JPH03217762A - 2-stage compression type refrigerator - Google Patents

2-stage compression type refrigerator

Info

Publication number
JPH03217762A
JPH03217762A JP1081990A JP1081990A JPH03217762A JP H03217762 A JPH03217762 A JP H03217762A JP 1081990 A JP1081990 A JP 1081990A JP 1081990 A JP1081990 A JP 1081990A JP H03217762 A JPH03217762 A JP H03217762A
Authority
JP
Japan
Prior art keywords
refrigerant
low
stage compression
pressure switch
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1081990A
Other languages
Japanese (ja)
Inventor
Haruo Sakano
坂野 治男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1081990A priority Critical patent/JPH03217762A/en
Publication of JPH03217762A publication Critical patent/JPH03217762A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2509Economiser valves

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

PURPOSE:To prevent temperature rise of lubricant or the like without excessively injecting refrigerant by providing a high pressure switch to be opened ro closed by the pressure on the high pressure side of a main refrigerant circuit, and a low pressure switch to be opened or closed by the pressure on the low pressure side in series between a motor-driven valve and a power source. CONSTITUTION:A bypass solenoid valve 19 is provided in a bypass tube 17 having a capillary tube 18, a high pressure switch 20 is provided at the refrigerant discharge port side of a high-stage side compressor unit 3 of a 2-stage compression type refrigerant compressor 1, and a low pressure switch 21 is provided at the refrigerant suction port side of a low-stage side compression unit 2 of the compressor 1. The solenoid coil 19a of the valve 19, a low pressure switch 21, and a high pressure switch 20 are connected in series, and connected to a power source. Under pressure conditions where at least one of evaporating and condensing temperatures is low liquid refrigerant is not injected from the tube 17 into the compressor 1, but it is injected under other conditions. Accordingly, a liquid returning phenomenon can be prevented, and its coefficient of performance is not lowered by an unnecessary injection.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、二段圧縮式冷凍装置に関し、特に二段圧縮
式冷媒圧縮機の潤滑油の温度上昇の防止に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a two-stage compression type refrigeration system, and particularly to prevention of temperature rise of lubricating oil in a two-stage compression type refrigerant compressor.

〔従来の技術〕[Conventional technology]

第5図は従来の二段圧縮式冷凍装置の冷媒回路図であり
、同図において、1は二段圧縮式冷媒圧縮機で、冷媒を
圧縮する低段側圧縮部2、この低段側圧縮部2で圧縮さ
れた冷媒を更に圧縮する高段側圧縮部3、電動要素室4
、この電動要素室4内に収納され、低段側及び高段側圧
縮部2,3を作動させる電動要素5、この電動要素5の
動力を伝達する駆動軸6、底部に溜っている潤滑油7等
から構成されている。高段側圧縮部3の吐出口は凝縮器
8の冷媒入口側に配管で接続されている。
Fig. 5 is a refrigerant circuit diagram of a conventional two-stage compression type refrigeration system. A high-stage compression section 3 that further compresses the refrigerant compressed in section 2, and an electric element chamber 4.
, an electric element 5 that is housed in the electric element chamber 4 and operates the low-stage and high-stage compression sections 2 and 3, a drive shaft 6 that transmits the power of the electric element 5, and lubricating oil collected at the bottom. It consists of 7 mag. The discharge port of the high-stage compression section 3 is connected to the refrigerant inlet side of the condenser 8 via piping.

9は温度式膨張弁、10は蒸発器であり、二段圧縮式冷
媒圧縮機lや凝縮器8と共に主冷媒回路を構成している
Reference numeral 9 is a thermostatic expansion valve, and reference numeral 10 is an evaporator, which together with the two-stage compression refrigerant compressor 1 and the condenser 8 constitute a main refrigerant circuit.

11は中間冷却器であって、冷却部の一端は温度式の中
間膨張弁12と中間電磁弁13の直列接続体を介して凝
縮機8の冷媒出口側配管14に、他端は低段側圧縮部2
の低段吐出配管15にそれぞれ接続されている。また、
中間冷却器l1の被冷却部の一端は凝縮器8の冷媒出口
側配管14に、他端は主冷媒回路の主液電磁弁16を介
して膨張弁9に接続されている。膨張弁9の冷媒出口側
は蒸発器10を介して低段側圧縮部2の吸入口に接続さ
れている。
Reference numeral 11 denotes an intercooler, one end of which is connected to the refrigerant outlet side piping 14 of the condenser 8 via a series connection of a temperature-type intermediate expansion valve 12 and an intermediate solenoid valve 13, and the other end is connected to the lower stage side. Compression section 2
are respectively connected to the low-stage discharge piping 15 of. Also,
One end of the cooled portion of the intercooler l1 is connected to the refrigerant outlet side pipe 14 of the condenser 8, and the other end is connected to the expansion valve 9 via the main liquid solenoid valve 16 of the main refrigerant circuit. The refrigerant outlet side of the expansion valve 9 is connected to the suction port of the low-stage compression section 2 via the evaporator 10 .

17は電動要素室4の入口側と、中間冷却器11の入口
側の中間膨張弁l2と中間電磁弁13との間とを接続し
て中間膨張弁l2と中間冷却器11とから構成される中
間冷却回路を側路するバイパス管であり、キャビラリー
チューブ18を有している。また、低段吐出配管15は
電動要素室4の入口側に接続され、電動要素室4は高段
側圧縮部3に弁を介して連通している。
Reference numeral 17 connects the inlet side of the electric element chamber 4 and between the intermediate expansion valve l2 and the intermediate electromagnetic valve 13 on the inlet side of the intercooler 11, and is constituted by the intermediate expansion valve l2 and the intercooler 11. This is a bypass pipe that bypasses the intermediate cooling circuit, and includes a cavillary tube 18. Further, the low-stage discharge pipe 15 is connected to the inlet side of the electric element chamber 4, and the electric element chamber 4 communicates with the high-stage compression section 3 via a valve.

次に動作について説明する。電動要素5の作動により駆
動軸6を介して動力を伝達される低段側圧縮部2と高段
側圧縮部3は交互に冷媒を圧縮する。低段側圧縮部2に
て圧縮された冷媒は、低段吐出配管15を通って電動要
素室4へ吸入される.この時、吸入ガス冷媒温度を下げ
る為、インジェクション側の冷媒温度に応じて冷媒流量
を制御する中間膨張弁12より中間冷却器11を通って
冷却された気液混合冷媒がインジェクションされると共
にバイパス管17を通過した液冷媒がインジェクション
され、電動要素室4内の電動要素5等を冷却する。
Next, the operation will be explained. The low-stage compression section 2 and the high-stage compression section 3, to which power is transmitted via the drive shaft 6 by the operation of the electric element 5, alternately compress the refrigerant. The refrigerant compressed in the low-stage compression section 2 is sucked into the electric element chamber 4 through the low-stage discharge pipe 15. At this time, in order to lower the intake gas refrigerant temperature, the gas-liquid mixed refrigerant cooled through the intercooler 11 is injected from the intermediate expansion valve 12, which controls the refrigerant flow rate according to the refrigerant temperature on the injection side, and is also injected into the bypass pipe. The liquid refrigerant that has passed through 17 is injected to cool the electric element 5 and the like in the electric element chamber 4.

上記のように電動要素室4内に供給された冷媒は、高段
側圧縮部3で圧縮され、凝縮器8で放熱して液化する。
The refrigerant supplied into the electric element chamber 4 as described above is compressed in the high-stage compression section 3, and is liquefied by dissipating heat in the condenser 8.

凝縮器8を通った冷媒は、冷媒出口側配管14を通り、
主に中間冷却器11と主液電磁弁16を通過して膨張弁
9に供給され、残りが中間電磁弁13を通過してバイパ
ス管17や中間膨張弁12に導入される。膨張弁9に導
入された冷媒は、蒸発器10の冷媒出口側の温度に応じ
てその流量を制御される共に低圧の気液混合冷媒にされ
、更に蒸発器10で吸熱して気化する。このガス化した
冷媒は二段圧縮式冷媒圧縮機lの低段側圧縮部2に吸入
されて上記動作を繰返す。
The refrigerant that has passed through the condenser 8 passes through the refrigerant outlet side piping 14,
It mainly passes through the intercooler 11 and the main liquid solenoid valve 16 and is supplied to the expansion valve 9, and the rest passes through the intermediate solenoid valve 13 and is introduced into the bypass pipe 17 and the intermediate expansion valve 12. The flow rate of the refrigerant introduced into the expansion valve 9 is controlled according to the temperature at the refrigerant outlet side of the evaporator 10, and the refrigerant is turned into a low-pressure gas-liquid mixed refrigerant, which further absorbs heat and vaporizes in the evaporator 10. This gasified refrigerant is sucked into the lower-stage compression section 2 of the two-stage compression type refrigerant compressor 1, and the above operation is repeated.

一般的に二段圧縮式冷凍装置は、冷媒の蒸発温度が−6
5゜C〜−40゜Cの低温用に設計されているため中間
膨張弁の流量制御設定も低温域をベースに設定される。
Generally, in two-stage compression refrigeration equipment, the evaporation temperature of the refrigerant is -6
Since it is designed for low temperatures of 5°C to -40°C, the flow rate control settings of the intermediate expansion valve are also set based on the low temperature range.

しかし、使用蒸発温度範囲の広いユニットにおいて、高
温域では、その感温筒が飽和状態となり温度弐の膨張弁
によるスーパーヒートコントロールができなくなる。こ
のように高温域では、温度式の膨張弁の特性上から過熱
度が大きくなり、二段圧縮式冷媒圧縮機における吸入ガ
ス冷媒や吐出ガス冷媒の温度上昇の原因となる。
However, in a unit that can be used in a wide evaporation temperature range, the temperature sensing cylinder becomes saturated in the high temperature range, making superheat control by the expansion valve at temperature 2 impossible. As described above, in a high temperature range, the degree of superheat increases due to the characteristics of the thermostatic expansion valve, which causes an increase in the temperature of the suction gas refrigerant and the discharge gas refrigerant in the two-stage compression refrigerant compressor.

この冷媒の温度上昇は二段圧縮式冷媒圧縮機の潤滑油を
温度上昇させる。潤滑油の温度上昇が続くと、潤滑油の
劣化による二段圧縮式冷媒圧縮機の寿命の低下、さらに
潤滑油の温度上昇により油膜厚の低下に帰因する機械摩
擦部の焼付等の不具合が発生する。
This temperature rise in the refrigerant causes the temperature of the lubricating oil in the two-stage compression refrigerant compressor to rise. If the temperature of the lubricating oil continues to rise, the life of the two-stage compression refrigerant compressor will be shortened due to deterioration of the lubricating oil, and problems such as seizure of mechanical friction parts due to a decrease in the oil film thickness due to the rise in the temperature of the lubricating oil will occur. Occur.

なお、高温域においても凝縮温度が低い場合には、各部
の温度上昇も比較的に小さいために上記不具合の発生も
少ない。しかし、特に問題となるのは、蒸発温度及び凝
縮温度とも高い領域が上記不具合の発生率が高い。
Note that when the condensation temperature is low even in a high temperature range, the temperature rise in each part is relatively small, so the above-mentioned problems occur less often. However, a particular problem is that the incidence of the above-mentioned problems is high in regions where both the evaporation temperature and the condensation temperature are high.

そこで、従来装置では、高温域でも安定して電動要素5
等の冷却ができるようにキャピラリーチューブ18を有
するバイパス管17を設けて冷媒のインジエクションを
電動要素室4内に対して行って冷却していた。
Therefore, in the conventional device, the electric element 5 is stable even in high temperature range.
A bypass pipe 17 having a capillary tube 18 is provided to inject refrigerant into the electric element chamber 4 for cooling.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の二段圧縮式冷凍装置は以上のように構成されてい
るので、冷凍装置の運転条件に関係なく液冷媒を一定量
ハイパス管I7を通して電動要素室4内にインジェクシ
ョンしている。このため中間膨張弁l2を通過する冷媒
だけのインジエクションで冷却できる低温域でもバイパ
ス管17を通して液冷媒を余計に供給するために液バッ
ク状態になったり、不必要なインジエクションで仕事量
が増加し成績係数が悪くなるなどの課題があった。
Since the conventional two-stage compression refrigeration system is configured as described above, a fixed amount of liquid refrigerant is injected into the electric element chamber 4 through the high-pass pipe I7 regardless of the operating conditions of the refrigeration system. For this reason, even in the low-temperature range that can be cooled by injection of only refrigerant passing through the intermediate expansion valve 12, liquid refrigerant is additionally supplied through the bypass pipe 17, resulting in a liquid back state, and unnecessary injection results in unnecessary work. There were issues such as an increase in the number of students and a deterioration of the coefficient of performance.

この発明は上記のような課題を解決するためになされた
もので、二段圧縮式冷媒圧縮機に対して冷媒のインジェ
クシジンを余計に行うことなく潤滑油等の温度上昇を防
止することのできる二段圧縮式冷凍装置を帰ることを目
的とする。
This invention was made to solve the above-mentioned problems, and it is possible to prevent the temperature of lubricating oil, etc., from rising in a two-stage compression refrigerant compressor without unnecessary injection of refrigerant. The purpose is to produce a two-stage compression refrigeration system.

〔課題を解決するための手段〕[Means to solve the problem]

この発明の二段圧縮式冷凍装置は、主冷媒回路と、中間
膨張弁を設けた中間冷却回路と、この中間冷却回路を側
路するバイパス管とを備えた装置において、主冷媒回路
の高圧側の圧力により開閉する高圧スイッチと、同じく
低圧側の圧力により開閉する低圧スイッチと、バイパス
管に設けられた電動弁とを備え、電動弁と電源との間に
、高圧及び低圧スインチを直列状に設けたものである。
The two-stage compression refrigeration system of the present invention includes a main refrigerant circuit, an intermediate cooling circuit provided with an intermediate expansion valve, and a bypass pipe bypassing the intermediate cooling circuit. It is equipped with a high-pressure switch that opens and closes based on the pressure on the low-pressure side, a low-pressure switch that similarly opens and closes based on the pressure on the low-pressure side, and an electric valve installed in the bypass pipe.The high-pressure switch and the low-pressure switch are connected in series between the electric valve and the power source. It was established.

又、上記構成において、高圧及び低圧スインチに代えて
二段圧縮式冷媒圧縮機の潤滑油の温度又はこれに関連す
る温度によって開閉する温度検出スイッチを設けたもの
である。
Further, in the above configuration, a temperature detection switch is provided in place of the high pressure and low pressure switch, which opens and closes depending on the temperature of the lubricating oil of the two-stage compression refrigerant compressor or a temperature related thereto.

〔作 用〕[For production]

この発明における二段圧縮式冷凍装置は、冷媒の蒸発温
度と凝縮温度の少なくとも一方が低い圧力条件ならば低
圧及び高圧スイッチの少なくとも一方が開で電動弁が通
電されず、バイパス管から二段圧縮式冷媒圧縮機への液
冷媒の余計なインジエクションが行なわれず、それ以外
の圧力条件ではそのインジエクションを行なって圧縮機
の電動要素等を冷却する。
In the two-stage compression refrigeration system of the present invention, if at least one of the evaporation temperature and condensation temperature of the refrigerant is low, at least one of the low pressure and high pressure switches is open and the electric valve is not energized, and the two-stage compression is carried out from the bypass pipe. No unnecessary injection of liquid refrigerant into the refrigerant compressor is performed, and under other pressure conditions, the injection is performed to cool the electric elements of the compressor.

又、潤滑油の温度又はこれに関連する温度が所定レベル
以下の場合には、温度検出スイッチが開で電動弁が通電
されず、液冷媒の余計のインジェクションが行なわれず
、それ以外では温度検出スイッチが閉とならて電動弁が
通電され、バイパス管から液冷媒のインジェクションを
行なって冷却する, (実施例) 以下、この発明の実施例を図について説明する。
Additionally, if the lubricating oil temperature or related temperature is below a predetermined level, the temperature detection switch is open and the electric valve is not energized and no additional liquid refrigerant is injected; is closed, the electric valve is energized, and liquid refrigerant is injected from the bypass pipe for cooling. (Embodiment) Hereinafter, embodiments of the present invention will be described with reference to the drawings.

第1図はこの発明の第1の実施例に係る二段圧縮式冷凍
装置の冷媒回路図であり、同図において、従来例と同一
部分には第5図と同じ符号1〜18を付し、その説明を
省略する。19はキャビラリーチューブ18を存するバ
イパス管17に設けられたハイパス電磁弁、20は二段
圧縮式冷媒圧縮itの高段側圧縮部3の冷媒吐出口側に
設けられた高圧スイッチ、21は二段圧縮式冷媒圧ma
1の低段側圧縮部2の冷媒吸入口側に設けられた低圧ス
イッチである。
FIG. 1 is a refrigerant circuit diagram of a two-stage compression refrigeration system according to a first embodiment of the present invention, and in the figure, the same parts as in the conventional example are designated with the same symbols 1 to 18 as in FIG. , the explanation thereof will be omitted. 19 is a high-pass solenoid valve provided in the bypass pipe 17 including the cavillary tube 18; 20 is a high-pressure switch provided on the refrigerant discharge port side of the high-stage compression section 3 of the two-stage compression type refrigerant compression unit; Stage compression type refrigerant pressure ma
This is a low pressure switch provided on the refrigerant suction port side of the low-stage compression section 2 of 1.

ハイバス電磁弁19と高圧スイッチ20と低圧スイッチ
21の接続関係を第2回に示す。第2図において、19
aは上記バイパス電磁弁19の電磁コイルであり、低圧
スイッチ21、高圧スイッチ20と共に直列的に接続さ
れ、この直列接続体は電源(図示せず)に接続されてい
る。
The connection relationship between the high-bus solenoid valve 19, the high-pressure switch 20, and the low-pressure switch 21 is shown in the second part. In Figure 2, 19
Reference character a is an electromagnetic coil of the bypass electromagnetic valve 19, which is connected in series with the low pressure switch 21 and the high pressure switch 20, and this series connection is connected to a power source (not shown).

次に第1図及び第2図を参照して第1の実施例の動作に
ついて説明するが、従来例の動作と重複する部分の説明
は省略する。中間膨張弁12を通過する液冷媒のインジ
ェクションだけで電動要素5等を冷却できる冷媒の蒸発
温度の低い低温域では、低圧側の圧力が低いためにこの
圧力により開閉する低圧スイッチ21ば接点を開にして
いる。
Next, the operation of the first embodiment will be explained with reference to FIGS. 1 and 2, but explanation of parts that overlap with the operation of the conventional example will be omitted. In a low temperature range where the evaporation temperature of the refrigerant is low, where the electric element 5 etc. can be cooled only by the injection of liquid refrigerant passing through the intermediate expansion valve 12, the low pressure switch 21, which opens and closes based on this pressure, opens the contact because the pressure on the low pressure side is low. I have to.

これによりバイパス電磁弁l9の電磁コイル19aは通
電されず、バイパス電磁弁19はバイパス管l7の管路
を閉じている。このためにバイパス管17を通じての液
冷媒のインジェクションは行なわれない。また、冷媒の
蒸発温度が高くて低圧側の圧力が比較的に高くなってい
るために低圧スイッチ2lが接点を閉にしている場合、
冷媒の凝縮温度が低ければ高圧スイッチ20が接点を開
にしているので、上記と同様にしてバイパス管17を通
じての冷媒のインジェクションは行なわれない。
As a result, the electromagnetic coil 19a of the bypass electromagnetic valve l9 is not energized, and the bypass electromagnetic valve 19 closes the pipeline of the bypass pipe l7. For this reason, no liquid refrigerant is injected through the bypass pipe 17. In addition, if the low pressure switch 2l closes the contact because the evaporation temperature of the refrigerant is high and the pressure on the low pressure side is relatively high,
If the condensation temperature of the refrigerant is low, the high-pressure switch 20 opens the contact, so that refrigerant is not injected through the bypass pipe 17 in the same manner as described above.

ハイパス管17を通じての冷媒のインジェクションが行
なわれな《ても中間膨張弁12を通過した冷媒のインジ
ェクションが行なわれるために電動要素5等は十分冷却
され、潤滑油7は温度上昇しない。また、余分に液冷媒
をインジェクションとないために液バンク状態になった
り、成績係数ズ悪くなったりしない。
Even if the refrigerant is not injected through the high-pass pipe 17, the refrigerant that has passed through the intermediate expansion valve 12 is injected, so the electric element 5 and the like are sufficiently cooled, and the temperature of the lubricating oil 7 does not rise. In addition, since there is no excess liquid refrigerant injected, there is no possibility of a liquid bank condition or a poor coefficient of performance.

また、a縮温度及び蒸発温度が高いために高B側及び低
圧側の圧力が冷媒のインジェクションづもつと必要とす
るある一定のそれぞれの圧力設η値を超えると、高圧ス
イ・ンチ2o及び低圧スイ・シチ21の接点のいずれも
が閉となる。これにより電磁コイル19aが通電してバ
イパス電磁弁19が開状態となってバイパス管17の管
路を開く。
In addition, if the pressure on the high B side and low pressure side exceeds a certain pressure setting η value required for refrigerant injection due to the high condensation temperature and evaporation temperature, high pressure switch 2o and low pressure All contacts of switch 21 are closed. As a result, the electromagnetic coil 19a is energized, the bypass electromagnetic valve 19 is brought into an open state, and the bypass pipe 17 is opened.

よって、バイパス管17にも冷媒が流通し、ヰ十ピラリ
ーチューブ.1 8を通って電動要素室4内Cごインジ
エクションされる。このバイパス回路を遣じた冷媒のイ
ンジェクションにより電動要素5等が冷却されると共に
潤滑油7の温度が低下させられる。
Therefore, the refrigerant also flows through the bypass pipe 17, and the 10-pilary tube. 18, and the inside of the electric element chamber 4 C is injected. By injecting refrigerant using this bypass circuit, the electric element 5 and the like are cooled, and the temperature of the lubricating oil 7 is lowered.

なお、高圧スイッチ2oの取付け箇所は、凝縮温度に関
係して圧力が変化する位置、即ち主冷媒回路の高圧側な
らばどの位置でもよく、また、低圧スイノチ21の取付
け箇所は、蒸発温度に関係して圧力が変化する位置、即
ち主冷媒回路の低圧側ならばどの位置でもよい。
The high pressure switch 2o can be installed at any position where the pressure changes in relation to the condensing temperature, that is, on the high pressure side of the main refrigerant circuit, and the low pressure switch 21 can be installed at any position in relation to the evaporation temperature. Any position where the pressure changes, that is, the low pressure side of the main refrigerant circuit, may be used.

第3図はこの発明の第2の実施例に係る二段圧縮式冷凍
装置の冷媒回路図であり、同図において、従来例と同一
部分には第5図と同じ符号1〜l8を付し、その説明を
省略する。19はバイパス管17に設けられたバイパス
電磁弁、22ば二段圧縮式冷媒圧縮機lの潤滑油7に浸
漬されてその油温に応じて開閉する油温検出スイッチで
ある。この油温検出スイッチ22とバイパス電磁弁I9
との接続関係を第4図に示す。
FIG. 3 is a refrigerant circuit diagram of a two-stage compression refrigeration system according to a second embodiment of the present invention, and in the figure, the same parts as in the conventional example are designated with the same symbols 1 to 18 as in FIG. , the explanation thereof will be omitted. Reference numeral 19 indicates a bypass solenoid valve provided in the bypass pipe 17, and reference numeral 22 indicates an oil temperature detection switch that is immersed in the lubricating oil 7 of the two-stage compression type refrigerant compressor 1 and opens and closes depending on the oil temperature. This oil temperature detection switch 22 and bypass solenoid valve I9
Fig. 4 shows the connection relationship between the two.

第4図において、油温検出スイッチ22とバイパス電磁
弁l9の電磁コイル19aとが直列的に接続され、この
直列接続体が電fl(図示せず)に接続されている。
In FIG. 4, the oil temperature detection switch 22 and the electromagnetic coil 19a of the bypass electromagnetic valve l9 are connected in series, and this series connection is connected to an electric current fl (not shown).

次に第3図及び第4図を参照して第2の実施例の動作に
ついて説明するが、従来例の動作と重複する部分の説明
は省略する。中間膨張弁12を通過する冷媒のインジェ
クションのみで電動要素5等を冷却できる運転状態の時
には、潤滑油7の温度が設定値より低いので油温検出ス
イッチ22は接点を開にしている。これによりバイパス
電磁弁l9の電磁コイル19aは通電されず、バイパス
’!!#19はハイパス管17の管路を閉じているので
、バイパス管17を通じての冷媒のインジェクションは
行なわれない。
Next, the operation of the second embodiment will be explained with reference to FIGS. 3 and 4, but the explanation of parts that overlap with the operation of the conventional example will be omitted. When the operating state is such that the electric element 5 etc. can be cooled only by the injection of refrigerant passing through the intermediate expansion valve 12, the temperature of the lubricating oil 7 is lower than the set value, so the oil temperature detection switch 22 keeps its contact open. As a result, the electromagnetic coil 19a of the bypass electromagnetic valve l9 is not energized, and the bypass '! ! Since #19 closes the high-pass pipe 17, no refrigerant is injected through the bypass pipe 17.

また逆に、中間膨張弁I2を通過する冷媒のインジェク
ションだけでは電動要素5等を冷却できない場合、潤滑
油7の温度が上昇して設定値以上になる。これにより油
温検出スイッチ22は接点を閉にしてバイパス電磁弁l
9の電磁コイル19aに通電させる。するとバイパス電
磁弁19はバイパス管17の管路を開き、バイパス管1
7に冷媒を流通させる。この冷媒は、キャピラリーチュ
ーブ18を通って電動要素室4内にインジヱクションさ
れ、電動要素5等の冷却を行ない潤滑油7の温度を低下
させる。
Conversely, if the electric element 5 and the like cannot be cooled only by the injection of refrigerant passing through the intermediate expansion valve I2, the temperature of the lubricating oil 7 increases to exceed the set value. This causes the oil temperature detection switch 22 to close its contact and bypass the solenoid valve l.
The electromagnetic coil 19a of No. 9 is energized. Then, the bypass solenoid valve 19 opens the bypass pipe 17, and the bypass pipe 1
A refrigerant is made to flow through 7. This refrigerant is injected into the electric element chamber 4 through the capillary tube 18, cools the electric element 5, etc., and lowers the temperature of the lubricating oil 7.

なお、上記実施例において潤滑油の温度を直接検出して
バイパス電磁弁の入・切を行なったが、潤滑油の温度に
関連する温度例えば電動要素の巻線温度又は吐出ガス冷
媒の温度を検出してバイパス電磁弁の入・切を行なって
も上記実施例と同様の効果を奏する。
In the above embodiment, the bypass solenoid valve was turned on and off by directly detecting the temperature of the lubricating oil, but it is also possible to detect a temperature related to the temperature of the lubricating oil, such as the winding temperature of the electric element or the temperature of the discharged gas refrigerant. Even if the bypass solenoid valve is turned on and off in this manner, the same effect as in the above embodiment can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば蒸発温度と凝縮温度の
少なくとも一方が低い圧力条件の場合には、バイパス管
から二段圧縮式冷媒圧縮機への液冷媒の不必要なインジ
ェクションを行なわず、それ以外の場合にそのインジェ
クションを行なうように構成するか、又は、二段圧縮式
冷媒圧縮機の潤滑油の温度又はこれに関連する温度が低
い場合には、バイパス管から圧縮機への液冷媒の不必要
なインジェクションを行なわず、その温度が高い場合に
そのインジェクションを行なって冷却するように構成し
たので、液バック現象を防止できると共に不必要なイン
ジェクションで成績係数を低下させることのない効果を
奏する。
As described above, according to the present invention, when the pressure condition is such that at least one of the evaporation temperature and the condensation temperature is low, unnecessary injection of liquid refrigerant from the bypass pipe to the two-stage compression refrigerant compressor is not performed, Otherwise, the liquid refrigerant is injected into the compressor from the bypass pipe when the temperature of the lubricating oil or the associated temperature of the two-stage refrigerant compressor is low. The structure is configured so that the injection is performed when the temperature is high and is cooled without performing unnecessary injections, which prevents the liquid back phenomenon and prevents the coefficient of performance from decreasing due to unnecessary injections. play.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の第1の実施例に係る二段圧縮式冷凍
装置の冷媒回路図、第2図は第1の実施例によるバイパ
ス電磁弁と圧力スイッチとの接続状態を示す結線図、第
3図はこの発明の第2の実施例に係る二段圧縮式冷凍装
置の冷媒回路図、第4図は第2の実施例によるバイパス
電磁弁と油温検出スイッチとの接続状態を示す結線図、
第5図は従来の二段圧縮式冷凍装置の冷媒回路図である
。 図中、l・・・二段圧縮式冷媒圧縮機、2・・・低段側
圧縮部、3・・・高段側圧縮部、7・・・潤滑油、8・
・・凝縮器、9・・・膨張弁、10・・・蒸発器、11
・・・中間冷却器、12・・・中間膨張弁、l4・・・
冷媒出口側配管、l5・・・低段吐出配管、17・・・
バイパス管、19・・・ハイバス電磁弁、19a・・・
電磁コイル、20・・・高圧スイッチ、21・・・低圧
スイッチ、22・・・油温検出スイッチ。 なお、図中、同一符号は同一、又は相当部分を示す。
FIG. 1 is a refrigerant circuit diagram of a two-stage compression refrigeration system according to a first embodiment of the present invention, and FIG. 2 is a wiring diagram showing a connection state between a bypass solenoid valve and a pressure switch according to the first embodiment. FIG. 3 is a refrigerant circuit diagram of a two-stage compression refrigeration system according to the second embodiment of the present invention, and FIG. 4 is a wiring diagram showing the connection state between the bypass solenoid valve and the oil temperature detection switch according to the second embodiment. figure,
FIG. 5 is a refrigerant circuit diagram of a conventional two-stage compression type refrigeration system. In the figure, l... Two-stage compression refrigerant compressor, 2... Low-stage compression section, 3... High-stage compression section, 7... Lubricating oil, 8.
... Condenser, 9... Expansion valve, 10... Evaporator, 11
...Intercooler, 12...Intermediate expansion valve, l4...
Refrigerant outlet side piping, l5...low stage discharge piping, 17...
Bypass pipe, 19...High bus solenoid valve, 19a...
Electromagnetic coil, 20...High pressure switch, 21...Low pressure switch, 22...Oil temperature detection switch. In addition, in the figures, the same reference numerals indicate the same or equivalent parts.

Claims (2)

【特許請求の範囲】[Claims] (1)低段側圧縮部及び高段側圧縮部を有する二段圧縮
式冷媒圧縮機、凝縮器、膨張弁、及び蒸発器が冷凍サイ
クルを形成するように配管接続された主冷媒回路と、途
中に中間膨張弁が設けられ、上記凝縮器の冷媒出口側配
管と上記低段側圧縮部の吐出側配管とを連通する中間冷
却回路と、この中間冷却回路を側路するバイパス管とを
備えた二段圧縮式冷凍装置において、上記主冷媒回路の
高圧側の圧力により開閉する高圧スイッチと、上記主冷
媒回路の低圧側の圧力により開閉する低圧スイッチと、
上記バイパス管に設けられた電動弁とを備え、上記電動
弁と電源との間に上記高圧スイッチと上記低圧スイッチ
とを直列状に設けたことを特徴とする二段圧縮式冷凍装
置。
(1) A main refrigerant circuit in which a two-stage refrigerant compressor having a low-stage compression section and a high-stage compression section, a condenser, an expansion valve, and an evaporator are connected via piping to form a refrigeration cycle; An intermediate expansion valve is provided in the middle, an intermediate cooling circuit that communicates the refrigerant outlet side piping of the condenser with the discharge side piping of the low-stage compression section, and a bypass pipe that bypasses this intermediate cooling circuit. In the two-stage compression refrigeration system, a high-pressure switch opens and closes according to the pressure on the high-pressure side of the main refrigerant circuit, and a low-pressure switch opens and closes according to the pressure on the low-pressure side of the main refrigerant circuit,
A two-stage compression refrigeration system, comprising: an electric valve provided in the bypass pipe; and the high pressure switch and the low pressure switch are provided in series between the electric valve and a power source.
(2)低段側圧縮部及び高段側圧縮部を有する二段圧縮
式冷媒圧縮機及び凝縮器を有し冷凍サイクルを構成する
主冷媒回路と、途中に中間膨張弁が設けられ、上記凝縮
器の冷媒出口側配管と上記低段側圧縮部の吐出側配管と
を連通する中間冷却回路と、この中間冷却回路を側路す
るバイパス管とを備えた二段圧縮式冷凍装置において、
上記バイパス管に設けられた電動弁と、この電動弁と電
源との間に直列状に接続され、上記二段圧縮式冷媒圧縮
機の潤滑油の温度又はこれに関連する温度によって開閉
する温度検出スイッチとを備えたことを特徴とする二段
圧縮式冷凍装置。
(2) A main refrigerant circuit comprising a two-stage compression refrigerant compressor and a condenser having a low stage side compression section and a high stage side compression section and a condenser, and an intermediate expansion valve is provided in the middle, and the above condensing In a two-stage compression refrigeration system comprising an intermediate cooling circuit that communicates the refrigerant outlet side piping of the container with the discharge side piping of the low-stage compression section, and a bypass pipe that bypasses the intermediate cooling circuit,
Temperature detection that is connected in series between a motor-operated valve provided in the bypass pipe and a power source, and that opens and closes depending on the temperature of the lubricating oil of the two-stage compression refrigerant compressor or a temperature related thereto. A two-stage compression refrigeration device characterized by comprising a switch.
JP1081990A 1990-01-20 1990-01-20 2-stage compression type refrigerator Pending JPH03217762A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1081990A JPH03217762A (en) 1990-01-20 1990-01-20 2-stage compression type refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1081990A JPH03217762A (en) 1990-01-20 1990-01-20 2-stage compression type refrigerator

Publications (1)

Publication Number Publication Date
JPH03217762A true JPH03217762A (en) 1991-09-25

Family

ID=11760965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1081990A Pending JPH03217762A (en) 1990-01-20 1990-01-20 2-stage compression type refrigerator

Country Status (1)

Country Link
JP (1) JPH03217762A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05164419A (en) * 1991-05-03 1993-06-29 Carrier Corp Refrigerating circuit and method of controlling economizer in refrigerating circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05164419A (en) * 1991-05-03 1993-06-29 Carrier Corp Refrigerating circuit and method of controlling economizer in refrigerating circuit

Similar Documents

Publication Publication Date Title
KR850003208A (en) Freezer
JP3238973B2 (en) Refrigeration equipment
KR20110074708A (en) Freezing device
JPH09318166A (en) Refrigerating apparatus
JP2000346474A (en) Refrigerator
JPH10176866A (en) Refrigeration device
JPH03217762A (en) 2-stage compression type refrigerator
JPH09159288A (en) Refrigerating device
JP2005048981A (en) Refrigeration unit
JPH04313647A (en) Heat pump type air conditioner
JP2757689B2 (en) Refrigeration equipment
JPH0730962B2 (en) Two-stage compression refrigeration cycle
JPH09210480A (en) Two-stage compression type refrigerating apparatus
JPS5849776B2 (en) Two-stage compression refrigeration equipment
JP3326835B2 (en) Refrigeration cycle
JPH028660A (en) Freezer
KR20030043038A (en) Refrigerating cycle and control method
JPS6246775B2 (en)
JPS5974465A (en) Cascade type refrigerator
JPH065572Y2 (en) Refrigeration equipment
JPS60245967A (en) Air conditioner
JPH03282159A (en) Freezing cycle device
JPH07167508A (en) Refrigerator
KR910000678B1 (en) Refrigeration system
JPH04281161A (en) Refrigerating plant