JPS6050748B2 - Manufacturing method of highly corrosion resistant continuous casting nozzle - Google Patents

Manufacturing method of highly corrosion resistant continuous casting nozzle

Info

Publication number
JPS6050748B2
JPS6050748B2 JP56159445A JP15944581A JPS6050748B2 JP S6050748 B2 JPS6050748 B2 JP S6050748B2 JP 56159445 A JP56159445 A JP 56159445A JP 15944581 A JP15944581 A JP 15944581A JP S6050748 B2 JPS6050748 B2 JP S6050748B2
Authority
JP
Japan
Prior art keywords
continuous casting
casting nozzle
weight
resistance
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56159445A
Other languages
Japanese (ja)
Other versions
JPS5864260A (en
Inventor
弘 鹿野
俊明 金子
偉展 本多
信彦 加治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krosaki Harima Corp
Original Assignee
Kurosaki Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurosaki Refractories Co Ltd filed Critical Kurosaki Refractories Co Ltd
Priority to JP56159445A priority Critical patent/JPS6050748B2/en
Publication of JPS5864260A publication Critical patent/JPS5864260A/en
Publication of JPS6050748B2 publication Critical patent/JPS6050748B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】 本発明は、溶融金属、特に鋼の鋳造用ノズルに関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a nozzle for casting molten metal, particularly steel.

鋼の鋳造用ノズルとしては、代表的なものに、製鋼用
取鍋−タンデイツシユーモールド間を連結するロングノ
ズル、浸漬ノズルが挙げられ、溶鋼の酸化防止および散
り防止などの目的て使用されており、連続鋳造用として
て特に重要な耐火物である。
Typical nozzles for steel casting include long nozzles and immersion nozzles that connect the steelmaking ladle and tundice mold, and are used for purposes such as preventing oxidation and scattering of molten steel. It is a particularly important refractory for continuous casting.

これら連続鋳造用ノズルは、使用時において、ノズル内
側から溶鋼流により急激に加熱されるため、内壁と外周
の間に大きな温度差が生じ、材料内部に膨脹差による大
きな熱応力を受ける。このため特に、(1)耐熱衝撃性
に優れることが必要とされる。また、ノズル内孔は、き
にシール漏れによる空気の巻き込みを伴つた溶鋼流によ
る激しい摩耗にさらされるため、(2)耐摩耗性および
耐酸化性に優れることが必要とされる。さらに、通常の
連鋳法では、ノズル下端は溶鋼に浸漬された状態て使用
されるが、この場合、溶鋼上面には種々の組成の溶融ス
ラグがあり、ノズルは外周からスラグのアタックを受け
るため、(3)耐スラグ侵食性に優れることが必要とさ
れている。 このような連鋳用ノズル材質としては、従
来、溶融シリカ質、アルミナ−黒鉛質等が使用されてき
たが、最近、多連鋳化の傾向にある我国の製鋼法におい
ては、後者のアルミナ−黒鉛質が、その耐食性において
前者に勝るため、主流になつてきている。
When these continuous casting nozzles are used, they are rapidly heated from inside the nozzle by the flow of molten steel, so a large temperature difference occurs between the inner wall and the outer periphery, and the inside of the material is subjected to large thermal stress due to the difference in expansion. For this reason, in particular, (1) excellent thermal shock resistance is required. Furthermore, since the nozzle inner hole is exposed to severe wear due to the flow of molten steel accompanied by air entrainment due to seal leakage, (2) it is required to have excellent wear resistance and oxidation resistance. Furthermore, in normal continuous casting methods, the lower end of the nozzle is immersed in molten steel. (3) Excellent slag erosion resistance is required. Conventionally, fused silica, alumina-graphite, etc. have been used as the nozzle material for continuous casting, but recently the latter, alumina-graphite, has been used in Japan's steelmaking process, which has been trending towards multiple casting. Graphite has become the mainstream because it is superior to the former in its corrosion resistance.

しかしながら、このアルミナ−黒鉛質においては、前述
したノズルとして必要とされる特性のうち、(1)耐熱
衝撃性と(2)、(3)耐摩耗性、耐食性の間にはうら
はらの関係があり、従来、耐熱衝撃性を向上させるため
に、これに優れた性質を有する黒鉛の割合を増していく
と、(2)、(3)の性質に劣り、充分な耐用が得られ
なくなり、逆に耐用性を上げるために、強度、耐食性の
点で優れたアルミナを増していくと、(1)の耐熱衝撃
性が低下し、割れの危険率が高くなるために使用に供せ
ないという問題点があり、耐用は頭打ちになつているの
が現状である。 本発明は、これら従来のノズルの欠点
を克服し、耐熱衝撃性および耐食性に同時に優れた材料
の開発に成功したものであり、以下その詳細を述べる。
However, in this alumina-graphite material, among the characteristics required for the nozzle mentioned above, there is a reverse relationship between (1) thermal shock resistance and (2) and (3) abrasion resistance and corrosion resistance. Conventionally, in order to improve thermal shock resistance, when the proportion of graphite, which has excellent properties, was increased, the properties (2) and (3) were inferior, and sufficient durability could not be obtained. If alumina, which has excellent strength and corrosion resistance, is increased in order to increase durability, the thermal shock resistance (1) decreases and the risk of cracking increases, making it unusable. The current situation is that the durability has reached a plateau. The present invention overcomes the drawbacks of these conventional nozzles and has succeeded in developing a material that has excellent thermal shock resistance and corrosion resistance at the same time, and the details thereof will be described below.

本発明における主たる鉱物相がコランダム、単科型ジ
ルコニアよりなり、化学組成でAl2O。
The main mineral phase in the present invention consists of corundum and monofamily zirconia, and the chemical composition is Al2O.

80〜銘%、ZrO22〜2鍾量%を有する耐火性原料
を以下AZと称する。
The refractory raw material having a weight of ZrO of 80 to 2% and a weight of 2 to 2% of ZrO is hereinafter referred to as AZ.

AZ原料は、コランダム結晶中に単斜型ジルコニアが分
散した構造を有し、通常のコランダム原料と比較すると
、粒子強度には大きな差はないが、弾性率が低く、耐熱
衝撃性に富んだ原料である。また、通常コランダムが1
0000Cで約0.8%の膨脹を示すのに対し、このA
Z原料は斗8約0.75%と低く、高温ではさらに膨脹
係数が小さくなる性質を持つているため、黒鉛と組合せ
た場合にも、従来のものと比べ耐熱衝撃性が大きく改善
される。AZ原料についての詳細なデータを表1に示す
。このM原料を適当量使用することにより、前述した(
1)耐熱衝撃性が大きく改善されることが予想できる。
次に前述した鋳造用ノズルに必要とされる項目2(2)
耐摩耗性についてであるが、従来のA′203一黒鉛質
では、嫁働面において溶鋼の摩耗による骨材粒子の脱落
を防ぐため、少量のSlO2成分を添加し、Ae2O3
−SiO2系の溶融物で嫁働表面を覆うとともに、Ae
2O3粒子同志が焼結し易くするというのが一般的な手
法であつた。
AZ raw material has a structure in which monoclinic zirconia is dispersed in corundum crystals, and although there is no big difference in particle strength compared to normal corundum raw materials, it has a low elastic modulus and is a raw material with high thermal shock resistance. It is. Also, corundum is usually 1
While it shows an expansion of about 0.8% at 0000C, this A
The Z raw material has a low coefficient of expansion of about 0.75% and has a property that its coefficient of expansion becomes even smaller at high temperatures, so even when combined with graphite, the thermal shock resistance is greatly improved compared to conventional materials. Detailed data about the AZ raw material is shown in Table 1. By using an appropriate amount of this M raw material, the above-mentioned (
1) It can be expected that thermal shock resistance will be greatly improved.
Next, item 2 (2) required for the casting nozzle mentioned above.
Regarding wear resistance, in the conventional A'203-graphite material, in order to prevent aggregate particles from falling off due to wear of molten steel on the working surface, a small amount of SlO2 component is added, and Ae2O3
-While covering the working surface with SiO2-based melt, Ae
A common method was to make it easier for 2O3 particles to sinter together.

しかしながら、Ae2O3−SiO2系では、溶鋼から
くるMnOlFeO等の成分によつて融点が下がり、稼
働面における粘性が低下して、耐火物の溶損を促進する
という問題点があり、特に鋼の成分、温度の影響を受け
易い材質であり、時に急激な溶損によりトラブルを起こ
すことが多かつた。しかるに、本発明におけるAZ一黒
鉛質においては、適当量のSiO2成分を添加するのは
勿論、前述した効果がでて有効であるが、さらに、Ae
2O3−SiO2系溶融物中には、AZからくる微小な
ZrO2粒子が懸濁浮遊して液の粘性を上げ、稼働面を
完全に保護し、かつ溶鋼に流されにくくなるため、従来
のノズルになかつた耐摩耗性および鋼種の変動に対する
安定性を材質に対して付与させることができる。
However, in the Ae2O3-SiO2 system, there is a problem that the melting point is lowered by components such as MnOlFeO coming from molten steel, and the viscosity on the operating surface is reduced, promoting melting loss of refractories. It is a material that is easily affected by temperature, and often causes problems due to rapid melting. However, in the AZ-graphite according to the present invention, adding an appropriate amount of SiO2 component is of course effective and produces the above-mentioned effects, but in addition, adding an appropriate amount of SiO2 component is effective.
In the 2O3-SiO2-based melt, tiny ZrO2 particles from AZ are suspended and suspended, increasing the viscosity of the liquid, completely protecting the working surface, and making it difficult to be washed away by the molten steel, making it difficult to use with conventional nozzles. It is possible to impart unprecedented wear resistance and stability against changes in steel type to the material.

また、この粘稠な溶融物層は、鋼中に含まれる02さら
には上部のシール不良によるエアーからくる02から材
料中のカーボンを守るためにも有効であるのは勿論であ
る。最後に、(3)耐スラグ侵食性についてであるが、
本来ZrO2はスラグに対して侵食を受けにくく、特に
溶鋼−スラグ界面では、他の耐火性原料にない強い耐食
性を示すことは周知であり、本発明における鋳造用ノズ
ルにおいても、従来のものより高耐食性を示すことが確
認された。
Moreover, this viscous molten layer is of course effective in protecting the carbon in the material from the 02 contained in the steel and also from the 02 coming from air due to a seal failure at the top. Finally, regarding (3) slag erosion resistance,
It is well known that ZrO2 is inherently less susceptible to corrosion by slag, and exhibits strong corrosion resistance not found in other refractory raw materials, especially at the molten steel-slag interface.The casting nozzle of the present invention also has higher corrosion resistance than conventional ones. It was confirmed that it exhibits corrosion resistance.

次に、M原料の化学組成であるが、A′203が8鍾量
%未満では、通常コランダムが有する強度、硬さなど有
用な性質が著しく低下するため好ましくなく、9鍾量%
を超えると、従来のコランダム原料との前述した点(耐
熱衝撃性、耐摩耗性、耐食性)における優位性が明らか
でなくなる。
Next, regarding the chemical composition of the M raw material, if A'203 is less than 8 weight percent, it is not preferable because useful properties such as strength and hardness, which corundum usually has, will be markedly reduced.
If it exceeds this, the superiority of conventional corundum raw materials in the above-mentioned points (thermal shock resistance, abrasion resistance, corrosion resistance) will no longer be apparent.

また、ZrO2は同様に2重量%未満ででは効果が薄く
、2睡量%を超えると粒子強度が低下し、さらに、Zr
O2(単斜型)の異状膨脹の影響が強く出て、大型のも
のを作るときに製造が困難てあり、好ましくは4〜15
重量%の範囲が適当である。また、原料の製造方法とし
ては、電融法、焼結法等が通常考えられるが、このよう
な方法のついては、本発明のおいてては特に言及するも
のではない。ただ、現在の技術面、価格面を考えると、
電気炉での溶融が有利である。また、主たる鉱物として
は、コランダム、単斜型ジルコニアが挙げられるが、不
純物の混入による立方型ジルコニア、粒界におけるA′
203−SiO2系ガラスなどは、少量含まれていても
原料の特性は大きく変えるものではない。次に、このよ
うなAZ原料の使用量比であが、10重量%未満では、
前述した種々の原料特性が生かされず、また7呼量%を
超えると、組合せる黒鉛の量が少なくなりすぎ、耐熱衝
撃性が十分でなくなる。また、黒鉛量は2唾量%未満で
は、上述したように耐熱衝撃性が十分でなく、4鍾量%
を超えると、組織が弱くなり、十分な強度が弱くなり、
十分な強度を付与させることができないので、かえつて
割れやすくなる。また、残部の耐火性骨材粉については
通常耐火物工業で使用されるAe2O3,zrO2,M
gO,cr2O3,caO,siO2およびこれらの2
種以上を混合して作られる耐火性原料等、何を使用して
もかまわないが、適当な耐食性、熱膨脹係数を有するA
e2O3を使用したものが実用に供しやすい。さらに、
本発明においては、稼働面の安定性および熱膨脹率の調
整の目的で、SiO2成分を1〜加重量%含有させるこ
とが、より効果的である。
Similarly, when ZrO2 is less than 2% by weight, the effect is weak, and when it exceeds 2% by weight, the particle strength decreases.
Due to the strong influence of abnormal expansion of O2 (monoclinic type), it is difficult to manufacture large-sized products, so preferably 4 to 15
A range of weight percent is suitable. Further, as a method for producing the raw material, an electrofusion method, a sintering method, etc. are generally considered, but such methods are not particularly mentioned in the present invention. However, considering the current technology and price aspects,
Melting in an electric furnace is advantageous. In addition, main minerals include corundum and monoclinic zirconia, but cubic zirconia due to the inclusion of impurities, A'
Even if a small amount of 203-SiO2 glass is contained, the characteristics of the raw material will not change significantly. Next, if the usage ratio of such AZ raw materials is less than 10% by weight,
If the various raw material properties described above are not utilized, and if the amount exceeds 7%, the amount of graphite to be combined becomes too small, resulting in insufficient thermal shock resistance. In addition, if the amount of graphite is less than 2%, the thermal shock resistance will not be sufficient as described above, and if the amount of graphite is less than 4%,
If the
Since sufficient strength cannot be imparted, it becomes more likely to break. In addition, the remaining refractory aggregate powder is Ae2O3, zrO2, M, which is usually used in the refractory industry.
gO, cr2O3, caO, siO2 and these 2
Any material may be used, such as a refractory raw material made by mixing two or more species, but A with appropriate corrosion resistance and coefficient of thermal expansion may be used.
Those using e2O3 are easy to put into practical use. moreover,
In the present invention, it is more effective to contain the SiO2 component in an amount of 1 to 10% by weight for the purpose of stabilizing the operating surface and adjusting the coefficient of thermal expansion.

この楊合、1重量%未満では効果が小さく、また、2鍾
量%を超えると耐食性において十分なものでなくなる。
本発明において、熱間での強度付与剤とは、通常カーボ
ンを含む耐火物に使用されるシリコン、粘土の他、アル
ミニウム、BN,B4C,SiC等必要に応じて添加す
ると、ノズルの性能をさらに上げることができる。
If this amount is less than 1% by weight, the effect will be small, and if it exceeds 2% by weight, the corrosion resistance will not be sufficient.
In the present invention, hot strength imparting agents include silicon, clay, etc. that are normally used for refractories containing carbon, as well as aluminum, BN, B4C, SiC, etc. When added as necessary, the performance of the nozzle can be further improved. can be raised.

また、有機質または無機質粘結剤としては、種々の樹脂
、タールピッチ、珪酸塩、リン酸塩等、通常耐火物工業
で用いられる種々の粘結剤が考えられるが、耐熱衝撃性
、耐食性、価格、作り易さの点で、フェノール樹脂が最
適である。また、混練工程以降については、通常耐火性
工業で用いられる方法はすべて本発明に適用できるが、
焼成については、素地中の黒鉛が酸化されないように、
非酸化性雰囲気中で行うことが必要である。
In addition, as organic or inorganic binders, various binders commonly used in the refractory industry, such as various resins, tar pitch, silicates, and phosphates, can be considered; In terms of ease of production, phenolic resin is optimal. In addition, for the kneading process and subsequent steps, all methods normally used in the fireproofing industry can be applied to the present invention.
Regarding firing, to prevent the graphite in the base from being oxidized,
It is necessary to carry out in a non-oxidizing atmosphere.

次に、本発明の実施例を述べる。Next, examples of the present invention will be described.

AZ原料を使用し、種々のノズルを製造した結果を表2
に示す。製造はすべてフェノール樹脂を用いて、高速ア
イリツヒミキサーにより混練し、ラバープレスでノズル
形状に成形(成形圧1.0t/d)した後、コークスマ
ツフル中で950℃の温度で焼成したものである。厄″
原料の使用により、弾性率が下がり、膨脹率も低くなつ
ている。
Table 2 shows the results of manufacturing various nozzles using AZ raw materials.
Shown below. All products are manufactured using phenolic resin, which is kneaded using a high-speed Eirich mixer, molded into a nozzle shape using a rubber press (molding pressure 1.0 t/d), and then fired at a temperature of 950°C in a coke Matsufuru. be. disaster"
Due to the use of raw materials, the elastic modulus is lowered and the expansion rate is also lowered.

これに伴つて耐スポーリング性の向上がある。表2中の
比較例の材質をロングノズルとして、・通常使用してい
る連続鋳造工場において(25CyC.容量鍋、30t
T.D.)実施例3の材質を使用したころ、割れもなく
順調に使用され、従来ライフが6Chであつたものが、
7〜8chにライフアップした。
Along with this, there is an improvement in spalling resistance. Using the material of the comparative example in Table 2 as a long nozzle, in a normally used continuous casting factory (25CyC. capacity pot, 30t
T. D. ) When the material of Example 3 was used, it was successfully used without cracking and had a conventional life of 6 Ch.
Life increased to 7~8ch.

Claims (1)

【特許請求の範囲】[Claims] 1 カーボン含有連続鋳造用ノズルにおいて、主たる鉱
物相がコランダム、単斜型ジルコニアよりなり、化学組
成でAl_2O_380〜98重量%、ZrO_22〜
20重量%を含む耐火性原料を10〜70重量%配合し
、混練、成形、焼成することを特徴とする高耐食性連続
鋳造用ノズルの製造法。
1 In a carbon-containing continuous casting nozzle, the main mineral phase consists of corundum and monoclinic zirconia, and the chemical composition is Al_2O_380 to 98% by weight, ZrO_22 to
A method for producing a highly corrosion-resistant continuous casting nozzle, which comprises blending 10 to 70% by weight of a refractory raw material containing 20% by weight, kneading, molding, and firing.
JP56159445A 1981-10-08 1981-10-08 Manufacturing method of highly corrosion resistant continuous casting nozzle Expired JPS6050748B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56159445A JPS6050748B2 (en) 1981-10-08 1981-10-08 Manufacturing method of highly corrosion resistant continuous casting nozzle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56159445A JPS6050748B2 (en) 1981-10-08 1981-10-08 Manufacturing method of highly corrosion resistant continuous casting nozzle

Publications (2)

Publication Number Publication Date
JPS5864260A JPS5864260A (en) 1983-04-16
JPS6050748B2 true JPS6050748B2 (en) 1985-11-09

Family

ID=15693905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56159445A Expired JPS6050748B2 (en) 1981-10-08 1981-10-08 Manufacturing method of highly corrosion resistant continuous casting nozzle

Country Status (1)

Country Link
JP (1) JPS6050748B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107176826A (en) * 2017-05-02 2017-09-19 长兴县煤山工业炉料有限公司 A kind of iron runner casting unshape refractory

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63129064A (en) * 1986-11-14 1988-06-01 黒崎窯業株式会社 High anti-corrosion non-burnt brick for slag line
CN106542803A (en) * 2016-10-21 2017-03-29 安徽青花坊瓷业股份有限公司 A kind of porcelain and its processing technology of tolerance salt air corrosion
CN109503135A (en) * 2018-11-28 2019-03-22 江苏恒耐炉料集团有限公司 The high-strength explosion-proof castable refractory of self-flow pattern

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107176826A (en) * 2017-05-02 2017-09-19 长兴县煤山工业炉料有限公司 A kind of iron runner casting unshape refractory

Also Published As

Publication number Publication date
JPS5864260A (en) 1983-04-16

Similar Documents

Publication Publication Date Title
JPS5919067B2 (en) High durability casting nozzle
US4585485A (en) Refractory sliding nozzle plate
JPH01176266A (en) Carbon-containing refractory
CA1267660A (en) Carbon-bonded refractory bodies
CN102356052B (en) Refractory, continuous casting nozzle comprising refractory, process for production of continuous casting nozzle, and continuous casting method using continuous casting nozzle
JPS6050748B2 (en) Manufacturing method of highly corrosion resistant continuous casting nozzle
JPS6348828B2 (en)
GB2166432A (en) Refractory wear part for use in the pouring of molten metal
JPS6246951A (en) Manufacture of plate refractories for sliding nozzle
JPH0352423B2 (en)
JP3351998B2 (en) Sliding nozzle plate and method of manufacturing the same
JP3383185B2 (en) Nozzle for casting
JPS5842144B2 (en) graphite casting nozzle
JP2683217B2 (en) Nozzle for molten steel casting
JPH0578180A (en) Carbon fiber-containing refractory
JPS6128623B2 (en)
JPS6352986B2 (en)
JPS6324945B2 (en)
JPS58120569A (en) Nozzle for casting
JP2778760B2 (en) Sliding nozzle plate brick
JPH0390271A (en) Non-calcined brick for sliding nozzle plate
JPH1052750A (en) Slide gate plate
JPS6127350B2 (en)
JPH03197346A (en) Carbon-containing refractory
JPS63157746A (en) Submerged nozzle for continuous casting