JPS6050252B2 - Refrigeration equipment - Google Patents

Refrigeration equipment

Info

Publication number
JPS6050252B2
JPS6050252B2 JP12656579A JP12656579A JPS6050252B2 JP S6050252 B2 JPS6050252 B2 JP S6050252B2 JP 12656579 A JP12656579 A JP 12656579A JP 12656579 A JP12656579 A JP 12656579A JP S6050252 B2 JPS6050252 B2 JP S6050252B2
Authority
JP
Japan
Prior art keywords
liquid tank
conduit
evaporator
refrigerant
bubble pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12656579A
Other languages
Japanese (ja)
Other versions
JPS5649850A (en
Inventor
稔志 大西
眞人 堤
登 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP12656579A priority Critical patent/JPS6050252B2/en
Priority to US06/190,051 priority patent/US4340404A/en
Priority to GB8031161A priority patent/GB2061475B/en
Priority to IT25019/80A priority patent/IT1132895B/en
Publication of JPS5649850A publication Critical patent/JPS5649850A/en
Publication of JPS6050252B2 publication Critical patent/JPS6050252B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Description

【発明の詳細な説明】 本発明は冷凍装置にかかり、特に冷凍室と冷蔵室のよう
な2つまたはそれ以上の異なつた温度の室を有し、それ
らの各室をそれぞれ独立して冷却し得るようにした冷凍
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a refrigeration system, and in particular has two or more chambers with different temperatures, such as a freezing chamber and a refrigerator chamber, and each of these chambers is cooled independently. The present invention relates to a refrigeration device.

一般に、上述のようにそれぞれ異なつた温度に冷却する
必要がある冷凍室および冷蔵室を有する冷蔵庫等におい
ては、上記各室をそれぞれ別個に冷却するため、各室に
専用の冷凍室用蒸発器或は冷蔵室用蒸発器を設け、それ
らを結ぶ配管中に設けられた電磁弁の開閉によつて上記
両蒸発器に冷媒を流したり或はその一方のみに冷媒を流
す等の制御を行なつている。
Generally, in refrigerators that have a freezer compartment and a refrigerator compartment that need to be cooled to different temperatures as described above, each compartment is cooled separately, so each compartment is equipped with a dedicated freezer compartment evaporator or refrigerator. is equipped with an evaporator for the refrigerator compartment, and controls the flow of refrigerant to both of the evaporators or only one of them by opening and closing a solenoid valve installed in the piping connecting them. There is.

ところが、このようなものにおいては電磁弁のような機
械的な可動部を有する弁装置を必要とし、しかもそれら
の弁装置は断熱壁中に埋設する関係上、一旦組立てた後
はその保守点検が不可能であり、冷蔵庫としての寿命と
信頼性が必ずしも十分でない等の問題点があり、また構
造上からも・高価なものとなる等の不都合がある。
However, such devices require valve devices with mechanically movable parts, such as solenoid valves, and since these valve devices are buried in the insulation wall, maintenance and inspection are difficult once they are assembled. This is impossible, and there are problems such as the lifespan and reliability of the refrigerator are not necessarily sufficient, and there are also disadvantages in terms of structure, such as being expensive.

そこで、最近機械的可動部分がなく、簡単な構造で冷媒
の流れに対して切換弁としての作用を行なわせる気泡ポ
ンプを使用した冷凍装置が提案されている。
Therefore, recently, a refrigeration system has been proposed that uses a bubble pump that has no mechanically movable parts, has a simple structure, and functions as a switching valve for the flow of refrigerant.

本発明は上記気泡ポンプによつて冷媒の切換えを行なう
ようにしたものにおいて、その切換が確実に行なわれる
とともに、その構成が簡単であり且つ冷凍サイクルの効
率をも向上し得るようにした冷凍装置を提供することを
目的とする。
The present invention provides a refrigeration system in which refrigerant switching is performed using the bubble pump described above, in which the switching is performed reliably, the configuration is simple, and the efficiency of the refrigeration cycle can be improved. The purpose is to provide

以下、添付図面を参照して本発明の一実施例について説
明する。
Hereinafter, one embodiment of the present invention will be described with reference to the accompanying drawings.

第1図において、符号1は圧縮機であつて、その圧縮機
1で圧縮された冷媒の高温ガスはコンデンサ2で凝縮さ
れキャピラリチューブ3および冷媒供給導管4を経て液
体タンク5に供給される。
In FIG. 1, reference numeral 1 denotes a compressor, and high-temperature refrigerant gas compressed by the compressor 1 is condensed in a condenser 2 and supplied to a liquid tank 5 via a capillary tube 3 and a refrigerant supply conduit 4.

上記冷媒供給導管4の先端は、液体タンク5の頂壁を貫
通して液体タンク5内の所定高さ位置に開口しており、
さらに上記液体タンク5には、その頂壁を貫通して液体
5内に延び、上記冷媒供給導管4の開口位置より上方位
置で開口する導管6が装着されている。上記導管6の他
端はキャピラリチューブ7を介して冷蔵室用蒸発器8に
連接されており、その冷蔵室用蒸発器8にはさらに連結
管9を介して冷凍室用蒸発器10が連接され、この冷凍
室用蒸発器10が前記圧縮機1の吸込側に接続され一つ
の閉サイクルが構成されている。一方、上記液体タンク
5の底部には、U字状の導管11の一端が開口せしめら
れており、そのU字状の導管11の他端側立上り管部1
1aは前記液体タンク5の頂部より上方まて延び、そこ
で逆U字状に屈曲され、その屈曲部11bの先端も上記
液体タンク5の頂壁を貫通しその内部まで突入せしめら
れている。さらに、液体タンク5にはその底壁を貫通し
て液体タンク5の頂壁近傍部まて延びる導管12が突設
されており、その導管12の頂端開口内に、前記立上り
管部11aの上部に形成された屈曲部11bの先端が第
2図および第3図に明瞭に示すように互いに環状間隙1
3が形成されるように挿.入されている。
The tip of the refrigerant supply conduit 4 penetrates the top wall of the liquid tank 5 and opens at a predetermined height position within the liquid tank 5,
Furthermore, the liquid tank 5 is equipped with a conduit 6 that extends into the liquid 5 through its top wall and opens at a position above the opening position of the refrigerant supply conduit 4. The other end of the conduit 6 is connected to a refrigerator compartment evaporator 8 via a capillary tube 7, and a freezer compartment evaporator 10 is further connected to the refrigerator compartment evaporator 8 via a connecting pipe 9. This freezer compartment evaporator 10 is connected to the suction side of the compressor 1 to form one closed cycle. On the other hand, one end of a U-shaped conduit 11 is opened at the bottom of the liquid tank 5, and the other end of the U-shaped conduit 11 has a rising pipe section 1.
1a extends above the top of the liquid tank 5 and is bent there into an inverted U shape, and the tip of the bent portion 11b also penetrates the top wall of the liquid tank 5 and extends into the interior thereof. Furthermore, a conduit 12 is provided in the liquid tank 5 so as to protrude through the bottom wall of the liquid tank 5 and extend to a portion near the top wall of the liquid tank 5. In the top opening of the conduit 12, an upper portion of the riser pipe portion 11a is provided. As clearly shown in FIGS. 2 and 3, the tips of the bent portions 11b formed in the
Insert so that 3 is formed. is included.

また、上記導管12の下端部はキャピラリチューブ14
を介して前記冷蔵室用蒸発器8と冷凍室用蒸発器10と
を結ぶ連結管9の途中に接続されている。ところで、上
記U字状の導管11の立上り管部・11aの下方部外周
には気泡ポンプヒータ15が巻装されており、また上記
立上り管部11aの内面には、第4図に示すように、上
記気泡ポンプヒータ15取付部の下半部のみに凹凸16
が形成されている。
The lower end of the conduit 12 is connected to a capillary tube 14.
It is connected to the middle of a connecting pipe 9 that connects the evaporator 8 for the refrigerator compartment and the evaporator 10 for the freezer compartment via the evaporator 8 for the refrigerator compartment and the evaporator 10 for the freezer compartment. By the way, a bubble pump heater 15 is wrapped around the outer periphery of the lower part of the riser pipe section 11a of the U-shaped conduit 11, and the inner surface of the riser pipe section 11a has a structure shown in FIG. , unevenness 16 only on the lower half of the attachment part of the bubble pump heater 15
is formed.

さらに、上記U字状の導管11の前記液体タンク5の底
部に接続されている方の立上り管部11cは、その立上
り管部11cが前記気泡ポンプヒータ15取付部から所
定距離(例えば80Tfr!n)だけ離間するように屈
曲せしめられている。第5図は、上記装置の電気制御回
路図であつて、除霜スイッチ20が接点a側に接し、か
つ冷凍室コントロールスイッチ21が0N状態の場合に
圧縮機1が駆動され、例えば冷蔵室の温度が所ノ定温度
以下になり冷蔵室コントロールスイッチ22が0N状態
になると、気泡ポンプヒータ15、連結管ヒータ23、
樋ヒータ24に通電され、冷凍室が所定温度に冷却され
冷凍室コントロールスイッチ21が0FFとなると、圧
縮機1の駆動が・停止される。また、除霜スイッチ20
を接点b側に切り換えると、従来の冷蔵庫と同様に除霜
ヒータ25および除霜感熱管ヒータ26に通電される。
なお、図中符号27は除霜検知バイメタル、28はドア
スイッチ、29は庫内灯、30は排水口ヒータ、31は
冷凍室コントロールスイッチ、32はヒューズである。
なお、第6図は冷蔵庫における冷蔵室用蒸発器8、冷凍
室用蒸発器10、および気泡ポンプ切換装置部等の概略
配置を示す図であり、気泡ポンプ切換装置部5,6,1
1a,15は冷凍室の後壁部に配設される。
Further, the riser pipe portion 11c of the U-shaped conduit 11 connected to the bottom of the liquid tank 5 is arranged such that the riser pipe portion 11c is a predetermined distance (for example, 80Tfr!n) from the attachment portion of the bubble pump heater 15. ) are bent so as to be apart from each other. FIG. 5 is an electrical control circuit diagram of the above device, in which the compressor 1 is driven when the defrost switch 20 is in contact with the contact a side and the freezer compartment control switch 21 is in the ON state, When the temperature falls below a predetermined temperature and the refrigerator compartment control switch 22 turns ON, the bubble pump heater 15, the connecting pipe heater 23,
When the gutter heater 24 is energized and the freezer compartment is cooled to a predetermined temperature and the freezer compartment control switch 21 is turned OFF, the drive of the compressor 1 is stopped. In addition, the defrost switch 20
When the switch is switched to the contact b side, the defrosting heater 25 and the defrosting heat-sensitive tube heater 26 are energized as in the conventional refrigerator.
In the drawing, reference numeral 27 is a defrost detection bimetal, 28 is a door switch, 29 is an interior light, 30 is a drain heater, 31 is a freezer compartment control switch, and 32 is a fuse.
In addition, FIG. 6 is a diagram showing the schematic arrangement of the refrigerator compartment evaporator 8, the freezer compartment evaporator 10, the bubble pump switching device section, etc.
1a and 15 are disposed on the rear wall of the freezer compartment.

しかして、冷蔵室および冷凍室の両室がそれぞれ所定の
温度に達せず、所定の温度以上の場合には、冷凍室コン
トロールスイッチ21が0Nとなり、冷蔵室コントロー
ルスイッチ22が0FF状態にある。
Therefore, if both the refrigerator compartment and the freezer compartment do not reach their respective predetermined temperatures but exceed the predetermined temperatures, the freezer compartment control switch 21 is set to ON, and the refrigerator compartment control switch 22 is set to the OFF state.

したがつて、気泡ポンプヒータ15が0FF状態のまま
圧縮機が駆動される。このようにして圧縮機が駆動され
ると、この圧縮機によつて圧縮され、その後コンデンサ
2によつて凝縮された冷媒が液体タンク5内に流入する
。液体タンク5に液冷媒が溜まり、その液面が上昇し導
管6の下端開口部よりわずかに上方位置までくると、液
体タンク5内の液面上に加わる圧力および冷蔵室用蒸発
器8側の負圧とによつて、上記液冷媒が導管6内を上昇
し、キャピラリチューブ7を経て冷蔵室用蒸発器8内に
流入し、さらに冷凍室用蒸発器10を順次流通して両蒸
発器8,10によつてそれぞれ冷蔵室および冷凍室の冷
却が行なわれる(第2図)。この状態においては、液体
タンク5の底部に接続されたU字状の導管11内にも液
冷媒は流入するが、立上り管部11aの頂部に形成され
た逆U字状の屈曲部11bの先端が導管12との間に環
状間隙13を形成するように上記導管12に一部挿入さ
れているので、立上り管部11aと液体タンク5内上部
とが上記環状間隙13を介して連通し均圧化されており
、立上り管部11a内の液冷媒の液面は液体タンク5内
の液面と同一面に保持され、液冷媒が屈曲部11bを経
て導管12側へ流入することはない。
Therefore, the compressor is driven with the bubble pump heater 15 in the OFF state. When the compressor is driven in this manner, the refrigerant that is compressed by the compressor and then condensed by the condenser 2 flows into the liquid tank 5. When the liquid refrigerant accumulates in the liquid tank 5 and its liquid level rises to a position slightly above the lower end opening of the conduit 6, the pressure applied on the liquid level in the liquid tank 5 and the pressure on the refrigerator compartment evaporator 8 side increase. Due to the negative pressure, the liquid refrigerant rises in the conduit 6, passes through the capillary tube 7, flows into the refrigerator compartment evaporator 8, and then sequentially flows through the freezer compartment evaporator 10 to reach both evaporators 8. , 10 respectively cool the refrigerator compartment and the freezer compartment (FIG. 2). In this state, the liquid refrigerant also flows into the U-shaped conduit 11 connected to the bottom of the liquid tank 5; is partially inserted into the conduit 12 so as to form an annular gap 13 between it and the conduit 12, so that the riser pipe portion 11a and the upper part of the liquid tank 5 communicate with each other through the annular gap 13 to equalize the pressure. The liquid refrigerant level in the riser pipe portion 11a is maintained at the same level as the liquid level in the liquid tank 5, and the liquid refrigerant does not flow into the conduit 12 side via the bent portion 11b.

こ)で、冷蔵室が所定温度まで冷却されると、冷蔵室コ
ントロールスイッチ22が0N側に切り換り、気泡ポン
プヒータ15に通電される。
When the refrigerator compartment is cooled to a predetermined temperature, the refrigerator compartment control switch 22 is switched to the ON side, and the bubble pump heater 15 is energized.

したがつて、上記気泡ポンプヒータ15によつて立上り
管部11aが加熱され、これによつて立上り管部11a
内部の液冷媒が沸騰せしめられ冷媒蒸気からなる気泡が
発生し、その気泡によるポンプ作用によつて液冷媒が押
し上げられ(第3図)、立上り管部11aの頂部から導
管12内に流入し、さらにその液冷媒がキャピラリチュ
ーブ14を経て冷凍室側蒸発器10に流入し、冷凍室の
冷却作用が行なわれる。なお、立上り管部11aには気
泡ポンプヒータ15が取り付けられている範囲の下半部
のみに、その内面に凹凸16が形成されているので、そ
の凹凸16部によつて気泡が比較的速くかつ激しく発生
し、それにもとづいて液冷媒の汲み上げ作用が促進され
る。しかも、上記気泡ポンプヒータ15の取付部の上半
部においては管内面が平滑になつているので、当該部分
ではなめらかに気泡が発生し、かつ管抵抗も小さいので
、前記下半部で発生した気泡は何ら阻害されることなく
上昇しミこれによつてポンプ効率が大幅に向上される。
また、U字状導管11の液体タンク5側の立上り管部1
1cが上記気泡ポンプヒータ15の巻付部から所定距離
だけ遠ざかるように屈曲されているため、気泡ポンプヒ
ータ15の取付作業も比較的楽に行なうことができその
作業性を向上せしめることができ、また上記気泡ポンプ
ヒータ15の熱が前記立上り管部11cにまで伝わり当
該管部内で気泡が発生し、ポンプ効率が低下せしめられ
るようなこともない。一方、このとき液体タンク5内の
液冷媒は上述のように気泡ポンプ作用によつて導管12
側に送給されるため、液体タンク5内の液面が下がり、
導管6の下端開口部が液体タンク5内の気相部に開放さ
れ、しかも冷媒供給導管4の下端開口部が前記導管6の
開口位置より下方にあるので、冷媒供給導管から噴出す
る液冷媒が直接導管6内に流入することもなく、液冷媒
の冷蔵室用蒸発器8への流通は完全に止まり、冷蔵室の
冷却は中断される。
Therefore, the riser pipe portion 11a is heated by the bubble pump heater 15, and thereby the riser pipe portion 11a is heated.
The liquid refrigerant inside is boiled and bubbles made of refrigerant vapor are generated, and the liquid refrigerant is pushed up by the pumping action of the bubbles (Fig. 3) and flows into the conduit 12 from the top of the riser section 11a. Furthermore, the liquid refrigerant flows into the freezing compartment side evaporator 10 through the capillary tube 14, and the cooling effect of the freezing compartment is performed. Incidentally, since the riser pipe portion 11a has an unevenness 16 formed on its inner surface only in the lower half of the area where the bubble pump heater 15 is attached, the unevenness 16 allows bubbles to flow relatively quickly and This occurs intensely, and based on this, the pumping action of the liquid refrigerant is promoted. Moreover, since the inner surface of the tube is smooth in the upper half of the attachment part of the air bubble pump heater 15, bubbles are generated smoothly in this part, and the resistance of the tube is small, so that bubbles generated in the lower half are smooth. The air bubbles rise unimpeded, which greatly increases pump efficiency.
In addition, the riser pipe portion 1 on the liquid tank 5 side of the U-shaped conduit 11
Since the portion 1c is bent so as to be separated by a predetermined distance from the wrapping portion of the bubble pump heater 15, the work of installing the bubble pump heater 15 can be done relatively easily, and the workability can be improved. There is no possibility that the heat of the bubble pump heater 15 is transmitted to the riser pipe portion 11c and bubbles are generated within the riser pipe portion 11c, thereby reducing pump efficiency. On the other hand, at this time, the liquid refrigerant in the liquid tank 5 is transferred to the conduit 12 by the bubble pump action as described above.
Since the liquid is fed to the side, the liquid level in the liquid tank 5 decreases,
Since the lower end opening of the conduit 6 is open to the gas phase in the liquid tank 5, and the lower end opening of the refrigerant supply conduit 4 is located below the opening position of the conduit 6, the liquid refrigerant spouted from the refrigerant supply conduit is The liquid refrigerant does not directly flow into the conduit 6, and the flow of the liquid refrigerant to the refrigerator compartment evaporator 8 is completely stopped, and cooling of the refrigerator compartment is interrupted.

以後、冷凍室の温度の上下に応じて圧縮機1の駆動停止
が繰り返され、その間冷蔵室の温度が所定以上になると
、冷蔵室コントロールスイッチ22が0FFに切り換り
、気泡ポンプの作動が停止し、前述のように液冷媒は導
管6を経て両蒸発器8,10を順に流れ、冷蔵室および
冷凍室の冷却作用が行なわれる。
Thereafter, the drive of the compressor 1 is repeatedly stopped depending on the rise and fall of the temperature in the freezer compartment, and when the temperature in the refrigerator compartment reaches a predetermined level or higher during that period, the refrigerator compartment control switch 22 is switched to 0FF, and the operation of the bubble pump is stopped. However, as described above, the liquid refrigerant sequentially flows through the evaporators 8 and 10 through the conduit 6, thereby cooling the refrigerator compartment and the freezing compartment.

ところで、一般の冷蔵庫用としては気泡ポンプヒータの
出力は5W程度のものが使用され、また導管6の下端開
口部とU字状導管11の入口部間の液体タンク内容量を
小さくすると、冷凍室用蒸発器のみ作動中に冷蔵室用蒸
発器側に不用に冷媒が流れることがあり、逆に大きくす
ると気泡ポンプ作動開始時に一時に多量の冷媒が冷凍室
用蒸発器10に送られ容量オーバーとなり、圧縮機への
リキッドバックが生じることがあるので、普通上記液体
タンク容量は10〜50ccに選定する必要がある。
By the way, a bubble pump heater with an output of about 5 W is used for general refrigerators, and if the content of the liquid tank between the lower end opening of the conduit 6 and the inlet of the U-shaped conduit 11 is reduced, When only the evaporator for the refrigerator is in operation, refrigerant may flow unnecessarily to the evaporator for the refrigerator compartment.On the other hand, if the size is increased, a large amount of refrigerant will be sent to the evaporator for the freezer compartment at once when the bubble pump starts operating, resulting in overcapacity. Since liquid back to the compressor may occur, the liquid tank capacity should normally be selected to be 10 to 50 cc.

一方、液体タンク内に底壁を貫通して突設された導管の
頂端開口部と、その開口部内に挿入される立上り管部の
上部先端部とによつて形成される゛間隙13の面積は、
液体タンク5内と立上り管部11a内との間に十分な均
圧効果をもたせるためには、少なくとも10i以上とす
る必要がある。
On the other hand, the area of the gap 13 formed by the top opening of the conduit that protrudes through the bottom wall of the liquid tank and the top end of the riser pipe inserted into the opening is ,
In order to provide a sufficient pressure equalization effect between the inside of the liquid tank 5 and the inside of the riser pipe portion 11a, it is necessary to set the distance to at least 10i.

したがつて、上記実施例の場合には液体タンク5内に配
設された導管12の外径が必要以上に大・きくなる場合
があり、その分液体タンク5を大型化しなければならな
いことがある。第7図はこのような点に鑑み導管12の
外径を必要以上に大きくする必要がないようにした一実
施例であつて、この場合立上り管部11aの頂部川こ形
成された屈曲部先端部が、例えばスエージング加工によ
つて小径とされ、その小径先端部11dが前記導管12
の頂端開口部内に挿入され、前記間隙13の面積を確保
するように構成してある。
Therefore, in the case of the above embodiment, the outer diameter of the conduit 12 disposed in the liquid tank 5 may become larger than necessary, and the liquid tank 5 may have to be made larger accordingly. be. FIG. 7 shows an embodiment in which the outer diameter of the conduit 12 does not need to be made larger than necessary in view of the above points. The portion is made small in diameter by, for example, swaging processing, and the small diameter tip portion 11d is connected to the conduit 12.
It is inserted into the top end opening of and is configured to ensure the area of the gap 13.

なお、第8図は第7図の外観側面図である。しかして、
この場合には立上り管の先端部を小径化するだけで、液
体タンク5内と立上り管部11a内との間に均圧作用を
行なうのに十分な開口面積を確保てき、しかもそれに応
じて導管12の外径を必要最低限に維持でき、所定のタ
ンク内容積を確保する場合でも上記液体タンクの大きさ
を小型化することができる。なお、この場合小径先端部
11dの内径を小さくしすぎると、気泡ポンプ作用で上
昇してきた液冷媒が上記小径先端部に溜つてしまい、逆
流して導管12側への供給が阻止されることがある。そ
のため、上記小径先端部11dの開口面積は実験の結果
3Trf1t以上とする必要がある。なお、上記実施例
においては立上り管部11aの先端部を小径としたもの
を示したが、導管12の頂部のみを所定量だけ拡管して
もよい。
Note that FIG. 8 is an external side view of FIG. 7. However,
In this case, by simply reducing the diameter of the tip of the riser pipe, an opening area sufficient to equalize the pressure between the inside of the liquid tank 5 and the inside of the riser pipe portion 11a can be secured, and the conduit can be opened accordingly. The outer diameter of the liquid tank 12 can be maintained to the necessary minimum value, and the size of the liquid tank can be reduced even when a predetermined internal volume of the tank is secured. In this case, if the inner diameter of the small-diameter tip 11d is made too small, the liquid refrigerant that has risen due to the bubble pump action will accumulate in the small-diameter tip, flow backwards, and be blocked from being supplied to the conduit 12 side. be. Therefore, the opening area of the small-diameter tip portion 11d needs to be 3Trf1t or more as a result of experiments. In the above embodiment, the tip of the riser 11a has a small diameter, but only the top of the conduit 12 may be expanded by a predetermined amount.

第9図は本発明の他の実施例を示す図てあり、液体タン
ク5内にはその頂壁を貫通して1本の連結バイブ33が
挿入装着してあり、その連結バイブ33内に、前記コン
デンサ2側に接続されたキャピラリチューブ3および冷
蔵室用蒸発器8側に接続されたキャピラリチューブ7の
先端部がそれぞれ挿入固着されている。
FIG. 9 shows another embodiment of the present invention, in which a connecting vibe 33 is inserted into the liquid tank 5 through its top wall, and inside the connecting vibe 33, The tips of the capillary tube 3 connected to the condenser 2 side and the capillary tube 7 connected to the refrigerator compartment evaporator 8 side are inserted and fixed, respectively.

そしてこの場合、キャピラリチューブ3の先端開口部は
上記連結バイブ33の下端より下方に突出せしめられて
おり、一方他方のキャピラリチューブ7は上記連結バイ
ブ33内に開口され、上記連結バイブ33はその頂端部
て密封せしめられている。その他の点は第7図記載のも
のと同じである。しかして、圧縮機1から吐出されコン
デンサ2によつて凝縮された液冷媒はキャピラリチュー
ブ3を経て液体タンク5内に供給され、気泡ポンプヒー
タ15が0N状態のときにはU字状の導管11、導管1
2等を経て冷凍室用蒸発器10に送給され、一方気泡ポ
ンプヒータ15が0FFの場合一には上記連結バイブ3
3およびキャピラリチューブ7を経て冷蔵室用蒸発器8
へと液冷媒の供給が行なわれ、第1実施例と全く同様な
作用が行なわれる。
In this case, the distal end opening of the capillary tube 3 is made to project downward from the lower end of the connecting vibrator 33, while the other capillary tube 7 is opened into the connecting vibrator 33, and the connecting vibrator 33 has its top end. The parts are sealed. Other points are the same as those shown in FIG. The liquid refrigerant discharged from the compressor 1 and condensed by the condenser 2 is supplied into the liquid tank 5 through the capillary tube 3, and when the bubble pump heater 15 is in the ON state, the U-shaped conduit 11, the conduit 1
If the bubble pump heater 15 is 0FF, then the connected vibrator 3
3 and a capillary tube 7 to a refrigerator compartment evaporator 8.
The liquid refrigerant is supplied to the refrigerant, and the same operation as in the first embodiment is performed.

なお、この場合は液体タンク5の頂壁部には、立上り管
部11aの頂部屈曲部と連結バイブ・33のみを装着す
ればよいので、その溶着が極めて容易であり、その作業
性を一段と向上せしめることができる。ところで、上記
各実施例においては冷凍室用蒸発器10にのみ冷媒を供
給する導管12と気泡ポンプを構成する立上り管部11
aとを別体に構成したものを示したがそれらを一体的に
構成してもよい。
In this case, it is only necessary to attach the top bent part of the riser pipe part 11a and the connecting vibrator 33 to the top wall part of the liquid tank 5, so welding them is extremely easy and the workability is further improved. You can force it. By the way, in each of the above embodiments, the conduit 12 that supplies refrigerant only to the freezer compartment evaporator 10 and the riser pipe section 11 that constitutes the bubble pump are
Although the structure shown in FIG.

すなわち、第10図に示すように、上記気泡ポンプを構
成する立上り管部11aの頂端部を逆U字状に屈曲する
とともに、その屈曲部側を液体タンク5の頂壁から底壁
まで貫通せしめて冷凍室用蒸発器10への導管12とし
、その導管12の下】端に冷凍室用蒸発器側キャピラリ
チューブ14が接続してある。
That is, as shown in FIG. 10, the top end of the riser pipe portion 11a constituting the bubble pump is bent into an inverted U shape, and the bent portion side is passed through from the top wall to the bottom wall of the liquid tank 5. A conduit 12 is connected to the evaporator 10 for the freezer compartment, and a capillary tube 14 on the evaporator side for the freezer compartment is connected to the lower end of the conduit 12.

なお、この場合には上記導管12の側壁部に液体タンク
5の上部の気相部に開口する1個以上の均圧孔34を穿
設する。しかして、気泡ポンプヒータ15を0N状態に
すると、第10図に示すように液体タンク5内の液冷媒
が気泡ポンプ作用によつてもち上げられ、屈曲部を経て
導管12内に落下し、さらにキャピラリチューブ14を
経て冷凍室用蒸発器へと流通する。
In this case, one or more pressure equalizing holes 34 are bored in the side wall of the conduit 12 to open into the upper gas phase of the liquid tank 5. When the bubble pump heater 15 is brought to the ON state, the liquid refrigerant in the liquid tank 5 is lifted up by the bubble pump action and falls into the conduit 12 through the bend, as shown in FIG. It flows through the capillary tube 14 to the evaporator for the freezer compartment.

一方、気泡ポンプヒータ15を0FFにす“るとポンプ
作用がなくなり、液体タンク5内の液位が上昇し導管6
の開口部に達すると上記導管6内に吸引され冷蔵室用蒸
発器8の方に流通する。そしてこの場合、前記均圧孔3
4によつて液体タンク5の気相部と上り管部11a内の
圧力が等しくされるため、立上り管部11a内の液冷媒
が導管12の方に流入することはない。以上説明したよ
うに、本発明においては気泡ポンプヒータが0Nの状態
のときのみ液冷媒を流通せしめる導管を液体タンク内に
装着したので、気泡ポンプ作用によつて上記導管内に送
られてきた液冷媒は、液体タンク内の冷媒と熱交換して
冷却され完全に液化せしめられ、一方液体タンク内の冷
媒は加熱されて気泡ポンプ側に送られるので、気泡が発
生し易くなり、冷凍サイクルの効率が向上せしめられる
On the other hand, when the bubble pump heater 15 is set to 0FF, the pump action disappears, the liquid level in the liquid tank 5 rises, and the conduit 6
When it reaches the opening, it is sucked into the conduit 6 and flows toward the evaporator 8 for the refrigerator compartment. In this case, the pressure equalizing hole 3
4 equalizes the pressure in the gas phase portion of the liquid tank 5 and the riser pipe portion 11a, so that the liquid refrigerant in the riser pipe portion 11a does not flow into the conduit 12. As explained above, in the present invention, a conduit that allows liquid refrigerant to flow only when the bubble pump heater is in the 0N state is installed in the liquid tank, so the liquid sent into the conduit by the bubble pump action is The refrigerant exchanges heat with the refrigerant in the liquid tank and is cooled and completely liquefied. On the other hand, the refrigerant in the liquid tank is heated and sent to the bubble pump, making it easier for air bubbles to form, which reduces the efficiency of the refrigeration cycle. can be improved.

しかも、気泡ポンプを構成する立上り管部と連通する導
管が液体タンク内に装着されているので、単に上記導管
に液体タンク内の気相部と連通する開口部を設けること
によつて均圧効果をもたせることができ、両者間に特別
な均圧管を設ける必要がなく、構成を簡素化できるばか
りでなく冷媒切換装置部分の構成をコンパクトに形成す
ることができる等の効果を奏する。なお、上記実施例に
おいては気泡ポンプの作動時には冷凍室用蒸発器にのみ
液冷媒を流すようにしたものを示したが、気泡ポンプが
作動した場合に冷蔵室用および冷凍室用の両蒸発器に液
冷媒が流入するようにしてもよい。また、上記実施例で
は冷蔵庫について説明したが、その他の冷凍装置につい
ても適用できる。
Moreover, since the conduit that communicates with the riser pipe that constitutes the bubble pump is installed in the liquid tank, the pressure equalization effect can be achieved simply by providing an opening in the conduit that communicates with the gas phase in the liquid tank. There is no need to provide a special pressure equalizing pipe between the two, which not only simplifies the configuration but also allows the refrigerant switching device to be made compact. In addition, in the above embodiment, when the bubble pump is activated, the liquid refrigerant is flowed only to the evaporator for the freezer compartment, but when the bubble pump is activated, both the evaporators for the refrigerator compartment and the freezer compartment are flowed. Alternatively, the liquid refrigerant may flow into the refrigerant. Further, although the above embodiments have been described with respect to a refrigerator, the present invention can also be applied to other refrigeration devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の冷凍装置の冷凍サイクルを示す概略図
、第2図および第3図は気泡ポンプ部の拡大図であり、
第2図は気泡ポンプ不作動時、第3図は気泡ポンプ作動
時を示す説明図、第4図は気泡ポンプヒータ取付部の立
上り管の形状を示す一部断面図、第5図は電気制御回路
図、第6図は気泡ポンプ部等の配置を示す概略図、第7
図は本発明の他の実施例を示す部分図、第8図は第7図
の外観側面図、第9図および第10図はそれぞれ本発明
のさらに他の実施例を示す部分図である。 1・・・・・・圧縮機、2・・・・・・コンデンサ、5
・・・・・・液体タンク、6・・・・・・導管、8・・
・・・・冷蔵室用蒸発器、10・・・・・・冷凍室用蒸
発器、11・・・・・U字状導管、11a・・・・・・
立上り管部、12・・・・・導管、15・・・・・・気
”泡ポンプヒータ、33・・・・・・連結バイブ、34
・・・均圧孔。
FIG. 1 is a schematic diagram showing the refrigeration cycle of the refrigeration system of the present invention, and FIGS. 2 and 3 are enlarged views of the bubble pump section.
Figure 2 is an explanatory diagram showing when the bubble pump is not in operation, Figure 3 is an explanatory diagram showing when the bubble pump is in operation, Figure 4 is a partial cross-sectional view showing the shape of the riser pipe at the attachment part of the bubble pump heater, and Figure 5 is an electric control Circuit diagram, Figure 6 is a schematic diagram showing the arrangement of the bubble pump section, etc.
8 is a partial view showing another embodiment of the present invention, FIG. 8 is an external side view of FIG. 7, and FIGS. 9 and 10 are partial views showing still other embodiments of the present invention. 1... Compressor, 2... Capacitor, 5
...Liquid tank, 6... Conduit, 8...
...Evaporator for refrigerator compartment, 10...Evaporator for freezer room, 11...U-shaped conduit, 11a...
Rise pipe section, 12...Conduit, 15...Bubble pump heater, 33...Connection vibe, 34
...Pressure equalization hole.

Claims (1)

【特許請求の範囲】 1 複数個の蒸発器を有し、気泡ポンプのオン・オフの
制御によつて圧縮機から吐出された冷媒の各蒸発器への
供給制御を行なうようにした冷凍装置において、上記圧
縮機から吐出された冷媒が供給される液体タンクと、そ
の液体タンクの下部に接続され、気泡ポンプヒータによ
る加熱によつて内部に冷媒ガスによる気泡を発生せしめ
る立上り管と、上端が上記立上り管に連通し下端が所定
の蒸発器に連通され、上記気泡によるポンプ作用により
持ち上げられた液冷媒を所定の蒸発器側に送給する、前
記液体タンクの底壁を貫通して液体タンク内を上方に延
びる第1の導管と、一端が上記液体タンク内の上部に開
口し他端が他の蒸発器に接続され、前記気泡ポンプヒー
タの不作動時に上記液体タンク内の液冷媒を他の蒸発器
側に導出する第2の導管とを有することを特徴とする冷
凍装置。 2 液体タンク内に配設された第1の導管の頂部に、下
方部に気泡ポンプヒータの嵌装した立上り管の頂部に形
成された逆U字状部の先端部が接続せしめられているこ
とを特徴とする、特許請求の範囲第1項記載の冷凍装置
[Claims] 1. In a refrigeration system having a plurality of evaporators, supply of refrigerant discharged from a compressor to each evaporator is controlled by controlling on/off of a bubble pump. , a liquid tank to which the refrigerant discharged from the compressor is supplied, a riser pipe connected to the lower part of the liquid tank and generating bubbles by refrigerant gas inside by heating with a bubble pump heater; The liquid refrigerant, which is connected to the riser pipe and whose lower end is communicated with a predetermined evaporator, passes through the bottom wall of the liquid tank to feed the liquid refrigerant lifted by the pumping action of the bubbles to the predetermined evaporator. a first conduit extending upwardly, one end of which is open at the top of the liquid tank and the other end of which is connected to another evaporator, for transferring the liquid refrigerant in the liquid tank to another evaporator when the bubble pump heater is not in operation; A refrigeration device characterized by having a second conduit led out to the evaporator side. 2. The tip of the inverted U-shaped part formed at the top of the riser pipe in which the bubble pump heater is fitted in the lower part is connected to the top of the first conduit arranged in the liquid tank. A refrigeration system according to claim 1, characterized in that:
JP12656579A 1979-10-01 1979-10-01 Refrigeration equipment Expired JPS6050252B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP12656579A JPS6050252B2 (en) 1979-10-01 1979-10-01 Refrigeration equipment
US06/190,051 US4340404A (en) 1979-10-01 1980-09-23 Refrigerating apparatus
GB8031161A GB2061475B (en) 1979-10-01 1980-09-26 Refrigerating apparaus
IT25019/80A IT1132895B (en) 1979-10-01 1980-09-30 REFRIGERATION APPARATUS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12656579A JPS6050252B2 (en) 1979-10-01 1979-10-01 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JPS5649850A JPS5649850A (en) 1981-05-06
JPS6050252B2 true JPS6050252B2 (en) 1985-11-07

Family

ID=14938300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12656579A Expired JPS6050252B2 (en) 1979-10-01 1979-10-01 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JPS6050252B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO305308B1 (en) 1997-07-31 1999-05-10 Sanyo Petrochemical Co Ltd Zeolite-based catalyst having high silica content, and their use in the production or reaction of aromatic hydrocarbons

Also Published As

Publication number Publication date
JPS5649850A (en) 1981-05-06

Similar Documents

Publication Publication Date Title
US7475557B2 (en) Refrigerator
US5201190A (en) Refrigerator with subcooling flow control valve
US4320629A (en) Refrigerating apparatus
JPS6050247B2 (en) Refrigeration equipment
US5205131A (en) Refrigerator system with subcooling flow control
JPS6050253B2 (en) Refrigeration equipment
JPS6050252B2 (en) Refrigeration equipment
JPS592453Y2 (en) Refrigeration equipment
US4322952A (en) Refrigerating apparatus
JPS6050257B2 (en) Refrigeration equipment
JPS6054576B2 (en) Refrigeration equipment
JP3527365B2 (en) Refrigeration cycle
KR100504923B1 (en) Fluid mixing apparatus in accumulator for heat pump
JPS6050249B2 (en) Refrigeration equipment
JPS6050255B2 (en) Refrigeration equipment
KR840000420Y1 (en) Refrigerating apparatus
KR830002974Y1 (en) Freezer
JPS6050250B2 (en) Refrigeration equipment
JPS6050254B2 (en) Refrigeration equipment
KR830002973Y1 (en) Freezer
JPS6050256B2 (en) Refrigeration equipment
KR830002975Y1 (en) Frozen device
JP2007040666A (en) Control device of refrigerator
JPS6136136Y2 (en)
EP0504738A1 (en) Refrigerator system with subcooling flow control valve