運転の楊合は絞り制御弁28は閉成
するため、第6キャピラリチューブ49で減圧されさら
に第7キャピラリチューブ50で減圧され冷媒流量を減
じて回転式圧縮機1へ注入される。このようにして回転
式圧縮機1の能力に応じた冷媒の絞り抵抗を設け流量の
制御を行なう。上記各実施例において冷媒絞り装置ある
いは冷媒注入制御装置などにキャピラリチューブを使用
したが、減圧膨脹弁を使用してもよく、また、絞り制御
弁を開放あるいは閉成の0N−OFF動作でなくその弁
の抵抗を変化させる構造のものならばさらによく、上記
のキャピラリチューブあるいは減圧膨脹弁等を一部ある
いは全部省略することが可能である。
As a result, the rotary compressor 1 switches between high-capacity operation and low-capacity operation, and at the same time, the opening and closing of the throttle control valve 28 is controlled, and the resistance of the refrigerant control device 47 decreases or increases, and the rotary compressor 1 The throttle resistance of the refrigerant flowing from the refrigerant condenser 23 to the evaporator 25 is changed according to the capacity of the refrigerant, and the flow rate of refrigerant injected into the rotary compressor 1 from the injection pipe 46 is increased or decreased. That is, when the rotary compressor 1 is in high capacity operation, the injected refrigerant flowing into the injection pipe 46 passes through the throttle control valve 28 with low resistance and is depressurized by the seventh capillary tube 50. During low capacity operation, the throttle control valve 28 is closed, so the pressure is reduced in the sixth capillary tube 49 and further in the seventh capillary tube 50 to reduce the flow rate of the refrigerant and the refrigerant is injected into the rotary compressor 1. In this way, the refrigerant throttle resistance is provided in accordance with the capacity of the rotary compressor 1, and the flow rate is controlled. In each of the above embodiments, a capillary tube is used for the refrigerant throttling device or the refrigerant injection control device, but a decompression expansion valve may also be used. It is even better if the valve has a structure that changes the resistance of the valve, and it is possible to omit part or all of the above-mentioned capillary tube or decompression expansion valve.

また、上記実施例の冷凍装置をヒートポンプ式冷凍装置
にしても、その作用効果は同じであり、この時冷媒回路
の冷媒運転と加熱運転を切り換える切換弁までの圧縮機
の吐出管および吸入管に上記実施例の高圧管および低圧
管を接続すればよい。
Furthermore, even if the refrigeration system of the above embodiment is replaced with a heat pump type refrigeration system, the operation and effect will be the same. The high pressure pipe and low pressure pipe of the above embodiments may be connected.

また、上記実施例では、圧縮機の能力を切り換える制御
弁装置に三方弁を使用したが、二方弁を使用してもその
作用効果は同じである。
Further, in the above embodiment, a three-way valve is used as the control valve device for switching the capacity of the compressor, but the operation and effect are the same even if a two-way valve is used.

上記実施例から明らかなように、本発明の冷凍装置は、
冷媒を吸入し圧縮して吐出する圧縮装置と、冷媒凝縮装
置と、蒸発装置と、冷媒絞り装置とを備え、上記圧縮装
置の冷媒吐出量を冷媒圧力により制御する能力制御装置
と、この能力制御装置に作用させる上記冷媒圧力を制御
する制御弁装置とを設けるとともに、上記冷媒絞り装置
は上記冷媒圧力に応動して絞り抵抗を変化する構成とし
たもので、圧縮装置の能力制御と冷媒絞り装置の冷媒流
量の制御が確実となる。
As is clear from the above examples, the refrigeration apparatus of the present invention is
A capacity control device that includes a compression device that takes in, compresses, and discharges refrigerant, a refrigerant condensing device, an evaporator, and a refrigerant throttling device, and controls the refrigerant discharge amount of the compression device based on refrigerant pressure; A control valve device for controlling the refrigerant pressure applied to the device is provided, and the refrigerant throttling device is configured to change throttling resistance in response to the refrigerant pressure, thereby controlling the capacity of the compression device and refrigerant throttling device. The refrigerant flow rate can be controlled reliably.

すなわち上記制御弁装置の作動を上記冷媒圧力によつて
確認し、その冷媒絞り装置を作動させる機能を有し信頼
性の高い制御を行なうことができる。また、圧縮装置の
シリンダの一部に設けけられた小孔と、この小孔を介し
て上記シリンダに接続された能力制御管と、上記小孔を
冷媒圧力で開閉する開閉制御弁装置とからなる能力制御
装置を設けると、非常に単純な構成により冷媒圧力によ
る圧縮装置の冷媒吐出量を制御できると共に上記冷媒絞
り装置の制御を行なうことができる。さらに、また冷媒
凝縮装置にて凝縮した冷媒を冷媒第2絞り装置を介して
冷媒圧縮途中のシリンダに注入する冷媒注入装置を設け
ると、圧縮装置の吐出冷媒量に応じて冷媒液をシリンダ
に注入して圧縮行程中の冷媒温度の上昇を減じ、必要以
上の冷媒量をシリンダに注入し無駄な冷媒の循環を起し
効率が低下することを防止すると共に、この制御は制御
弁装置の作動を確認して制御するため信頼性の高い冷凍
装置を提供できる。
That is, the control valve device has a function of confirming the operation of the control valve device based on the refrigerant pressure and operating the refrigerant throttling device, and highly reliable control can be performed. Furthermore, a small hole provided in a part of the cylinder of the compression device, a capacity control pipe connected to the cylinder through this small hole, and an opening/closing control valve device that opens and closes the small hole using refrigerant pressure. By providing the capacity control device, it is possible to control the refrigerant discharge amount of the compression device based on the refrigerant pressure with a very simple configuration, and it is also possible to control the refrigerant throttling device. Furthermore, if a refrigerant injection device is provided that injects the refrigerant condensed in the refrigerant condensing device into the cylinder during refrigerant compression via the second refrigerant expansion device, refrigerant liquid is injected into the cylinder according to the amount of refrigerant discharged from the compression device. This control reduces the rise in refrigerant temperature during the compression stroke, prevents injecting more refrigerant into the cylinder than necessary, causing wasteful circulation of refrigerant, and reducing efficiency. This control also controls the operation of the control valve device. Since it can be checked and controlled, a highly reliable refrigeration system can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す冷凍装置の構成図、第
2図、第3図はそれぞれ同装置の絞り制御弁の動作説明
図、第4図、第5図はそれぞれ本・発明の他の実施例を
示す冷凍装置の構成図である。 2・・・・・・圧縮装置、3・・・・・・シリンダ、1
8・・・・・・能力制御装置、19・・・・・制御孔(
小孔)、20・・制御バルブ(開閉制御弁装置)、22
・・・・・・制御管(能力制御管)、23・・・・・冷
媒凝縮器(冷媒凝縮装置)、24・・・・・冷媒絞り装
置、25・・・・蒸発器(蒸発装置)、28・・・・・
・絞り制御弁(冷媒主絞り装置)(冷媒第1絞り装置)
、29・・・・・三方弁(制御弁装置)、40・・・・
・冷媒注入制御装置(冷媒注入ノ装置)、44・・・・
・冷媒絞り制御弁(冷媒第2絞り装置)、50・・・・
・・第7キャピラリチューブ(冷媒注入装置)。
Fig. 1 is a block diagram of a refrigeration system showing an embodiment of the present invention, Figs. 2 and 3 are respectively explanatory diagrams of the operation of the throttling control valve of the same equipment, and Figs. 4 and 5 are respectively the present invention. It is a block diagram of the refrigeration apparatus which shows another Example. 2... Compression device, 3... Cylinder, 1
8... Capacity control device, 19... Control hole (
small hole), 20... control valve (opening/closing control valve device), 22
... Control pipe (capacity control pipe), 23 ... Refrigerant condenser (refrigerant condensing device), 24 ... Refrigerant throttle device, 25 ... Evaporator (evaporation device) , 28...
- Throttle control valve (refrigerant main throttle device) (refrigerant first throttle device)
, 29... Three-way valve (control valve device), 40...
・Refrigerant injection control device (refrigerant injection device), 44...
・Refrigerant throttle control valve (refrigerant second throttle device), 50...
...7th capillary tube (refrigerant injection device).

Claims (1)

【特許請求の範囲】 1 冷媒を吸入し圧縮して吐出する圧縮装置と、冷媒凝
縮装置と、蒸発装置と、冷媒絞り装置とを備え、上記圧
縮装置の冷媒吐出量を冷媒圧力により制御する能力制御
装置と、この能力制御装置に作用させる上記冷媒圧力を
制御する制御弁装置とを設けるとともに、上記冷媒絞り
装置は、上記冷媒圧力に応動して絞り抵抗を変化する構
成とした冷凍装置。 2 圧縮装置のシリンダの一部に設けられた小孔と、こ
の小孔を介して上記シリンダに接続された能力制御管と
、上記小孔を冷媒圧力で開閉する開閉制御弁装置とから
なる能力制御装置を有する特許請求の範囲第1項記載の
冷凍装置。 3 冷媒凝縮装置にて凝縮した冷媒を冷媒第2絞り装置
を介して冷媒圧縮途中のシリンダに注入する冷媒注入装
置を設けた特許請求の範囲第1項記載の冷凍装置。
[Scope of Claims] 1. A compression device that takes in, compresses, and discharges refrigerant, a refrigerant condensing device, an evaporator, and a refrigerant throttling device, and the ability to control the amount of refrigerant discharged from the compression device based on refrigerant pressure. A refrigeration system comprising a control device and a control valve device for controlling the refrigerant pressure applied to the capacity control device, and the refrigerant throttling device changing throttling resistance in response to the refrigerant pressure. 2. A capacity consisting of a small hole provided in a part of the cylinder of the compression device, a capacity control pipe connected to the cylinder through this small hole, and an opening/closing control valve device that opens and closes the small hole using refrigerant pressure. A refrigeration system according to claim 1, comprising a control device. 3. The refrigeration system according to claim 1, further comprising a refrigerant injection device for injecting the refrigerant condensed in the refrigerant condensing device into the cylinder during refrigerant compression via the second refrigerant expansion device.
JP15539478A 1978-12-13 1978-12-13 Refrigeration equipment Expired JPS6051616B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15539478A JPS6051616B2 (en) 1978-12-13 1978-12-13 Refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15539478A JPS6051616B2 (en) 1978-12-13 1978-12-13 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JPS5579965A JPS5579965A (en) 1980-06-16
JPS6051616B2 true JPS6051616B2 (en) 1985-11-14

Family

ID=15604986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15539478A Expired JPS6051616B2 (en) 1978-12-13 1978-12-13 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JPS6051616B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS588956A (en) * 1981-07-10 1983-01-19 株式会社システム・ホ−ムズ Heat pump type air conditioner

Also Published As

Publication number Publication date
JPS5579965A (en) 1980-06-16

Similar Documents

Publication Publication Date Title
US6385981B1 (en) Capacity control of refrigeration systems
US7168257B2 (en) Rotary compressor, method for manufacturing the same, and defroster for refrigerant circuit
US4727725A (en) Gas injection system for screw compressor
US8037702B2 (en) Multistage compressor
JPS6146743B2 (en)
JPH02230995A (en) Compressor for heat pump and operating method thereof
JPS6051616B2 (en) Refrigeration equipment
US20080034772A1 (en) Method and system for automatic capacity self-modulation in a comrpessor
JPS6333093Y2 (en)
JPH04313647A (en) Heat pump type air conditioner
JPS6246775B2 (en)
JPH0730962B2 (en) Two-stage compression refrigeration cycle
JP2018179353A (en) Refrigeration cycle device and rotary compressor
JPS6325343Y2 (en)
JPS61165555A (en) Refrigerating air-cooling device
JPH0774638B2 (en) Rotary compressor
JPS6161997A (en) Rotary compressor
JPH07167508A (en) Refrigerator
JPS5818138Y2 (en) refrigeration cycle
JPH1194368A (en) Freezing cycle device
JP3634472B2 (en) Air conditioner
JPH025116Y2 (en)
JPH0610565B2 (en) Heat pump refrigeration cycle
JPS62108964A (en) Method of controlling refrigeration cycle
JPH03217762A (en) 2-stage compression type refrigerator