JPS60500733A - Dynamic mirror alignment control device - Google Patents

Dynamic mirror alignment control device

Info

Publication number
JPS60500733A
JPS60500733A JP50138484A JP50138484A JPS60500733A JP S60500733 A JPS60500733 A JP S60500733A JP 50138484 A JP50138484 A JP 50138484A JP 50138484 A JP50138484 A JP 50138484A JP S60500733 A JPS60500733 A JP S60500733A
Authority
JP
Japan
Prior art keywords
mirror
signal
optical path
phase
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP50138484A
Other languages
Japanese (ja)
Inventor
ウイジントジエス.ジールド
ハーチヤー.ミツチエル
Original Assignee
ベツクマン・インストルメンツ・インコ−ポレ−テツド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ベツクマン・インストルメンツ・インコ−ポレ−テツド filed Critical ベツクマン・インストルメンツ・インコ−ポレ−テツド
Publication of JPS60500733A publication Critical patent/JPS60500733A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/45Interferometric spectrometry
    • G01J3/453Interferometric spectrometry by correlation of the amplitudes
    • G01J3/4535Devices with moving mirror

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるため要約のデータは記録されません。 (57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 動的鏡アラインメント制御装置 発明の分野 本発明は分光光度計測に関し、特にスペクトルのデーターを得る為に干渉計及び レーザーを用いるフーリエ変換赤外分光光度計に関するものである。[Detailed description of the invention] Dynamic mirror alignment control device field of invention The present invention relates to spectrophotometry, and in particular to interferometers and spectrometers for obtaining spectral data. This invention relates to a Fourier transform infrared spectrophotometer using a laser.

発明の背景 FT−丁R分光光度泪は二つの基本的部分から成る。Background of the invention The FT-D spectrophotometer consists of two basic parts.

すなわち(1)干渉tl’ k含む光学系及び(2)発生した光ビームに入って いる情報全分析するのに用いられる専用計算機である。フーリエ変換赤外(FT −IF()分光光度計の利点と改良された性能は、スペクトルデーター(FT− In)k’l)る為に格子又はプリズムではなく、干渉泪全用いる事から生ずる 。干渉計に依って一つの試料の全スペクトル範囲の測定全以前に必要とした時間 の数分の−で出来る様になる。In other words, (1) the optical system including the interference tl'k and (2) the generated light beam enters This is a dedicated computer used to analyze all the information available. Fourier transform infrared (FT The advantages and improved performance of the -IF() spectrophotometer is that the spectral data (FT- In) k'l) arises from the use of interference rather than gratings or prisms to . Time required to measure the entire spectral range of one sample using an interferometer You can do it in a few minutes.

F T−T R分光光度計に適用される場合の様に、一つのツーンブルを通過す る赤外光を分析する為のマイケルソン干渉側の動作は周知である。この干渉計は 、一対の垂直に配置された光路から成り9分光路はそれを通過する光を反射する 為にその端に反射器又は鏡が置かれている。一方の鏡は固定されている。他方の 鏡は光路の長さ全増減する為に縦方向に動かす事が出来る。F T-T As applied to spectrophotometer, passing through one Thunbull The operation of the Michelson interference side for analyzing infrared light is well known. This interferometer , consisting of a pair of vertically arranged optical paths, each of which reflects light passing through it. A reflector or mirror is placed at its end for this purpose. One mirror is fixed. the other The mirror can be moved vertically to increase or decrease the total length of the optical path.

干渉計に入る光ビームがビームスプリンターに依って二つの成分に分割されてビ ームの別りの成分が各光路を通過する様になっている。反射した後に二つの成分 はビームスプリッタ−の所で再び結合して建設的及び相殺的に干渉する。再構成 された光ビームはその後で試料を通過する様に向けられて1強度の4■1]定を 行う為に光検出器に集められる。The light beam entering the interferometer is split into two components by a beam splinter and A different component of the beam passes through each optical path. Two components after reflection recombine at the beam splitter and interfere constructively and destructively. Reconstruction The light beam is then directed through the sample to obtain an intensity of 4. collected on a photodetector for the purpose of

再構成された波の強度は、成分ピー7、が伝わる光路の長さの差に依って変わる 。一般には、可動鏡ヲ一定速度で走査すると1表われる九ビームの強度d、干渉 計を通過する光のすへての選択された波長に対して正規の正弦波状に変調する。The intensity of the reconstructed wave varies depending on the length of the optical path traveled by component P7. . In general, when a movable mirror is scanned at a constant speed, the intensity d of the nine beams that appears 1, the interference The light passing through the meter is modulated in a regular sinusoidal manner for all selected wavelengths.

干渉計から出て行く普通の赤外光ビームがその多色性の為に、多くの変調周波数 が複雑に混じったものである。赤外光線が試料材料全通過した後に、それを・検 出して試料が吸収l−だ光の波長を決定J゛る。こオJに1光線が干渉=−+ヲ 出る時予想された正弦波パターンの変化全測定する事に依って行われる。各九の 波長に対する特性正弦波パターンの差を測定すると試料に依って吸収された光の 波長が分る。赤外光吸収特性はその試料全構成する1料全決定できるスペク1ル を与える。Due to its polychromatic nature, the ordinary infrared light beam leaving the interferometer has many modulation frequencies. is a complex mixture. After the infrared light passes through the sample material, it is inspected. Determine the wavelength of the light that the sample absorbs. One ray of light interferes with this J=-+wo This is done by measuring all changes in the expected sinusoidal pattern upon exit. each nine Measuring the difference in the characteristic sinusoidal pattern with respect to wavelength determines the amount of light absorbed by the sample. I can tell the wavelength. Infrared light absorption characteristics can be determined using a single spectrum that can be used to determine the entire composition of the sample. give.

出て来る光線の強度変調を測定する検出器の出力を鏡走査の間非常に正確な間隔 で記録してインターフェログラムとして知られている記録図を作る事が出来る。Very precise intervals during mirror scanning of the output of the detector to measure the intensity modulation of the emerging light beam can be recorded to create a diagram known as an interferogram.

インターフェログラムは干渉側の中で赤外光線の二つの成分が通過した異なる長 さの光路の関数として赤外検出器に依って作られた出力信号の記録である。信号 対雑音特性の向上した平均インターフェログラムを得る為に試料の相次ぐ測定値 を得て足し合わせる。平均インターフェログラムに試料材料のスペクトル特性に 関する情報及びデーターを力える。数学的準備の後に。The interferogram shows the different lengths traveled by the two components of the infrared light in the interfering side. is a record of the output signal produced by an infrared detector as a function of the optical path of the sensor. signal Successive measurements of the sample to obtain an average interferogram with improved noise performance and add them together. The spectral characteristics of the sample material in the average interferogram Provide relevant information and data. After mathematical preparation.

インターフェログラムについてフーリエ変換計算を行って試料の成分のスペクト ル指絞を得る。Perform Fourier transform calculations on the interferogram to determine the spectrum of the sample components. Get Le Finger Squeezed.

たいていのフーリエ変換手法は正確な結果を得る為に非常に多数のインターフェ ログラムの平均をとる事を必要と1′る。52乃至50回もの多くの走査を行っ て測定値をとって平均をとる事がある。それらの平均走査における精度を保つ為 にインターフェログラムが精密に再生出来る事が重要である。インターフエ[コ グラムを強度変調の測定に依って作るので、インターフェログラムを形成する為 にデータ一点を測定する時間の間を通じて強度の測定の精度を上げれば、インタ ーフェログラム及び結果として生ずるフーリエ変換の精度も高くなる。Most Fourier transform methods require a large number of interfaces to obtain accurate results. It is necessary to take the average of the loggrams. As many as 52 to 50 scans were performed. Sometimes measurements are taken and averaged. To maintain accuracy in those average scans It is important that interferograms can be precisely reproduced. Interfee gram is created by measuring intensity modulation, so to form an interferogram. By increasing the accuracy of intensity measurements over the time it takes to measure a single data point, - The accuracy of the ferogram and the resulting Fourier transform is also increased.

インター7エログラムの正確さと再現性を達成する為には、干渉側の固定光路の 境界となる調節自在な鏡をビームスグリツタ−及び可動鏡と最適アラインメント の状態に継持しなければなら々い。これは固定鏡に対する二軸調節を行って鏡を 二つの軸のまわりに調節して、その表面の像を可動鏡の反射面と絶対平行にそろ つだ状態にする事が出来る様にして達成される事が最も多い。調節自在な鏡の像 を可動鏡の反射面に平行に保つ事がきわめて重要である。インターフェログラム を発生する為に測定さfする光の最も短い波長の1波長以内に平行性を維持しな ければならない。精密’& −/”ラインメントを与える事が出来なりと1作ら れたインターフェログラムに於ける同定ピークの大きさが小さくなり、信号対雑 音性能が悪くなり、・そして干渉計をmmて行くヘデロダイノビームに位相1誤 差が入る。CiIらの各々はインタ−フエログシム全再現出来るIF確さ及びイ ンターフェログラムを解析して試t1の成分舎決定出来る精密さを著しく減らす 。分光光J及l1−lが強Ilり変調を測定ず2)正偽さけ、その構成要素の限 られた精密さに過きない事がある。変調周波数を精密に+lj現し測定りなりれ ば分子の幾何q的配列を正確に41シ?出来ない。In order to achieve the accuracy and reproducibility of the inter-7erogram, it is necessary to Optimal alignment of adjustable boundary mirror with beam sinter and movable mirror We must continue to maintain this state. This is done by performing two-axis adjustment to a fixed mirror. Adjust around two axes to align the image of the surface absolutely parallel to the reflective surface of the movable mirror. This is most often achieved by being able to create a tethered state. adjustable mirror image It is extremely important to keep the angle parallel to the reflective surface of the movable mirror. interferogram Parallelism must be maintained within one wavelength of the shortest wavelength of the light being measured to generate f. Must be. Precise '&-/' alignment can be given and made in one piece. The magnitude of the identified peak in the obtained interferogram is reduced, and the signal-to-noise The sound performance deteriorates, and there is a phase error of 1 in the Hederodyno beam traveling mm through the interferometer. It makes a difference. Each of CiI et al. Significantly reduces the precision with which the composition of test t1 can be determined by analyzing the interferogram. . Spectroscopic light J and l1-l do not measure strong Il modulation.2) Authenticity and limitations of its constituent elements. There are some things that are only as good as the precision that is achieved. Accurately express and measure the modulation frequency Is the geometrical arrangement of molecules exactly 41? Can not.

従来の設計は、正確々鏡のアシボンメン]・ケ得る為に大きくて重い構造体とき わめて微妙々機械的17.1節装置とを用いた。熱的ゆがみ誤差を減らす為に湿 度保証も試みられた。しかし、静的アラインメントは可動鏡の走査を通じて正確 な鏡のアラインメントを保証出来ない事が分った。可動鏡のがたつきと支持の不 正確さの為にいつもアラインメント誤差が入り恍ける。動的な鏡のミスアライン メントがある々得られた強度測定値に非周期的誤差が生じ、それがイノターノエ 口グラムのプロフィルに予測出来ない正確さを減らすグリッチを発生する。Conventional designs require large and heavy structures to achieve precise mirror alignment. A very mechanical Section 17.1 device was used. Humidity to reduce thermal distortion errors Attempts were also made to guarantee the degree of safety. However, static alignment is accurate through the scanning of a movable mirror. It turns out that mirror alignment cannot be guaranteed. Shaking of the movable mirror and lack of support In order to achieve accuracy, there is always an alignment error. Dynamic mirror misalignment As a result, non-periodic errors occur in the intensity measurements obtained during Generates a glitch in the mouthgram profile that reduces its unpredictable accuracy.

最近の装置は、赤外光と同時にレーザービームなどの基準光線を、干渉計を通過 させる事に依って、自動的に鏡アラインメントを達成する。基準ビームは固定鏡 と可動鏡との間のミスアライノメントラ直接測定するのに用いられる。Modern devices pass a reference beam, such as a laser beam, through an interferometer at the same time as infrared light. automatically achieves mirror alignment. Reference beam is a fixed mirror It is used to directly measure the misalignment between the mirror and the movable mirror.

レーザービームが干渉側内で赤外光と同じに分割されて変化する光路を通過する ので、再結合されるレーザービームは鏡アラインメントヲ示す情報を含む干渉パ ターン全持った測定可能々単色波長を示す。このレーザービームのrl−]の両 端における位相差を測定してビームの一つの部分が通過した光路の長さのもう一 つの部分に対する差を決定出来る。位相測定値が異々ればψのミスアラインメン トラ示す等しくない光路長である事が分る。The laser beam is split in the same way as the infrared light within the interference side and passes through a changing optical path. Therefore, the recombined laser beam contains an interference pattern containing information indicating the mirror alignment. The entire turn has measurable monochromatic wavelengths. Both rl-] of this laser beam The length of the optical path traversed by one part of the beam by measuring the phase difference at the other end. The difference between the two parts can be determined. If the phase measurement values are different, there is a misalignment of ψ. It can be seen that the optical path lengths are unequal.

通常の装置では、可動鏡が一定速度で動いている時。In normal equipment, when the movable mirror is moving at a constant speed.

変化する光路を通過するレーザービームの成分にドツプラー偏移が生ずる。ドツ プラー偏移しだビームを固定長さの光路を通過する成分と再結合すると、測定可 能なう、なり周波数を持った変調周波数ビームが発生される。再結合ビームは一 連の変化する強度すなわち縞模様を与え、その模様をビームの断面にわたって分 析して鏑のアラインメン)((決定出来る。従来の装置は一般に出て来るビーム に5 KHz変調、すなわちドツプラー偏移を生ずる速度で可動鏡を駆動する。A Doppler shift occurs in the component of the laser beam that passes through the changing optical path. dotu Recombining the puller-shifted beam with a component passing through a fixed length optical path allows for measurement. A modulated frequency beam with a frequency that can be generated is generated. The recombined beam is one It gives a varying intensity, or stripe pattern, of the streaks and separates that pattern across the cross-section of the beam. It is possible to determine the alignment of the kabura by analyzing the beam alignment. The movable mirror is driven at a speed that produces a 5 KHz modulation, ie, a Doppler shift.

鏡の速度を早くすれば変調が増加してアラインメント測定の分解能を太きくシ、 一方鏡の速度を遅くすれば変調は減少する。この技法に依る精密さ15oooサ イクルに約1サイクルに維持出来る。Increasing the speed of the mirror increases the modulation and increases the resolution of alignment measurements. On the other hand, if the mirror speed is slowed down, the modulation will be reduced. The precision achieved by this technique is 15ooo It can be maintained at approximately one cycle.

しかし従来の装置ではその光路を通過する光線のドツプラー偏移、従って測定可 能々変調信号を得る為に可動鏡が走査していなければ々ら々い。可動鏡が静止し ていると、干渉計の隣接光路に沿って伝わる光線d。However, with conventional equipment, it is possible to measure the Doppler shift of the light ray passing through the optical path. It would be a problem if the movable mirror was not scanning in order to obtain the modulated signal. The movable mirror stands still. , ray d propagates along the adjacent optical path of the interferometer.

変調の々い同一周波数の光線全形成する様に結合される。従って鏡が動かない時 は、鏡のアラインメント金決定するのに用いる事の出来る情報を再結合されたビ ームの中で得られない。この事は可動鏡がその走査の端に達して違った向きに進 む為に向きを変える前に止才るたびに起こる。従来の自動アラインメント装置で は、鏡アラインメントが鏡の走査の両端で失われる。The modulation is combined to form a whole beam of the same frequency. Therefore, when the mirror does not move The recombined image contains information that can be used to determine the alignment of the mirror. cannot be obtained within the system. This means that the movable mirror reaches the end of its scan and moves in a different direction. It happens every time I stop before I can turn around to eat. With conventional automatic alignment equipment The mirror alignment is lost at both ends of the mirror scan.

なお、]7N常の装置の場合、鏡走査の速度が非常に遅く々ると、再結合された 光線の変調が非常に測定困難になる。たとえば、o3(7)毎秒の走査速度の場 合、5KHzの変調周波数が再結合光線に得られる。しかし。In addition, in the case of a regular device with ]7N, the mirror scanning speed is very slow and the recombined The modulation of the light beam becomes very difficult to measure. For example, if the scanning speed is o3(7) per second, In this case, a modulation frequency of 5 KHz is obtained in the recombined beam. but.

鏡が0.03m毎秒の走査速度で駆動されれば、変調周波数は0.5 KH7に 低減される。従って、走査速度を小さくすると、再結合光線における変調周波数 が最近の電子検出器で測定するのに困難hレベルに下がって、アラインメントの 制御が出来々くなる。If the mirror is driven at a scanning speed of 0.03 m/s, the modulation frequency will be 0.5 KH7. reduced. Therefore, when the scanning speed is decreased, the modulation frequency in the recombined beam becomes has fallen to a level that is difficult to measure with modern electronic detectors, and alignment It becomes easier to control.

F T −T R分光光度計の周波数−1定の分解能にはインターフェログラム を作る為のそれの限られた能力に依って定まる限界がある。この光学系は、分光 光度計が周波数を測定出来る正確さを決める時に重要である。F T -T The frequency-1 constant resolution of the spectrophotometer is an interferogram. There are limits determined by its limited ability to create. This optical system is a spectroscopic This is important in determining the accuracy with which a photometer can measure frequency.

分光光度計が試料を分析出来る正確さは出て来る赤外光の強度の正確な尺度を作 る装置の能力に直接関係する。これは固定鏡と可動鏡の適正なアラインメントl 必装とする〇 鏡アラインメントヲ得る為にレーザー基準を用いる今1でのやり方では精密さと 制御の能力が限られると云う問題が絶えずある。鏡アラインメント全測定して制 御出来る精密さを・向上させると必然的にF T −I n分光光度泪が試料物 質を分析出来る正確さケ著しく向」−させるであろう。The accuracy with which a spectrophotometer can analyze a sample is to create an accurate measure of the intensity of the infrared light that emerges. directly related to the capabilities of the equipment used. This is the proper alignment of the fixed mirror and the movable mirror. Required 〇 The current method of using a laser reference to obtain mirror alignment requires precision and There is always the problem of limited control capabilities. Mirror alignment is fully measured and controlled. Improving the precision that can be controlled will inevitably result in the F This will greatly improve the accuracy with which quality can be analyzed.

発明の要約 本発明は、干渉割出の固定長さの光路を限る鍾のf9:を第二の光路の境界とな る可動鏡の反射面と動的に位置整合させる改良型税アラインメント制御装置を備 えている。この発明はヘテロダイン効果を生ずる様にされ−た時、一定のうなり 周波数を生ずる二つの成分周波数を持つ1/−ブー光を発生ずるレーザーを用い る。閉ルーツ゛ザーボ制御装置が干渉計から出て行くレーザー光の断面の両端に 表われる位相差の比較に応じて一定のアラインメント制御を行なう。動的鏡アラ インメント制御装置は、ヘテロゲイン周波数変調の解析を介して精密で安定々鏡 制御を得る。Summary of the invention The present invention uses the f9: of the holder that limits the optical path of a fixed length for interference indexing as the boundary of the second optical path. Equipped with an improved tax alignment control device that dynamically aligns the reflective surface of the movable mirror. It is growing. This invention produces a constant beat when made to produce a heterodyne effect. Using a laser that generates 1/-boo light with two component frequencies Ru. A closed-root servo controller is placed at both ends of the cross-section of the laser beam exiting the interferometer. A certain alignment control is performed according to the comparison of the phase differences that appear. dynamic mirror ara The instrument control device provides precise and stable mirroring through the analysis of heterogain frequency modulation. Gain control.

ヘリウム−ネオンカスレーザーに磁界を与える事に依ってわずかに異なる周波数 の二成分を持つレーザー光を得る。この現象は周知であって、ゼーマン効果と云 う。異なる周波数成分を持つレーザー光は、干渉泪を通る様に向けられる。この 光線の各成分は干渉泪の光路を通過した後に対向する成分y結合される。結合さ れだヘテロゲイン光線は二つの成分の差周波数に親しい連続の変調周波数、すな わち、うなり周波数に可動鏡が走査している時化ずる周波数のドノプンー効果に 依る変化を加えたもの孕示す。ヘテロダイン光線の連続的に提示される変調周波 数r/:l固定鏡々可動鏡との間のアラインメントの精密さを示す連続的な情報 乞−りえる。By applying a magnetic field to the helium-neon gas laser, the frequency can be slightly different. Obtain a laser beam with two components. This phenomenon is well known and is called the Zeeman effect. cormorant. Laser light with different frequency components is directed through the interference beam. this Each component of the light beam passes through the optical path of the interference beam and is then combined with the opposing component. combined A heterogain beam has a continuous modulation frequency close to the difference frequency of the two components, i.e. In other words, when the movable mirror scans the beat frequency, the effect of the fluctuating frequency Indicates something with a certain change added. Continuously presented modulation frequency of a heterodyne beam Number r/:l Continuous information indicating the precision of alignment between the fixed mirror and the movable mirror I beg you.

干渉=+i出て行くレーサー光線の断面積全体にわ/ぐっで種々の点で位成検出 を行なう為に検出器配列にもうりる。精密な鏡アラインメント全得る為に補正信 号全発正する為に個々の測定4fiを得られ/ζ位相測定値の平均と比較する。Interference = +i Position detection at various points across the entire cross-sectional area of the outgoing racer beam In order to perform this, it is also added to the detector array. Correction signals are used to obtain precise mirror alignment. Individual measurements 4fi can be obtained to correct all signals and compared with the average of the ζ phase measurements.

加わった電圧に縦方向に応答する三つ組F[型素子が干渉計内の固定鏡全取付け る為に用いられる。出て行くレーザー光線の断面の位相比較全弁して得られた補 正信号は、鏡アラインメントの二方向修正を得る為に圧電素子に加えられる。The triplet F [type element that responds longitudinally to the applied voltage is installed on all fixed mirrors in the interferometer. It is used to Compensation obtained by comparing the phase of the exiting laser beam cross section. A positive signal is applied to the piezoelectric element to obtain a two-way correction of mirror alignment.

干渉計から出る連続的に変調された光線を与える三周波数レーザーを用いる利沖 の為に、鏡のアラインメン)k可動鏡の走査範囲全体にわたって連続的にかつそ の鏡が静止している時でも制御出来る。従って、鏡アラインメントは可動鏡が走 査方向を変える時に失われると云う事がない〇 動的鏡アラインメント制御装置は、走査の全範囲に沿ってどちらの方向にも変換 回路−なしに一定の鏡アラインメントヲ維持出来る。都合の良い事にこれに依っ て鏡のat+後方向への走査両方に於て標本を正確に得る事が出来る様になシ、 正碓な平均化技法に十分なデーター全とるに必要な時間を著しく減らす事が出来 る。Toshiki uses a three-frequency laser to provide a continuously modulated beam of light emanating from an interferometer. (for mirror alignment) k continuously and over the entire scanning range of the movable mirror. The mirror can be controlled even when it is stationary. Therefore, mirror alignment is There is no chance of data being lost when changing the scanning direction. Dynamic mirror alignment controller translates in either direction along the entire range of scan Constant mirror alignment can be maintained without circuitry. Conveniently depending on this In order to be able to accurately obtain specimens in both the at and backward scanning directions of the mirror, Adequate averaging techniques can significantly reduce the time required to collect enough data. Ru.

との方式でインターフェログラムのデークーを得る時の分解能が増した事は、試 料材料の分析を更に迅速かつ正確にする。The increased resolution when decoupling interferograms using this method was demonstrated by the experiment. Make analysis of materials faster and more accurate.

なお、この方式に依って与えられる連続的々情報信号の為に、アラインメントの 校正をたびたび行々う必要がなく々る。In addition, due to the continuous information signal provided by this method, alignment There is no need to perform calibration frequently.

図面の説明 第1図はフーリエ変換赤外分光光度割の干渉計部分第2図はレーザー光線が干渉 計を通過する時二周波数レーザーの個々の成分の偏光関係を示す分光光度計の干 渉唱部分の概略図。Drawing description Figure 1 shows the interferometer part of Fourier transform infrared spectrophotometry. Figure 2 shows the laser beam interference. A spectrophotometer display showing the polarization relationship of the individual components of a two-frequency laser as it passes through the meter. Schematic diagram of the singing part.

第5図は走査及び平行性ザーボ制御装置の第一のモードの電気回路図である。FIG. 5 is an electrical circuit diagram of a first mode of the scanning and parallelism servo controller.

発明の最良のモード フーリエ変換赤外(FT−IR)分光光度泪の干渉」部分の説明を第1図を参照 して行々う。二つの垂直々光路11及び13の各りに沿って入射光線の一部分を 分配する様に置かれたビームスブリック−10ケ含むマイケルソン干渉計が示さ れている。ビーj・スプリッター10は磁気的に影響に与えらJlだレーザー1 8からのレーザー光16と線20に依って境界を示され赤外光源22に依って発 生される赤外光糺!とに受ける。best mode of invention See Figure 1 for an explanation of the "Fourier transform infrared (FT-IR) spectrophotometric interference" part. Let's go. A portion of the incident ray along each of the two perpendicular optical paths 11 and 13 Beam bricks placed in a distributed manner - 10 Michelson interferometers are shown. It is. Bej splitter 10 does not magnetically affect Jl laser 1 8 and emitted by an infrared light source 22. Infrared light glue is produced! To receive it.

一般的に云えば、赤外光線20は干渉語に入れる為に非平面鏡2+1に依って反 射されて平行にされ− 一方レーザー光線16は、鏡211の中心に設けらねた 穴26全通シてビームスブリック−10に直接に加えられろ、。Generally speaking, the infrared light beam 20 is reflected by a non-plane mirror 2+1 to enter the interference wave. On the other hand, the laser beam 16 is placed at the center of the mirror 211. Add directly to beam brick 10 through hole 26.

ビームスプリッタ−10は各光線16及び20の第一の部分全調節自在な鏡12 に依って限られている第一の固定長光路に沿って反射する。光線16及び20は 鏡12に依って反射されて光路11に沿ってビームスプリッタ−10へ戻る。光 線16及び20の各々の第二の部分は可動鏡11Iに依って限られている第二の 光路15に沿ってビームスプリッタ−10を通過する。Beam splitter 10 includes a first portion fully adjustable mirror 12 for each beam 16 and 20. reflection along a first fixed length optical path that is limited by . Rays 16 and 20 are It is reflected by mirror 12 and returns along optical path 11 to beam splitter 10. light The second portion of each of lines 16 and 20 has a second portion defined by movable mirror 11I. It passes through a beam splitter 10 along an optical path 15.

可動鏡I11は矢印15で示された選択された走査範囲内で光路の長さを変える 為に光路15に対して縦方向に移動出来る。Movable mirror I11 changes the length of the optical path within the selected scanning range indicated by arrow 15 Therefore, it can move vertically with respect to the optical path 15.

光線16及び20の各々の第二の部分は可動鏡から反射されて光路15に沿って ビームスプリンター10に戻り、そこでそれらの光線は第一の光路11に沿って 戻る光線16及び20の第一の部分と再結合させられる。レーザー光線16の再 結合した部分は、ヘテロゲイン光線5 Q f形成する。光線′)0は、干渉現 象に依って生じた強度変調を介して固定鏡12の可動鏡11.lに対するアライ ンメン)k行なう為の情報を含んでいる。赤外光線20の再結合した部分は特性 割合で変調された各個々の周波数を持つヘテロダイン化光線52を形成(71分 析中試料$J IIに加える事の出来る成る範囲の変調周波数の赤外光を与える 。A second portion of each of beams 16 and 20 is reflected from the movable mirror along optical path 15. Returning to the beam splinter 10, the rays are split along the first optical path 11. It is recombined with the first portion of the returning beams 16 and 20. Laser beam 16 re- The combined portion forms a heterogain beam 5Qf. The ray ′)0 is an interference phenomenon. The movable mirror 11. of the fixed mirror 12 through the intensity modulation caused by the image. Ally against l Contains information for performing The recombined portion of the infrared rays 20 has a characteristic Forming a heterodyned beam 52 with each individual frequency modulated in proportion (71 minutes) Provide infrared light with a range of modulation frequencies that can be applied to the sample $J II under analysis. .

再結合したレーザーと赤外光線う0及びう2ばそれぞれ反力千木21↓と同様々 反射器311が置かれている干渉計の出[−1光路55に沿って向けられる。反 射器′)IIは平行になった赤外ヘテロダイン光線62を受けてその光線を反射 して試料室う6に焦点を結ばせる。赤外光線う2は試料室56を通過して第三の 鏡′58から反射され赤外光検出器+1 Qに焦点を結ぶ。光検出器lIOは赤 外光線が通過する試料材料に依って偏光される振幅変調赤外光線を受ける。光検 出器llOはインターフェログラムを発生するのに用いられる光線の変形変調に 比例する電気的情報信号を作る。The recombined laser and infrared rays U0 and U2BA are the same as Chigi 21↓, respectively. The output of the interferometer in which the reflector 311 is placed is directed along the [-1 optical path 55. anti The projector ') II receives the parallel infrared heterodyne beam 62 and reflects the beam. to focus on the sample chamber 6. The infrared light beam 2 passes through the sample chamber 56 and enters the third It is reflected from mirror '58 and focused on infrared photodetector +1Q. Photodetector lIO is red The external light receives amplitude modulated infrared light that is polarized by the sample material through which it passes. optical inspection The output device IIO is used for the deformation modulation of the light beam used to generate the interferogram. Create a proportional electrical information signal.

変調レーザー光線う0は干渉側から鏡11Oの中の穴+12i通過する。光線5 0は検出器1Illに向けられる。The modulated laser beam 00 passes through the hole +12i in the mirror 11O from the interference side. ray 5 0 is directed to detector 1Ill.

好ましくは、検出器1IIIは変調レーザー光線30の強度をその断面内の選択 された種々の点に於て棋11定する為に、一連の光検出器を備えているのが良い 。検出器l1lIに依って発生される電気信号115Ui、鏡のミスアラインメ ントの修正を得る為に用いら71ろ。信号II 5は、平行性ザーボ制御装置5 0に加えらt)て修止信号5うを作る。修正信号5うは調節自在な鏡12を干渉 側の枠組に取付ける複数の圧電素子101.102及び103に加えられて鏡1 2及びII↓のアラインメントを制御する。Preferably, the detector 1III selects the intensity of the modulated laser beam 30 within its cross section. It is preferable to include a series of photodetectors to determine the position of the game at various points. . Electrical signal 115Ui generated by detector l1lI, mirror misalignment 71 used to obtain a modification of the point. Signal II 5 is the parallelism servo control device 5 0) to create a correction signal 5. The correction signal 5 interferes with the adjustable mirror 12. In addition to the plurality of piezoelectric elements 101, 102 and 103 attached to the side framework, the mirror 1 2 and II↓.

He −N eレーザー光線けそれぞれ反対向きの円偏光を持つ二つの異なる周 波数成分客待ったレーザーj′、線ケ作る為に磁気的に影響を刀えられる。異な る周波数と偏光は干渉側を・出て行くヘア11ダイン光線う0の中に情報の連続 的な流れを得る為に用いられる。第2図を参照すると、二つの成分周波数を持つ 1ノ−ザービーム16は干渉側に入る前に四分の一波長板15 i;IIFされ る。四分の一波長板15は円偏光成分の各zltii:+紳偏光成分に変換する 。一方の直線偏光成分i+、バー]7に依って示されている様に図面と平行な平 面内にあって周波数がflである。他方の直線成分U:A19に依って示される 様に図面に壬直な平面内にあって周波数がf2である。これは入射成分が示す円 偏光の反対向きの性質に依るものである。従って、干渉側に向けられた光線はそ れぞれ互に明瞭に区別出来る様にする個別の周波数と偏光を持っている二つの成 分から成っている。The He-Ne laser beam has two different circumferences, each with opposite circular polarization. The wave number component of the laser j′ can be magnetically influenced to create a line. different The frequency and polarization of the light are a continuum of information in the hair rays leaving the interference side. It is used to obtain a certain flow. Referring to Figure 2, it has two component frequencies. 1 noser beam 16 is passed through a quarter-wave plate 15i; IIF before entering the interference side. Ru. The quarter-wave plate 15 converts each circularly polarized light component into a circularly polarized light component. . one linearly polarized component i+, bar] parallel to the drawing as shown by 7. It is in the plane and the frequency is fl. The other straight line component U: is shown by A19 The frequency is f2 within a plane perpendicular to the drawing. This is the circle indicated by the incident component This is due to the opposite nature of polarized light. Therefore, the ray directed toward the interference side two components each having distinct frequencies and polarizations that make them clearly distinguishable from each other. consists of

固定長の光路11に沿って反射されるレーザー光線16の第一の部分21は第二 の四分の一波長板23を通って、調節自在な鏡12から反射して再び四分の一波 長板2うを通ってビームスプリッタ−10に戻る。A first portion 21 of the laser beam 16 reflected along a fixed length optical path 11 is passes through the quarter-wave plate 23 and is reflected from the adjustable mirror 12 again as a quarter-wave. It passes through the long plate 2 and returns to the beam splitter 10.

光線16の第一の部分21が四分の一波長板23を二度通過する事は光線の各成 分の偏光を光線の軸の1わりに90度可回転る作用をする。従って、固定光路上 1に入る時に垂直に偏光した第一の成分17はバー17′で示さ′11だ水平偏 光でビームスプリッタ−10に戻る。The fact that the first portion 21 of the beam 16 passes through the quarter-wave plate 23 twice means that each component of the beam 16 passes through the quarter-wave plate 23 twice. It acts to rotate the polarized light by 90 degrees around the axis of the light beam. Therefore, on the fixed optical path The first component 17, which is vertically polarized when entering 1, is indicated by bar 17' and '11' is horizontally polarized. The light returns to the beam splitter 10.

同様に、固定長光路11に入る時に水平偏光を持つ第二の成分はドツト1つで示 された垂直偏光でビームスプリッタ−10に戻る。Similarly, the second component, which has horizontal polarization when entering the fixed length optical path 11, is represented by a single dot. The vertically polarized light returns to the beam splitter 10.

ビームスプリッタ−10全通過して光路1うに進むレーザー光線の第二の部分2 ひけ偏光状態を変える事なく可動鏡1.11から反射される。しかし、レーザー 光線の第二の部分25の成分の各りは、値Δfだけ変えられる事がある。これは 可動鏡111の移動に依って光線内に作られ4るドツプラー効果に依って生ずる ものである。The second part of the laser beam that passes through the beam splitter 10 and proceeds to the optical path 1 2 It is reflected from the movable mirror 1.11 without changing the sink polarization state. But the laser Each of the components of the second portion 25 of the beam may be varied by a value Δf. this is This is caused by the Doppler effect created in the light beam by the movement of the movable mirror 111. It is something.

ビームスプリッタ−10に戻った時に同じ偏光をした光線だけが結合するので、 第一の光路11を通過しザー光線の成分は第二の光路を偏光状態を変える事なく 通過した周波数f2±Δf(z持つレーザービームの成分と再結合する。一方の 偏光27の結果として生じた再結合波は、従って、f、−(f2土df)の周波 数を呈する。他方の偏光2つの結果として生じた再結合波は(t’+士Δf)− f2 の周波数を呈する。次に再結合波27及び2つは干渉計から二つの偏光し た波の一方を・ろ波する偏光子板う1を通過する様に向けられる。従って、検出 器l1lIは一方の平面だけに直線偏光を持ち。When returning to the beam splitter 10, only rays with the same polarization are combined, so The component of the laser beam passing through the first optical path 11 passes through the second optical path without changing the polarization state. It recombines with the laser beam component with the passed frequency f2±Δf(z. One of the The resulting recombined wave of polarization 27 therefore has a frequency of f,−(f2 sat df) exhibit a number. The resulting recombined wave of the two other polarizations is (t’+Δf)− It exhibits a frequency of f2. The recombined waves 27 and 2 then receive two polarized beams from the interferometer. The polarizer is directed to pass through a polarizer plate which filters one of the waves. Therefore, detection The vessel l1lI has linear polarization in only one plane.

かつレーザー光線の異なる周波数成分の結合に依って強度変調されてbる周波数 ケ持つ光線全骨け、異なる周波数成分の一方は周波数でΔfのドツプラー偏移を 導入される事がある。and the frequency which is intensity modulated by the combination of different frequency components of the laser beam. One of the different frequency components has a Doppler shift of Δf in frequency. It may be introduced.

ドツプラー偏移jfは、可動鏡111が動いている時だけ成分の各々の周波数に 導入される事に注意す・\きである。可動鏡111i静止状態に保持すると、ド ノノ。The Doppler shift jf changes to the frequency of each component only when the movable mirror 111 is moving. Please be careful that it is introduced. When the movable mirror 111i is held stationary, the door Nono.

ラー効果が生じない。従って、鏡1)↓が静止している時、第一の光路11を通 過する光線の成分はビームスプリッタ−10で第二の光路15を通過する対向成 分と再結合して成分周波数間の差すなわちf、−f2に止めに等しい変調周波数 、すなわち、うなり周波数ケ示すヘテロゲイン光線を与える。従って、検出器は 周波数変調を有する波を絶えず受けて鏡がアラインメント状態にあるかどうかを 決定する。There is no color effect. Therefore, when the mirror 1)↓ is stationary, the first optical path 11 is The component of the light beam that passes through the beam splitter 10 is divided into an opposing component that passes through a second optical path 15. and recombine the difference between the component frequencies, i.e., the modulation frequency equal to -f2 , that is, a heterogain beam exhibiting a beat frequency is provided. Therefore, the detector is Check whether the mirror is in alignment by constantly receiving waves with frequency modulation. decide.

出て行く光線に依って示された連続的変調、すなわぢ、うなりの周波数の為に、 走査の範囲全体を通じて走査の前後両方向に鏡のアラインメントの制御を行なう 事の出来る情報信号全発生する。Because of the continuous modulation, or beat frequency, exhibited by the outgoing rays, Provides mirror alignment control in both forward and backward scan directions throughout the scan range All possible information signals are generated.

鏡アラインメント制御装置を第1図に戻って説明する。レーザー光検出器qlI H干渉計を出て行くレーザー光30の強度を測定する光検出器の配列を備えてい る。検出器配列ql+は光線の断面内の三つの異なる場所に置かれた少くとも三 つの検出器から成っている。The mirror alignment control device will be explained referring back to FIG. laser photodetector qlI It is equipped with an array of photodetectors that measures the intensity of the laser beam 30 exiting the H interferometer. Ru. The detector array ql+ consists of at least three detectors placed at three different locations within the cross-section of the beam. It consists of two detectors.

光検出器に依って発生される信号は光線の断面を横切る強度差の指示を与え、そ の指示は光線の断面を横切る位相差に比例する。光線を横切る位相の差は可動鏡 11↓の調節自在な鏡12の投影像とのミスアラインメントに111接関係する 。こ71は干渉側に入るコヒーレントな光が光路の巾の一方の側から他方・\等 しくなり長さの光路を通過すtLば、その光(d位相が変えられると云う点に理 由がある。ミスアラインメントは一力の鏡の表面ともう一方の表面の反射像との 間の関係が平行でない、すなわち、角度がついている結果である。この角度関係 は、レーザー光16の巾を横切る光路長の差を生じ、レーザー光が干渉計の光路 を通過した後にレーザー光の断面全横切って位相の変化音生ずる事になる。二つ の鏡がレーザー光の波長の何分の−かの大きさだけアラインメントからずれてい れば5位相変化が光線を横切って導入される。この位相変化は光線を鏡の平、j アラインメントに於ける検出されたパラメーターとして用いる事が出来る。The signal generated by the photodetector gives an indication of the intensity difference across the cross-section of the beam, and The indication of is proportional to the phase difference across the cross section of the ray. The difference in phase across the rays is a movable mirror 111 is related to the misalignment of 11↓ with the projected image of the adjustable mirror 12. . This 71 shows that the coherent light entering the interference side moves from one side of the optical path width to the other side, etc. It is logical that if the light (d) passes through an optical path of length tL, the phase of the light (d) can be changed. There's a reason. Misalignment is the difference between one mirror surface and the reflected image on the other surface. This is a result of the relationship between them being not parallel, that is, at an angle. This angular relationship creates a difference in the optical path length across the width of the laser beam 16, and the laser beam crosses the optical path of the interferometer. After passing through the laser beam, a phase change sound will be generated across the entire cross section of the laser beam. two mirror is out of alignment by a fraction of the wavelength of the laser light. 5 phase changes are introduced across the beam. This phase change causes the ray to change to the plane of the mirror, j It can be used as a detected parameter in alignment.

調節自在な鏡12は、干渉側の台(図示なし)に圧電トランスジューサ101, 102及び10うの様な電歪要素に依って取付けられる。圧電トランスジューサ ーは電圧信号に応じて長さが変化する。圧電]・ランスジューサーは検出器配列 ll1lの配置と同様な配置で鏡と干渉計台の間に置かれるので、各汁電トラン スジユーザーは対応する光検出器に関連づけ出来る。The adjustable mirror 12 has a piezoelectric transducer 101 on the interference side stand (not shown). It is attached by electrostrictive elements such as 102 and 10. piezoelectric transducer - changes length depending on the voltage signal. Piezoelectric]・Transducer has a detector array Since it is placed between the mirror and the interferometer stand in a similar arrangement to the arrangement of ll1l, each soup electric transformer Strip users can associate with corresponding photodetectors.

好ましくは、圧電トランスジュー現−101,1,02及び10う並びに検出器 配列I↓)番の光検出器は、鏡の中心及OJレーザー光線う0の中心からそれぞ れ等距哨にかつ相互からも等距離に円を作る様にiWかれるのが良い。この関係 でば5圧電l・ランスジューサーが光路内で同様な位置決めになっているのでレ ーザー光う0を検出する個々の検出器に比例に応答する。Preferably, the piezoelectric transducers 101, 1, 02 and 10 and the detector The photodetector of array I↓) is located from the center of the mirror and the center of OJ laser beam 0, respectively. It is best to position them so that they form a circle equidistant from each other and equidistant from each other. this relationship Since the 5 piezoelectric lance reducers are positioned in the same way in the optical path, The laser beam responds proportionally to each individual detector that detects zero.

個りの検出器に依って発生される信シしを対応する圧電l・ランスジユーザーに 加えてそのトランスジューサーが応答する光路の長さ全増減出来る。すべての圧 電トランスジューサーが協動する場合、光線の1〕ヲ横切る等しい光路長を連続 的に得て可動鏡の平行アラインメンl−f示す事が出来る。Transmits the signals generated by each individual detector to the corresponding piezoelectric lancet user. Additionally, the total length of the optical path that the transducer responds to can be increased or decreased. all pressure When electric transducers cooperate, they create a continuous equal optical path length that traverses 1〕 of the light beam. The parallel alignment l-f of the movable mirror can be shown.

説明した圧電l・ランスジューサーはベルニトロン(Vernit、ron)社 から部品番号164051−5)i として入手出来る。The piezoelectric lance juicer described is manufactured by Vernitron. It is available as part number 164051-5)i from .

修正信号1011.105及び106i発生する為に検出器配列lll+に依っ て発生された信号を処理する平行性サーボ制御回路は第う図に示されている。平 行性サーボ制御装置5oはヘテロゲインレーザー光線3゜に依って示された強度 変動に応答して検出器配列1llIの光検出器に依って発生された三つの電気信 号go。Relying on detector array lll+ to generate correction signals 1011.105 and 106i A parallelism servo control circuit for processing the signals generated by the servo control circuit is shown in FIG. flat The servo controller 5o controls the intensity indicated by the heterogain laser beam 3°. Three electrical signals generated by the photodetectors of the detector array 1llI in response to the fluctuations. No. go.

81及び82を受ける。電気信号gO181及びと2の各々はレーザーから出て 行くヘデログイン光線う0の一部分の相対位相を表わす。信号80−82は抵抗 811 ff通過して加算点86で加算される。加算点86からの加算信号は三 つの信号80−82の平均位相に比例する信号を作る演算増幅器8gに加えられ る。この信号は平均位相信号90と呼ぶ事にする。平均位相信号90は個々の信 号80−82の位相の平均に等しい位相を持っている。81 and 82 received. Each of the electrical signals gO181 and and2 emerges from the laser. It represents the relative phase of a portion of the incoming headlight ray. Signals 80-82 are resistors It passes through 811 ff and is added at addition point 86. The addition signal from the addition point 86 is three added to an operational amplifier 8g which produces a signal proportional to the average phase of the two signals 80-82. Ru. This signal will be referred to as the average phase signal 90. The average phase signal 90 is It has a phase equal to the average of the phases of Nos. 80-82.

平均位相信号90は三つの位相比較器112、l l II及び116の各りに 加えられる。位相比較器112゜1111及び116の各々はそれぞれ検出器配 列qt+にある光検出器に依って発生された個々の信号80.81及び82の一 つを受取る○ 個々の位相信号80−132の各々は位相比較器に依って平均位相信号90と位 相全比較されて、各個々の信号とそれらの加算平均との間の位相差に比例する出 力信号を作る。従って、信号80は位相比較器112に依って平均位相信号90 と位相を比較されて、それらの間の位相差を示す出力信号122を得る。信号8 1は位相比較器111Iに依って平均位相信号9oと位相を比較されてそれらの 閂の位相差を示す出力信号12(↓を得る。そして信号82は位相比較器116 に依って平均位相信号90と位相を比較されてそれらの間の位相差を示す出力信 号126を得る。The average phase signal 90 is applied to each of the three phase comparators 112, II and 116. Added. Each of the phase comparators 112, 1111 and 116 has a detector arrangement. One of the individual signals 80, 81 and 82 generated by the photodetector in column qt+ Receive one ○ Each of the individual phase signals 80-132 is matched in phase with the average phase signal 90 by a phase comparator. The phases are compared to produce an output proportional to the phase difference between each individual signal and their summed average. Create a force signal. Therefore, signal 80 is converted to average phase signal 90 by phase comparator 112. and is compared in phase to obtain an output signal 122 indicating the phase difference therebetween. signal 8 1 is compared in phase with the average phase signal 9o by the phase comparator 111I, and their phase is compared with the average phase signal 9o. An output signal 12 (↓) indicating the phase difference of the bolts is obtained.Then, the signal 82 is sent to the phase comparator 116 The output signal is compared in phase with the average phase signal 90 by the Obtain No. 126.

位相比較器112.1lll及び116はモトロラ(Motorola)社に依 って製作された市販の素子であって部品番号M CI II 0116 +3と して入手出来る。位相比較器に関するこの他の情報をモトロラの刊行物CM O Sデーターブック7−1211ページから得る事が出来る。Phase comparators 112.1ll and 116 are manufactured by Motorola. It is a commercially available element manufactured by You can get it by doing so. Additional information regarding phase comparators can be found in Motorola's publication CM It can be obtained from page 7-1211 of S Data Book.

各位相比較器112.1111又は116のそれぞれの出力信号122.121 1.又V」、126は、信号8゜−82の各々の個々の位相と基準となる平均位 相信じ90との間の位相差に比例1″る持続時間を持った電1上信号である。従 ってこれらの出カイ九号の各h d光線経路の対応する部分を他の信号の・ト均 と同位相にする為に必要な瞬時修正値を示す。この測定値に干渉泪光路の必要な 距離の変化に直接関係(〜でその光路をレーザー光線のすべての部分に対して宿 しぐする。The respective output signal 122.121 of each phase comparator 112.1111 or 116 1. Also, 126 is the individual phase of each of the signals 8°-82 and the reference average position. It is an electric signal with a duration of 1" proportional to the phase difference between the two Therefore, the corresponding part of each h d ray path of these outputs is Indicates the instantaneous correction value required to bring the phase into the same phase as the This measurement value requires an interference optical path. Directly related to the change in distance (the optical path is accommodated for all parts of the laser beam at gesture.

各位相比較器112.11.11及び116の出力122゜1211及び126 はそれぞれ制御信号152.1う11及び1う6を得る為に積分回路に送られ、 それらの制御信号は個々の信号の各々と平均位相信号との間に見出される位相差 の時間積分に比例する。従って、各制御信号152,1311及び156は検出 されたレーザー光の部分が通過した干渉側光路のその部分の光路長誤差(すなわ ち通過した実際の光路長対平均光路長)の時間積分に比例する。制御信号1う2 .1う4及び156の各々は光路長誤差がより大きいか又はより小さいかに応じ て増分的に調節される。Outputs 122° 1211 and 126 of each phase comparator 112.11.11 and 116 are sent to the integrating circuit to obtain control signals 152.1-11 and 1-6, respectively, Their control signals are the phase difference found between each of the individual signals and the average phase signal. is proportional to the time integral of Therefore, each control signal 152, 1311 and 156 is detected. The optical path length error (i.e., It is proportional to the time integral of the actual optical path length passed vs. the average optical path length. Control signal 1-2 .. 1, 4 and 156 each depending on whether the optical path length error is larger or smaller. is adjusted incrementally.

積分器回路はたとえば標準の位相固定回路技術に於て知られたサーボループに於 ける他の゛素子の周波数応答特性に整合する様に選ばれた低域フィルター回路網 から成っていても良い。本発明に適用出来る積分器回路の設d1に関するこれ以 上の情報は前に引用したモトロラClvl Oεうデーターブックに論じられて いる。An integrator circuit can be used, for example, in a servo loop known in standard phase-locked circuit technology. A low-pass filter network selected to match the frequency response characteristics of the other components used. It may consist of The following regarding the configuration d1 of the integrator circuit applicable to the present invention The above information is discussed in the Motorola Clvl Oε data book cited earlier. There is.

各位相比較器及び積分器の出力dイv、号から雑音を除く為にフィルター111 3 、 11111及び1)+5を通して加算点1,110.1111及び1) ↓2(/こ加えられる。出力信号152.1311及び156の各りけ差動増幅 器1)18の出カイ乙号I 116 、圧電トランスジューツー素子10]、、 102.及び10うの各々を縦方向範囲の運動の中心に駆動する為の基準信号を 与える。これに依って圧電トランスジユーザーの各々が加わる制御信号の如何に 依って、干渉泪の光路に延長修正値及び短縮修正値の両方を与える事が出来る。A filter 111 is used to remove noise from the output dv and signal of each phase comparator and integrator. 3, 11111 and 1) Addition point 1,110.1111 and 1) through +5 ↓2 (/ is added. Differential amplification of each output signal 152, 1311 and 156 1) 18 no. 116, piezoelectric transducer element 10], 102. and a reference signal for driving each of the 10 units to the center of motion in the longitudinal range. give. This determines how each piezoelectric transducer user applies the control signal. Therefore, it is possible to give both an extension correction value and a shortening correction value to the optical path of the interference tear.

演算増幅器133.155.157はそれぞれ出力信号1う2.1u11.13 6を差動増幅器1148から定された位相信号との間の位相差に比例する修正信 号を発生する。これらの信号1011,105.106は調節自在な鏡12を取 付ける圧電l・ランスジユーザー101.102及び103に加えられてそれら のトランスジューサーの長さの増減を得て、調節自在な鏡12の反射面を調節す る。鏡12の面の光路11に対する調節を行なうと鏡12の面の豫の可動鏡il lの反射面との調節を行なった事になる。Operational amplifiers 133, 155, and 157 output signals 1, 2, 1, and 11, respectively. 6 and the determined phase signal from the differential amplifier 1148. generate a number. These signals 1011, 105, 106 are connected to the adjustable mirror 12. In addition to piezoelectric lance users 101, 102 and 103, The reflective surface of the adjustable mirror 12 can be adjusted by increasing or decreasing the length of the transducer. Ru. When the surface of the mirror 12 is adjusted with respect to the optical path 11, the movable mirror il of the surface of the mirror 12 is adjusted. This means that adjustment has been made with the reflective surface of l.

差動増幅器の出力1)+6は基準生汁源150から受ける基準電圧信号151及 び圧電トランスジューツー101.102,105に加わる個りの修L[信号] 、OII 。The output 1)+6 of the differential amplifier is connected to the reference voltage signal 151 received from the reference raw juice source 150 and and the individual modulation L [signal] added to the piezoelectric transducer 101, 102, 105 , OII.

105.106の平均に比例する信号とに応じで発生される。105.106 is generated in response to a signal proportional to the average of 105.106.

差動増幅器1118は平均信号152を基準電圧イへ号151に比較する。平均 信号]52が基準信号より低い電圧を揚っていれば、差動増幅器1.118はぞ の出力信号111 Gの電圧を大きくする。平均信号152が基準信号より大き な電圧を持っていれ(に、差動増幅器11i8はその出力信号1)+6の電圧を 下げる。差動増幅器1118の出力信号1116が演算増幅器]、55.lう5 及び1う7の各りに送り込1れて差動増幅器])↓とが応答する修正信号を発生 するので、二次制御ループが形成される。差動増幅器111gは修正信号10  II 、 105゜106の電圧を上下に駆動して圧電素子の動作範囲の中心を 示す基準信号151の電圧に等しい信号10)4、105.106の平均電圧を 得る。Differential amplifier 1118 compares average signal 152 to reference voltage 151. average If the signal] 52 has a voltage lower than the reference signal, the differential amplifier 1.118 Increase the voltage of the output signal 111G. Average signal 152 is greater than the reference signal (The differential amplifier 11i8 has its output signal 1) +6 voltage. Lower it. The output signal 1116 of the differential amplifier 1118 is an operational amplifier], 55. 5 and 1 to 7 to generate a correction signal to which the differential amplifier])↓ responds. Therefore, a secondary control loop is formed. The differential amplifier 111g has a modified signal 10 II, drive the voltage of 105°106 up and down to center the operating range of the piezoelectric element. The average voltage of the signal 10) 4, 105.106 is equal to the voltage of the reference signal 151, which indicates obtain.

基準電圧は圧電トランスジューサーの移動の長さ方向の範囲の中心に各圧電トラ ンスジューサーを持って来る傾向のある必要な値に選ばれる。選択された基準電 圧は175ボルトであって、それは説明した圧電トランスジューサー101.1 02.10うの必要な中心範囲電圧に相当する。従って、差動増幅器は各演算増 幅器の入力へ圧電素子の各々をその直線範囲の中心に調節する為の制御信号を与 え、一方各位相比較器及び積分器は各対応する圧電トランスジユーザーの鏡アシ インメントを修正するに必要な長さの変化に対応する制御信号を与える。A reference voltage is applied to each piezoelectric transducer at the center of its longitudinal range of travel. The juicer tends to be chosen to the required value. Selected reference voltage voltage is 175 volts, which is the piezoelectric transducer 101.1 described. This corresponds to a required center range voltage of 0.02.10 mm. Therefore, the differential amplifier A control signal is provided to the input of the width transducer for adjusting each of the piezoelectric elements to the center of its linear range. On the other hand, each phase comparator and integrator are connected to each corresponding piezoelectric transformer mirror assembly. A control signal is provided corresponding to the change in length required to modify the implant.

FIG、2 FIG、3 手 続 袖 正 l (方式) lVj和60年5 月 60 特r「庁長官 志 賀 学 殿 L 事件の表示 l 発明←苛楽→の名称、1h釉ピW羽円−動的鏡アラインメント制御装置 う、補正する者 事件との関係 特許出願人 8荀・(氏名ン ベックマン・インス)/レメンソ・インコーボレーテノト6  補正によυ増加する発明の数 0 発明7、補正ノλ、J象 明細書、請求の範 囲及び図面の翻訳文8 補正の内容 別紙のとおり 明細書 請求の範囲及び図面の浄書(内容に変更なし)国際副食報告 lnmnallon+l AD011ea+l0LIN6PcT/Us8410 036 。FIG.2 FIG.3 Hand continuation sleeve positive l (method) lVj May 60, 60 Special Director General Shiga Manabu L Incident display l Invention ← Iraku → name, 1h glaze pi W haen - dynamic mirror alignment control device U-corrector Relationship to the incident: Patent applicant 8. (Name: Beckman Ince) / Remenso Incorborete Noto 6 Number of inventions υ increased by amendment 0 Invention 7, amendment λ, J phenomenon Description, scope of claims Translation of enclosures and drawings 8 Contents of amendment as attached Description, scope of claims, and engraving of drawings (no change in content) International side dish report lnmnallon+l AD011ea+l0LIN6PcT/Us8410 036.

Claims (1)

【特許請求の範囲】 1 分光器による測定に用いられる干渉計内の鏡を動的に位置合わぜする閉ルー プサーボ制御装置であって。 干渉計内の第1の鏡の面と干渉計内の第2の鏡の面の反射像との対応する部分[ Hlの距離を示す連続した変調周波数を有する連続ヘテロダイン・レーザ光線を 発生する手段と。 前記レーリ′光純の断面内の選択さ扛だ場所におけるiil記変調周波数の特性 を示す複数の電気信号を得るために前記レーザ光線の前記変調周波数を検出する 検出手段と、 各々が第1の鏡の表面と第2鏡の表面の像との間に必要な距離の(1啄正をAi l記第1の鏡と前記像を平行に位h゛の合った状態にする複数の修正信号を得る ために前記複数の電気信号の各71の位相をそれらの丁均位相と比較する制御手 段と、 前ie修正信号に応答し5て前記第1の鏡の面と前記第2の鏡の面の像との間の アラインメントを変える調節手段とを備えて成る閉ループ幇−ボ制御装置。 2 干渉側を通過するレーザ光束内のすべての光線の光路長を等化する閉ループ サーボ制御装置であって。 連続変調周波数を有する連続ヘテロダイン・レーデ出力光中を発生する手段と、 各々がレーザ出力光束の断面内の異方るあらかじめ定めた場所にあって光束内の 異なる光線を受けて検出器によって受けた光線の変調周波数を示す周波数を有す る電気信号を発生する複数の光検出器と。 各々が平均とそれと比較される電気信号との[11」の差を示す複数の修正信号 を連続的に発生するために各電気信号をそれの平均と比較するイハ弓゛比較器手 段と。 修正信号に応答して修IF仁号によって指示さ!した光路長のどんな差をも修正 するために干渉JYi内の光学要素を動かす手段とを0;11え−こ成る閉・し −プザーボ制御装置。 5t)〕記検出器手段が位相比較を行うだめの選択された光線を受けるためにレ ーザ光中の断面内の選択された場所に設けられ/こ複数の光検出器を有する検出 器配列から成る請求の範囲第]珀の閉ルーグーリーボ制御装置。 ヰ −前記調節手段が鏡を取付ける/こめの複数の調節可能な長さの要素を含み 、前記要素の各々が前記関連の光検出器が発生する信号に応じて調節を行うよう に前記検出器手段の光検出器と対応するように置かれている請求の範囲第う項の 閉ループサーボ制御装置。 5 前記調節可能な長さの要素が長さを調節するだめの電圧信号に応じる発電ト ランスジューサである請求の範囲第11項の閉ループサーボ制御装置。 浄書(内容に変更なし)[Claims] 1 Closed loop that dynamically aligns the mirrors inside the interferometer used for spectrometer measurements servo control device. Corresponding portions of the surface of the first mirror in the interferometer and the reflected image of the surface of the second mirror in the interferometer [ A continuous heterodyne laser beam with continuous modulation frequencies indicating the distance of Hl and the means by which it occurs. Characteristics of the modulation frequency at selected locations within the cross-section of the Rayleigh light beam detecting the modulation frequency of the laser beam to obtain a plurality of electrical signals indicative of detection means; each of the required distance between the image on the surface of the first mirror and the surface of the second mirror l. Obtaining a plurality of correction signals that bring the first mirror and the image into parallel alignment. control means for comparing the phase of each 71 of the plurality of electrical signals with their average phase; step by step, 5 in response to the previous ie correction signal between the image of the first mirror surface and the second mirror surface. and adjustment means for varying the alignment. 2 Closed loop that equalizes the optical path length of all rays in the laser beam passing through the interference side It is a servo control device. means for generating a continuous heterodyne radar output light having a continuous modulation frequency; each at an anisotropic, predetermined location within the cross-section of the laser output beam; having a frequency indicating the modulation frequency of the light beam received by the detector receiving different light beams multiple photodetectors that generate electrical signals. a plurality of modified signals each indicating a difference of [11] between the average and the electrical signal with which it is compared; A comparator hand that compares each electrical signal with its average in order to continuously generate Step by step. Directed by Shuif Jingo in response to the correction signal! Corrects any difference in optical path length means for moving the optical elements in the interference JYi in order to - Puservo control device. 5t)] the detector means is adapted to receive the selected beam of light for phase comparison; Detection with a plurality of photodetectors located at selected locations within the cross-section of the laser beam [Claim 1] A closed loop control device comprising a device arrangement. - said adjusting means comprises a plurality of adjustable length elements for mounting/closing the mirror; , each of said elements making adjustments in response to a signal generated by said associated photodetector. The photodetector of the detector means is placed so as to correspond to the photodetector of the detector means. Closed loop servo controller. 5. The adjustable length element is responsive to a voltage signal to adjust its length. 12. The closed loop servo control device of claim 11, which is a transducer. Engraving (no changes to the content)
JP50138484A 1983-03-07 1984-03-05 Dynamic mirror alignment control device Pending JPS60500733A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US47277183A 1983-03-07 1983-03-07
US472771 1983-03-07

Publications (1)

Publication Number Publication Date
JPS60500733A true JPS60500733A (en) 1985-05-16

Family

ID=23876875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50138484A Pending JPS60500733A (en) 1983-03-07 1984-03-05 Dynamic mirror alignment control device

Country Status (3)

Country Link
EP (1) EP0144338A1 (en)
JP (1) JPS60500733A (en)
WO (1) WO1984003560A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0487733A1 (en) * 1990-06-15 1992-06-03 Snow Brand Milk Products Co., Ltd. Method and apparatus for measuring the contents of components of skim milk, milk, cream and cheese using near infrared ray

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61501876A (en) * 1984-04-13 1986-08-28 ベツクマン インスツルメンツ インコ−ポレ−テツド Sample signal generator and method for interferogram
EP0731334B1 (en) * 1995-03-03 2000-02-09 Perkin-Elmer Limited Alignment of interferometers
WO2016166872A1 (en) * 2015-04-16 2016-10-20 株式会社島津製作所 Fourier transform spectrophotometer

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4053231A (en) * 1975-12-18 1977-10-11 Nasa Interferometer mirror tilt correcting system
US4340304A (en) * 1978-08-11 1982-07-20 Rockwell International Corporation Interferometric method and system
CA1114193A (en) * 1979-08-31 1981-12-15 Jean-Noel Berube Apparatus for spectrometer alignment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0487733A1 (en) * 1990-06-15 1992-06-03 Snow Brand Milk Products Co., Ltd. Method and apparatus for measuring the contents of components of skim milk, milk, cream and cheese using near infrared ray
EP0487733B1 (en) * 1990-06-15 1996-09-18 Snow Brand Milk Products Co., Ltd. Method and apparatus for measuring the contents of components of skim milk, milk, cream and cheese using near infrared ray

Also Published As

Publication number Publication date
EP0144338A1 (en) 1985-06-19
WO1984003560A1 (en) 1984-09-13

Similar Documents

Publication Publication Date Title
US4711573A (en) Dynamic mirror alignment control
JP5226078B2 (en) Interferometer device and method of operating the same
US7903252B2 (en) Noise cancellation in fourier transform spectrophotometry
US7388669B2 (en) Method of generating interferometric information
JP2997312B2 (en) Polarization interferometer
US20120038930A1 (en) Fixed wavelength absolute distance interferometer
US4655587A (en) Mirror scan velocity control
US20050002039A1 (en) Interferometer
US5483344A (en) Process and apparatus for performing differential refractive index measurements using interference of modulated light beams passing through reference and test samples
US6958817B1 (en) Method of interferometry with modulated optical path-length difference and interferometer
JP4284284B2 (en) Photothermal conversion measuring apparatus and method
TW200928301A (en) Apparatus for measuring displacement by using wavelength-modulated heterodyne grating interferometer
KR20130065311A (en) Time-domain spectroscope for high-speed and sensitivity measure based on light-bias double frequency modulation
JPS60500733A (en) Dynamic mirror alignment control device
US4999010A (en) Dual beam optical nulling interferometric spectrometer
US4345838A (en) Apparatus for spectrometer alignment
Chandrasekhar et al. Double-beam fourier spectroscopy with interferometric background compensation
Wadsworth et al. Ultrahigh-speed chemical imaging spectrometer
US20110194117A1 (en) Mirror-tilt-insensitive fourier transform spectrometer
WO1985004712A1 (en) Mirror alignment control and ir beam energy maximizing in a laser controlled interferometer
JPS61501340A (en) Mirror scan speed control device
JPS60500734A (en) Mirror scanning speed control device
JPS61501876A (en) Sample signal generator and method for interferogram
JP2006300664A (en) Fourier spectral device and measuring timing detection method
Mori et al. Interferometric Method for Measuring Ultrasonic Light Diffraction Spectra