JP4284284B2 - Photothermal conversion measuring apparatus and method - Google Patents

Photothermal conversion measuring apparatus and method Download PDF

Info

Publication number
JP4284284B2
JP4284284B2 JP2005035964A JP2005035964A JP4284284B2 JP 4284284 B2 JP4284284 B2 JP 4284284B2 JP 2005035964 A JP2005035964 A JP 2005035964A JP 2005035964 A JP2005035964 A JP 2005035964A JP 4284284 B2 JP4284284 B2 JP 4284284B2
Authority
JP
Japan
Prior art keywords
sample
light
measurement
excitation light
excitation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005035964A
Other languages
Japanese (ja)
Other versions
JP2006220600A (en
Inventor
英二 高橋
弘行 高松
将人 甘中
尚和 迫田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2005035964A priority Critical patent/JP4284284B2/en
Priority to EP06101473A priority patent/EP1691189A3/en
Priority to US11/350,954 priority patent/US7522287B2/en
Publication of JP2006220600A publication Critical patent/JP2006220600A/en
Application granted granted Critical
Publication of JP4284284B2 publication Critical patent/JP4284284B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/171Systems in which incident light is modified in accordance with the properties of the material investigated with calorimetric detection, e.g. with thermal lens detection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/171Systems in which incident light is modified in accordance with the properties of the material investigated with calorimetric detection, e.g. with thermal lens detection
    • G01N2021/1712Thermal lens, mirage effect

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本発明は,試料の含有物質等を分析する際に用いられ,励起光を試料に照射したときの光熱効果により試料に生じる屈折率変化に基づく特性変化を測定する光熱変換測定装置及びその方法に関するものである。   The present invention relates to a photothermal conversion measuring apparatus and method for measuring a characteristic change based on a refractive index change generated in a sample due to a photothermal effect when the sample is irradiated with a sample and the like and irradiated with excitation light. Is.

各種試料の含有物質等の分析において,分析感度の向上は,試薬の量の低減や試料の濃縮処理の簡素化,分析の効率化及び低コスト化を図る上で重要である。一方,試料に励起光を照射すると,その照射部は励起光を吸収することにより発熱し,これを光熱効果という。この発熱を測定することを光熱変換測定という。
従来,この光熱変換測定による試料の高感度分析法として,光熱効果により試料に形成される熱レンズ効果を用いた手法(以下,熱レンズ法という)が知られている。
熱レンズ法による分析装置(光熱変換分光分析装置)は,例えば,特許文献1に示されている。この熱レンズ法による分析装置では,試料に照射した検出光(測定光)を集光するとともにピンホールに通過させ,そのピンホールを通過後の検出光の光強度を検出することにより,励起光が照射された試料の発熱による屈折率変化を検出光の集光状態の変化として検出するものである。
In the analysis of substances contained in various samples, improvement of analysis sensitivity is important in order to reduce the amount of reagents, simplify the sample concentration process, increase the efficiency of analysis, and reduce costs. On the other hand, when the sample is irradiated with excitation light, the irradiated portion generates heat by absorbing the excitation light, which is called a photothermal effect. Measuring this heat generation is called photothermal conversion measurement.
Conventionally, a method using a thermal lens effect formed on a sample by a photothermal effect (hereinafter referred to as a thermal lens method) is known as a high-sensitivity analysis method for a sample by this photothermal conversion measurement.
An analysis apparatus (photothermal conversion spectroscopic analysis apparatus) using a thermal lens method is disclosed in Patent Document 1, for example. In this analyzer using the thermal lens method, the detection light (measurement light) irradiated to the sample is condensed and passed through a pinhole, and the light intensity of the detection light after passing through the pinhole is detected to detect excitation light. The change in the refractive index due to the heat generation of the sample irradiated with is detected as a change in the condensing state of the detection light.

一方,特許文献2には,試料の光熱効果による屈折率変化を,試料を通過(透過)させた測定光における位相変化として捉え,これを光干渉法を用いて測定する技術が示されている。
これにより,例えば装置ごとに光検出器(光電変換手段)の位置や測定光の強度及びその強度分布等が異なっても,測定中に変化さえしなければ,これらに依存することなく安定的に,しかも光学的に高精度かつ高感度で試料の屈折率変化を測定することが可能となる。これは,前述した熱レンズ法における問題点を解消するものである。
一方,特許文献3には,フーリエ分光計により計測したフーリエ干渉縞のスペクトルを高ダイナミックレンジで測定する技術が示されている。
特開平10−232210号公報 特開2004−301520号公報 実開平5−23072号公報
On the other hand, Patent Document 2 discloses a technique in which a change in refractive index due to the photothermal effect of a sample is regarded as a phase change in measurement light that has passed (transmitted) through the sample and measured using optical interferometry. .
Thus, for example, even if the position of the photodetector (photoelectric conversion means), the intensity of the measurement light, and its intensity distribution differ from device to device, if it does not change during measurement, it is stable without depending on these. In addition, it is possible to measure the refractive index change of the sample optically with high accuracy and high sensitivity. This eliminates the problems in the thermal lens method described above.
On the other hand, Patent Document 3 discloses a technique for measuring a spectrum of Fourier interference fringes measured by a Fourier spectrometer with a high dynamic range.
Japanese Patent Laid-Open No. 10-232210 JP 2004-301520 A Japanese Utility Model Publication No. 5-23072

しかしながら,特許文献1及び特許文献2のいずれに示される技術も,試料中における測定光の通過経路のほぼ全体が励起光によって励起され,試料における測定光の通過経路全体の平均的な特性が測定されるものであり,試料中の位置ごとの特性分布,特に,試料表面からの深さ方向の位置ごとの特性分布を測定することができないという問題点があった。
従って,本発明は上記事情に鑑みてなされたものであり,その目的とするところは,試料中における光熱効果による特性変化の分布を容易に測定できる光熱変換測定装置及びその方法を提供することにある。
However, in both of the techniques shown in Patent Document 1 and Patent Document 2, almost the entire passage of measurement light in the sample is excited by excitation light, and the average characteristic of the entire passage of measurement light in the sample is measured. However, there is a problem that the characteristic distribution at each position in the sample, particularly the characteristic distribution at each position in the depth direction from the sample surface, cannot be measured.
Accordingly, the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a photothermal conversion measuring apparatus and method capable of easily measuring the distribution of characteristic changes due to the photothermal effect in a sample. is there.

上記目的を達成するために本発明は,励起光が照射された試料の光熱効果により生じる前記試料の特性変化を測定する光熱変換測定装置或いはその方法に適用されるものであり,所定の測定光照射手段により前記試料にビーム状測定光を照射するとともに,その照射の際の前記試料中における前記測定光の通過経路と前記励起光による励起部とが重複する測定位置を所定の測定位置変更手段により変化させ,その測定位置が変化した各状態における前記試料の通過による前記測定光の位相変化を光干渉法で測定し,その際,前記測定光の経路を固定した状態で,前記試料に対し前記測定光の入射方向に対して交差する方向からビーム状の前記励起光を入射させる際のその入射位置と入射方向との一方又は両方を変化させることにより,前記測定位置を変化させるものである。ここで,前記測定位置は,前記励起光の光路を変化させることにより変化させる。
なお,測定光の試料通過による位相変化を光干渉法で測定することは,特許文献1に示されている。
これにより,前記試料中の測定位置(測定光経路と励起部との重複位置)を順次変化させながら測定することができるので,試料中における光熱効果による特性変化の分布を測定することができる。特に,試料の光熱効果による屈折率変化を,試料を通過(透過)させた測定光の位相変化として光干渉法により測定するので,装置ごとに機器の配置や測定光の強度等が異なってもそれが測定中に変化さえしなければ,それらに依存することなく再現性高く(安定的に),しかも高精度かつ高感度で試料の屈折率変化(特性変化)を測定することができるので好適である。
In order to achieve the above object, the present invention is applied to a photothermal conversion measuring apparatus or method for measuring a change in characteristics of a sample caused by a photothermal effect of a sample irradiated with excitation light, and a predetermined measurement light. Irradiating means irradiates the sample with beam-shaped measurement light, and a predetermined measurement position changing means defines a measurement position where a passage path of the measurement light in the sample and an excitation part by the excitation light overlap in the irradiation. The phase change of the measurement light due to the passage of the sample in each state in which the measurement position is changed is measured by optical interferometry, and the path of the measurement light is fixed with respect to the sample. By changing one or both of the incident position and the incident direction when the beam-like excitation light is incident from a direction intersecting the incident direction of the measurement light, the measurement is performed. It is intended to change the position. Here, the measurement position is changed by changing the optical path of the excitation light.
Patent Document 1 discloses that the phase change caused by the passage of the measurement light by the sample is measured by the optical interferometry.
As a result, measurement can be performed while sequentially changing the measurement position in the sample (the overlapping position between the measurement light path and the excitation portion), so that the distribution of characteristic changes in the sample due to the photothermal effect can be measured. In particular, the refractive index change caused by photothermal effect of the sample, Runode be measured by a light interference method as the phase change of the measurement light passed through the sample (transparent), and such as strength arrangement and measurement light device varies from device However, if it does not change during the measurement, it can measure the refractive index change (characteristic change) of the sample with high reproducibility (stable), high accuracy and high sensitivity without depending on them. Is preferred.

また,前記励起光の光路を変化させることにより前記測定位置を変化させるため,構成要素が多い前記測定光に関する機器(光干渉法により前記測定光の位相変化を測定する機器)を移動させる必要がなく,比較的シンプルな構成により実現できる。
また,前記試料中における前記測定光と前記励起光とが交差する部分(前記測定位置)を変化させるため,例えば前記励起光の偏向ミラーを微動させる構成等,ごくシンプルな構成で実現できる
In addition, since the measurement position is changed by changing the optical path of the excitation light, it is necessary to move a device related to the measurement light having many components (device that measures the phase change of the measurement light by optical interferometry). It can be realized with a relatively simple configuration.
Moreover, since with the measurement light in the sample and the excitation light is to change the portion (the measurement position) crossing, for example, configuration and the like for finely moving the deflecting mirror of the excitation light can be realized with very simple configuration.

本発明によれば,試料に励起光と測定光とを照射するとともに,その照射の際の前記試料中における前記測定光の通過経路と前記励起光による励起部とが重複する測定位置を変化させ,その測定位置が変化した各状態における前記試料を通過後の前記測定光に基づいて測定するので,試料中における光熱効果による特性変化の分布を測定することができる。特に,測定光の位相変化を光干渉法(相対的光学手法)により測定するため,再現性高く(安定的に),しかも高精度かつ高感度で試料の特性変化を測定することができるので好適である。
また,前記試料に対し前記測定光の入射方向に対して交差する方向から前記励起光を入射させる際のその入射位置や入射方向を変化させることによって前記測定位置を変化させるものであるため,ごくシンプルな構成で実現できる
According to the present invention, the sample is irradiated with excitation light and measurement light, and the measurement position where the passage path of the measurement light in the sample and the excitation part due to the excitation light overlap in the irradiation is changed. Since the measurement is performed based on the measurement light after passing through the sample in each state where the measurement position is changed, the distribution of the characteristic change due to the photothermal effect in the sample can be measured. In particular, the phase change of the measurement light is measured by the optical interferometry (relative optical technique), so it is possible to measure the characteristic change of the sample with high reproducibility (stable), high accuracy and high sensitivity. It is.
Further, Der because thereby changing the measuring position by changing the incident position and incident direction at the time of entering the excitation light in the direction intersecting the relative sample relative to the direction of the measuring light, This can be realized with a very simple configuration .

以下添付図面を参照しながら,本発明の実施の形態について説明し,本発明の理解に供する。尚,以下の実施の形態は,本発明を具体化した一例であって,本発明の技術的範囲を限定する性格のものではない。
ここに,図1は本発明の第1実施形態に係る光熱変換測定装置Xの概略構成図,図2は本発明の第2実施形態に係る光熱変換測定装置における測定位置走査機構Z2の概略構成図,図3は光熱変換測定装置における測定位置走査機構Z3の概略構成図である。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings so that the present invention can be understood. The following embodiment is an example embodying the present invention, and does not limit the technical scope of the present invention.
FIG. 1 is a schematic configuration diagram of the photothermal conversion measuring device X according to the first embodiment of the present invention, and FIG. 2 is a schematic configuration of the measurement position scanning mechanism Z2 in the photothermal conversion measuring device according to the second embodiment of the present invention. FIG, 3 is a schematic diagram of a measurement position scanning mechanism Z3 in the light heat conversion measuring instrument.

<第1実施形態>
以下,図1を用いて,本発明の第1実施形態に係る光熱変換測定装置Xについて説明する。
所定の白色光源1(例えば,タングステンランプ等)から出力され,フーリエ分光部40を経た励起光P3は,チョッパ2により所定周期の断続光(断続周波数:f)に変換(周期的に強度変調)され,さらに測定位置変更機構Z1によりその光路が偏向された後,試料5に照射される。これにより,試料5が励起光P3を吸収して発熱し(光熱効果),その温度変化(上昇)によって試料5の屈折率が変化する。
前記フーリエ分光部40は,前記白色光源1からの光をビームスプリッタ41により2方向に分岐し,それらを固定ミラー42とピエゾステージ43aによりその位置が所定周期で変位される移動ミラー43との各々に反射さて再び前記ビームスプリッタ41に戻して合流させ,これを励起光P3として前記チョッパ2に向けて出力する周知のフーリエ分光手段である。この他,白色光源の光を分光器で分光し,分光された光ごとに異なる周波数のチョッパ等を介して強度変調し,それらを集光(合流)した光を励起光P3とする構成も考えられる。
<First Embodiment>
Hereinafter, the photothermal conversion measuring apparatus X according to the first embodiment of the present invention will be described with reference to FIG.
The excitation light P3 output from a predetermined white light source 1 (for example, a tungsten lamp) and passed through the Fourier spectroscopic unit 40 is converted into intermittent light (intermittent frequency: f) by the chopper 2 (periodically intensity modulated). Further, after the optical path is deflected by the measurement position changing mechanism Z1, the sample 5 is irradiated. Thereby, the sample 5 absorbs the excitation light P3 and generates heat (photothermal effect), and the refractive index of the sample 5 changes due to the temperature change (rise).
The Fourier spectroscopic unit 40 divides the light from the white light source 1 into two directions by a beam splitter 41, and each of them is a fixed mirror 42 and a moving mirror 43 whose position is displaced by a predetermined period by a piezo stage 43a. It is a well-known Fourier spectroscopic means that reflects the light beam back to the beam splitter 41 and joins it again and outputs it as excitation light P3 toward the chopper 2. In addition, a configuration is also possible in which the light from the white light source is dispersed with a spectroscope, the intensity is modulated via a chopper having a different frequency for each of the dispersed light, and the light that is condensed (combined) is used as the excitation light P3. It is done.

一方,試料5に照射してその屈折率変化を測定するための測定光を出力するレーザ光源7(例えば,出力1mWのHe−Neレーザ),測定光照射手段の一例)から出力された測定光は,1/2波長板8で偏波面が調節され,さらに偏光ビームスプリッタ(以下,PBSという)9によって互いに直交する2偏波(P1,P2)に分光される。
各偏波P1,P2は,2つの音響光学変調機10,11各々によって光周波数がシフト(周波数変換)され,ミラー12,13各々で反射された後,PBS14によて合成される。これら直交する2偏波P1,P2の周波数差fbは,例えば,30MHz等とする。
合成された測定光の一方の前記偏波P2は,PBS15を通過(透過)してミラー18に反射することにより再度PBS15に戻る。ここで,PBS15に戻ってきた前記偏波P2は,PBS15とミラー18との間に配置された1/4波長板16を往復通過することによってその偏波面が90°回転しているため,今度はPBS15に反射して光検出器20の方向へ向かう。
On the other hand, measurement light output from a laser light source 7 (for example, a He-Ne laser having an output of 1 mW, an example of measurement light irradiation means) that outputs measurement light for irradiating the sample 5 and measuring a change in refractive index thereof. The polarization plane is adjusted by the half-wave plate 8, and further split into two polarized waves (P1, P2) orthogonal to each other by a polarization beam splitter (hereinafter referred to as PBS) 9.
Each polarization P1, P2 is optical frequency shifted (frequency conversion) by each of the two acousto-optic modulators 10, 11, reflected by the mirrors 12, 13, and then synthesized by the PBS 14. Frequency difference f b of 2 to these orthogonal polarization P1, P2, for example, a 30MHz or the like.
One polarization P2 of the synthesized measurement light passes (transmits) through the PBS 15 and is reflected by the mirror 18 to return to the PBS 15 again. Here, since the polarization P2 that has returned to the PBS 15 reciprocates through the quarter-wave plate 16 disposed between the PBS 15 and the mirror 18, the polarization plane is rotated by 90 °. Is reflected by the PBS 15 and travels toward the photodetector 20.

これに対し,合成された測定光の他方の前記偏波P1は,PBS15に反射して,1/4波長板17及び前記レンズ4を通過して試料5に入射する。前記励起光は,試料5の内部において前記偏波P1(測定光)と交差し,その交差部が試料5における測定位置Qとなる。
さらに,試料5に入射した前記偏波P1は,試料5を通過し,試料5の裏面側(測定光(偏波P1)の照射面の反対面側)に設けられた反射ミラー6で反射し,再び試料5の測定位置Qを通過(即ち,往復通過)して,さらに前記レンズ4,前記1/4波長板17を通過して前記PBS15へ戻る。ここで,前記偏波P1は,前記1/4波長板17を往復通過することによってその偏波面が90°回転しているため,今度はPBS15を通過して前記偏波P2と合流し,前記光検出器20の方向へ向かう。
前記PBS15と前記光検出器20との間には偏光板19が配置され,この偏光板19において前記偏波P1と,これと光周波数が異なる前記偏波P2とが,それぞれ観測光(測定光)と参照光として干渉し,その干渉光の光強度が前記光検出器20(光電変換手段)によって電気信号(以下,この電気信号の信号値を干渉光強度という)に変換される。この電気信号(即ち,干渉光強度)は,計算機等の信号処理装置21に入力及び記憶され,その信号処理装置21において前記偏波P1(測定光)の位相変化の演算処理(即ち,光干渉法による位相変化の測定)がなされる。
On the other hand, the other polarization P1 of the synthesized measurement light is reflected by the PBS 15, passes through the quarter-wave plate 17 and the lens 4, and enters the sample 5. The excitation light intersects with the polarization P 1 (measurement light) inside the sample 5, and the intersection is the measurement position Q in the sample 5.
Further, the polarized light P1 incident on the sample 5 passes through the sample 5 and is reflected by the reflecting mirror 6 provided on the back surface side of the sample 5 (on the opposite side to the irradiation surface of the measurement light (polarized light P1)). , Again passes through the measurement position Q of the sample 5 (that is, reciprocating), and further passes through the lens 4 and the quarter-wave plate 17 and returns to the PBS 15. Here, since the polarization plane of the polarization P1 is rotated 90 ° by reciprocating through the quarter-wave plate 17, this time, it passes through the PBS 15 and merges with the polarization P2. It goes in the direction of the photodetector 20.
A polarizing plate 19 is disposed between the PBS 15 and the photodetector 20, and the polarization P <b> 1 and the polarization P <b> 2 having a different optical frequency are respectively observed light (measurement light). ) And the reference light, and the light intensity of the interference light is converted into an electrical signal (hereinafter, the signal value of the electrical signal is referred to as interference light intensity) by the photodetector 20 (photoelectric conversion means). This electric signal (that is, interference light intensity) is input and stored in a signal processing device 21 such as a computer, and the signal processing device 21 performs arithmetic processing (that is, optical interference) of the phase change of the polarization P1 (measurement light). Measurement of phase change).

ここで,干渉光強度S1は,次の(1)式で表される。
S1=C1+C2・cos(2π・fb・t+φ) …(1)
C1,C2はPBS等の光学系や試料5の透過率により定まる定数,φは前記偏P1,P2の光路長差による位相差,fbは2偏波P1,P2の周波数差である。(1)式より,前記干渉光強度S1の変化(前記励起光を照射しない或いはその光強度が小さいときとその光強度が大きいときとの差)から,前記位相差φの変化が求まることがわかる。前記信号処理装置21は,(1)式に基づいて前記位相差φの変化を算出する。
また,試料5の中の励起光を吸収する所定の含有物質の量に応じて吸熱量(発熱量)が変わり,該発熱量に応じて屈折率が変わり,該屈折率に応じて前記位相差φ(試料5中の前記偏波P1の光路長)が変わる。即ち,前記含有物質の量が多いほど,前記励起光の変化に対する前記位相差φの変化(即ち,前記偏波P1の位相変化)が大きい。従って,前記位相差φを測定すれば,試料5の温度変化により生じる屈折率の変化が求まり,その結果,試料の含有物質の量(濃度)の分析が可能となる。
即ち,当該光熱変換測定装置Xを用いて,予め所定の含有物質の量(濃度)が既知である複数種類のサンプル試料について前記位相差φの変化を測定し,その結果とその含有物質の量との対応づけを前記信号処理装置21にデータテーブルとして記憶しておく。そして,測定対象とする試料についての前記位相差φの測定結果を前記データテーブルに基づいて補間処理等を行う等によりその含有物質の量を特定する処理を前記信号処理装置21により実行すればよい。
この光熱変換測定装置Xによれば,試料5の光熱効果による屈折率変化を,試料5を通過(透過)させた測定光(前記偏波P1)における励起光の照射による位相変化を光干渉法を用いて測定することによって,即ち,参照光(前記偏波P2)と測定光(前記偏波P1)との位相の相対評価(位相差)によって測定するので,例えば装置ごとに光検出器20の位置や測定光の強度及びその強度分布等が異なっても,測定中に変化さえしなければ,これらに依存することなく安定的に,しかも光学的に高精度で試料の屈折率変化(特性変化)を測定することが可能となる。
Here, the interference light intensity S1 is expressed by the following equation (1).
S1 = C1 + C2 · cos (2π · f b · t + φ) (1)
C1 and C2 are constants determined by the optical system such as PBS and the transmittance of the sample 5, φ is a phase difference due to the optical path length difference between the polarizations P1 and P2, and f b is a frequency difference between the two polarized waves P1 and P2. From the equation (1), the change in the phase difference φ can be obtained from the change in the interference light intensity S1 (difference between when the excitation light is not irradiated or when the light intensity is low and when the light intensity is high). Recognize. The signal processing device 21 calculates the change in the phase difference φ based on the equation (1).
Further, the endothermic amount (heat generation amount) changes according to the amount of the predetermined contained substance that absorbs the excitation light in the sample 5, the refractive index changes according to the heat generation amount, and the phase difference according to the refractive index. φ (the optical path length of the polarization P1 in the sample 5) changes. That is, the greater the amount of the contained material, the greater the change in the phase difference φ with respect to the change in the excitation light (that is, the phase change in the polarization P1). Therefore, if the phase difference φ is measured, the change in the refractive index caused by the temperature change of the sample 5 can be obtained, and as a result, the amount (concentration) of the substance contained in the sample can be analyzed.
That is, the photothermal conversion measuring device X is used to measure the change in the phase difference φ for a plurality of types of sample samples whose amounts (concentrations) of a predetermined content are known in advance, and the result and the amount of the content Is stored in the signal processing device 21 as a data table. Then, the signal processing device 21 may execute a process of specifying the amount of the contained substance by, for example, performing an interpolation process on the measurement result of the phase difference φ of the sample to be measured based on the data table. .
According to this photothermal conversion measuring apparatus X, the refractive index change due to the photothermal effect of the sample 5 is detected, and the phase change caused by the excitation light irradiation in the measurement light (the polarized wave P1) that has passed (transmitted) the sample 5 is detected by the optical interferometry. , That is, by relative evaluation (phase difference) of the phase of the reference light (the polarization P2) and the measurement light (the polarization P1). Even if the position of the sample, the intensity of the measurement light, its intensity distribution, etc., do not change during the measurement, the refractive index change (characteristics) of the sample is stable and optically accurate without depending on these. Change) can be measured.

また,本光熱変換測定装置Xでは,裏面側の前記反射ミラー6(前記裏面側光反射手段の一例)に測定光(偏波P1)を反射させることにより,測定光(偏波P1)を試料5に往復通過させるため,片道通過の場合の2倍の感度で前記位相差φの変化を測定できる。しかも,励起光の出力増大やS/N比の低下を伴わない。
さらに,前記励起光は周波数fで強度変調されているため,試料5の屈折率も周波数fで変化し,偏波P1の光路長も周波数fで変化し(偏波P2の光路長は一定),前記位相差φも周波数fで変化する。従って,前記位相差φの変化を,周波数fの成分(前記励起信号の強度変調周期と同周期成分)について測定(算出)すれば,周波数fの成分を有しないノイズの影響を除去しつつ試料5の屈折率変化のみを測定できる。
これにより,前記位相差φの測定のS/N比が向上する。
ところで,光熱効果による測定光の屈折率変化は,励起光の波長によっても異なり,試料の含有物質の種類によって各波長の励起光に対する光熱効果及び光熱効果による試料の屈折率変化も異なる。
従って,複数の異なる波長の励起光を照射し,そのそれぞれについて前記位相差φの変化を測定すれば,その分布から試料の含有物質の種類及び量を特定(評価)できる。しかしながら,励起光を異なる波長ごとに照射して測定を行うことは時間や手間の面で測定効率が悪い。
本光熱変換測定装置Xでは,前記フーリエ分光部40により,励起光P3を干渉波形(インターフェログラム)にしているので,測定光P1の位相変化の検出信号について,前記ピエゾステージ43aの変位周期に同期した周期でフーリエ変換を行うことにより,1回の測定によって複数波長の測定光についての試料の屈折率変化(スペクトル)を測定でき,効率的な測定が可能となる。
なお,フーリエ分光に基づくスペクトル測定については,特許文献3に詳説されているので,ここではその詳細については説明を省略する。
In this photothermal conversion measuring apparatus X, the measurement light (polarized wave P1) is reflected on the sample by reflecting the measurement light (polarized wave P1) on the reflection mirror 6 on the back side (an example of the back side light reflecting means). Therefore, the change in the phase difference φ can be measured with a sensitivity twice that of the one-way passage. In addition, there is no increase in the output of pumping light or a decrease in the S / N ratio.
Furthermore, since the excitation light is intensity-modulated at the frequency f, the refractive index of the sample 5 also changes at the frequency f, and the optical path length of the polarization P1 also changes at the frequency f (the optical path length of the polarization P2 is constant). The phase difference φ also changes with the frequency f. Therefore, if the change in the phase difference φ is measured (calculated) with respect to the component of the frequency f (the same period component as the intensity modulation period of the excitation signal), the influence of noise having no component of the frequency f is removed. Only a refractive index change of 5 can be measured.
Thereby, the S / N ratio in the measurement of the phase difference φ is improved.
By the way, the change in the refractive index of the measurement light due to the photothermal effect differs depending on the wavelength of the excitation light, and the photothermal effect on the excitation light of each wavelength and the change in the refractive index of the sample due to the photothermal effect also differ depending on the type of substance contained in the sample.
Therefore, by irradiating a plurality of excitation light beams having different wavelengths and measuring the change of the phase difference φ for each of them, the type and amount of the substance contained in the sample can be specified (evaluated) from the distribution. However, measuring with irradiation of excitation light at different wavelengths is inefficient in terms of time and labor.
In the present photothermal conversion measuring apparatus X, the excitation light P3 is made into an interference waveform (interferogram) by the Fourier spectroscopic unit 40, so that the detection signal of the phase change of the measuring light P1 is in the displacement period of the piezo stage 43a. By performing Fourier transform at a synchronized period, it is possible to measure the refractive index change (spectrum) of the sample with respect to the measurement light of a plurality of wavelengths by one measurement, and efficient measurement is possible.
Since spectrum measurement based on Fourier spectroscopy is described in detail in Patent Document 3, description thereof is omitted here.

次に,前記測定位置変更機構Z1について説明する。
前記測定位置変更機構Z1は,測定光P1の経路を固定した状態で,励起光P3の光路を変化させることにより,試料5中におけるビーム状の測定光P1の経路と同じくビーム状の励起光P3による励起部(ここでは,試料5中における励起光P3の経路)とが重複する(交差する)測定位置Qを変化させるためのものである(測定位置変更手段,励起光光路変更手段の一例)。
ここで,前記測定位置変更機構Z1は,励起光P3を試料5に向けて反射させ,測定光P1に対して斜め方向(交差する方向の一例)から励起光P3を試料5に入射させる移動ミラー31及びこれを直線方向(ここでは,測定光P1に平行な方向)に移動させるピエゾステージ30と,前記チョッパ2からの励起光P3を前記移動ミラー31に導く固定ミラー32とを具備している。
この測定位置変更機構Z1により,試料5に対し測定光P1の入射方向に対して斜め方向から励起光P3が入射され,さらに,前記ピエゾステージ30で前記移動ミラー31を変位させることにより,励起光P3を試料5に入射させる際のその入射位置が変化する。その結果,試料5中における測定光P1の経路と励起光P3による励起部との重複部である測定位置Qが,試料5の深さ方向(測定光P1の通過方向)に変化する(励起光光路変更手段の一例)。なお,励起光P3の入射方向は,測定光P1に対して直交する方向等も考えられる。
そして,不図示の制御部により,前記測定位置変更機構Z1と前記信号処理装置21とを制御することにより,前記測定位置変更機構Z1によって測定位置Qを変化させ,さらに,前記信号処理装置21により,測定位置Qが変化した各状態における試料5を通過後の測定光P1(偏波)に基づいて,その位相変化を光干渉法によって測定させる(光測定手段の一例)。
これにより,試料5中の測定位置Qを順次変化させながら測定することができるので,試料5中における光熱効果による特性変化の深さ方向の分布を測定することができる。
なお,前記測定位置変更機構Z1は,前記移動ミラー31を直線方向に移動させることにより,励起光P3の試料5への入射位置を変化させるものであるが,これに限らず,例えば,前記移動ミラー31を回転させることにより,励起光P3の試料5への入射位置及び入射方向を変化させる測定位置変更機構も考えられる。同様に,前記移動ミラー31を所定位置を中心に回動させて,励起光P3の試料5への入射位置は一定にしつつ入射方向のみを変化させる測定位置変更機構も考えられる。
Next, the measurement position changing mechanism Z1 will be described.
The measurement position changing mechanism Z1 changes the optical path of the excitation light P3 in a state where the path of the measurement light P1 is fixed, so that the beam-like excitation light P3 is the same as the path of the beam-like measurement light P1 in the sample 5. Is for changing the measurement position Q that overlaps (intersects) the excitation part (here, the path of the excitation light P3 in the sample 5) (an example of the measurement position changing means and the excitation light optical path changing means). .
Here, the measurement position changing mechanism Z1 reflects the excitation light P3 toward the sample 5 and makes the excitation light P3 incident on the sample 5 from an oblique direction (an example of a crossing direction) with respect to the measurement light P1. 31 and a piezo stage 30 that moves it in a linear direction (here, a direction parallel to the measurement light P1), and a fixed mirror 32 that guides the excitation light P3 from the chopper 2 to the movable mirror 31. .
By this measurement position changing mechanism Z1, the excitation light P3 is incident on the sample 5 from an oblique direction with respect to the incident direction of the measurement light P1, and further, the moving mirror 31 is displaced by the piezo stage 30, thereby exciting the excitation light. The incident position when P3 is incident on the sample 5 changes. As a result, the measurement position Q, which is the overlap between the path of the measurement light P1 in the sample 5 and the excitation part by the excitation light P3, changes in the depth direction of the sample 5 (the direction in which the measurement light P1 passes) (excitation light). An example of the optical path changing means). The incident direction of the excitation light P3 may be a direction orthogonal to the measurement light P1.
Then, the measurement position changing mechanism Z1 and the signal processing device 21 are controlled by a control unit (not shown), whereby the measurement position Q is changed by the measurement position changing mechanism Z1, and further, the signal processing device 21 Based on the measurement light P1 (polarized light) after passing through the sample 5 in each state where the measurement position Q has changed, the phase change is measured by optical interferometry (an example of the light measurement means).
As a result, measurement can be performed while sequentially changing the measurement position Q in the sample 5, so that the distribution in the depth direction of the characteristic change due to the photothermal effect in the sample 5 can be measured.
The measurement position changing mechanism Z1 changes the incident position of the excitation light P3 on the sample 5 by moving the moving mirror 31 in the linear direction. A measurement position changing mechanism that changes the incident position and incident direction of the excitation light P3 on the sample 5 by rotating the mirror 31 is also conceivable. Similarly, a measurement position changing mechanism is also conceivable in which only the incident direction is changed while the movable mirror 31 is rotated around a predetermined position to keep the incident position of the excitation light P3 on the sample 5 constant.

<第2実施形態>
次に,図2の概略構成図を用いて,本発明の第2実施形態に係る光熱変換測定装置の測定位置変更機構Z2について説明する。
なお,以下に示す第2〜第3実施形態に係る光熱変換測定装置は,測定位置変更機構以外の構成は,前記光熱変換測定装置Xと同様である。
図2に示す測定位置変更機構Z2も,前記測定位置偏向機構Z1と同様に,測定光P1の経路を固定した状態で,励起光P3の光路を変化させることにより測定位置Qを変化させる例である。
具体的には,前記測定位置変更機構Z2は,試料5に向かうビーム状の測定光P1の経路中に設けられ,測定光P1を通過させるとともにスポット径が測定光P1よりも大きく形成された励起光P3を試料5に対する測定光P1の照射方向と同一方向に反射する(偏向させる)ハーフミラー3と,そのハーフミラー31に反射して試料5に向かう励起光P3を通過させ,これを集光するレンズ4と,そのレンズを測定光P1の照射方向と同一方向に沿ってピエゾステージ等によって変位(移動)させるレンズ変位装置50(レンズ移動手段の一例)とを具備している(第2の励起光光路変更手段の一例)。
前記レンズ4は,その中心を測定光P1が通過するように配置されている。なお,図示していないが,励起光P3は反射ミラー等の光学系により前記ハーフミラー31に導かれる。そして,前記レンズ変位装置50によって前記レンズ4を変位させることにより,試料5中における励起光P3の焦点位置(集光位置)が変化する。
この場合,試料5中において,励起光P3がそのスポット径が比較的大きな状態で通過する部分ではほとんど励起されず,前記レンズ4の変位により測定光P1の経路に沿って変化する励起光P3の焦点位置(集光位置)のみが主な励起部となり,その励起部(即ち,測定位置Q)が試料5の深さ方向に変化する。
ここで,測定光P1も変位する前記レンズ4を通過することになるが,ビーム状の測定光P1のスポット径を十分に小さい径にしておけば,前記レンズ4の変位が測定光P1に与える影響はほとんど無視できる。
このような構成によっても,試料5中の測定位置Qを順次変化させながら測定することができるので,試料5中における光熱効果による特性変化の深さ方向の分布を測定することができる。
Second Embodiment
Next, the measurement position changing mechanism Z2 of the photothermal conversion measurement device according to the second embodiment of the present invention will be described using the schematic configuration diagram of FIG.
The photothermal conversion measurement devices according to the second to third embodiments described below are the same as the photothermal conversion measurement device X except for the measurement position changing mechanism.
Similarly to the measurement position deflection mechanism Z1, the measurement position changing mechanism Z2 shown in FIG. 2 is an example in which the measurement position Q is changed by changing the optical path of the excitation light P3 while the path of the measurement light P1 is fixed. is there.
Specifically, the measurement position changing mechanism Z2 is provided in the path of the beam-shaped measurement light P1 toward the sample 5, and allows the measurement light P1 to pass therethrough and is formed with a spot diameter larger than the measurement light P1. The half mirror 3 that reflects (deflects) the light P3 in the same direction as the irradiation direction of the measurement light P1 with respect to the sample 5 and the excitation light P3 that is reflected by the half mirror 31 and travels toward the sample 5 are allowed to pass through. And a lens displacement device 50 (an example of a lens moving unit) that displaces (moves) the lens by a piezo stage or the like along the same direction as the irradiation direction of the measurement light P1 (second lens moving unit). An example of excitation light optical path changing means).
The lens 4 is arranged so that the measurement light P1 passes through the center thereof. Although not shown, the excitation light P3 is guided to the half mirror 31 by an optical system such as a reflection mirror. Then, by moving the lens 4 by the lens displacement device 50, the focal position (condensing position) of the excitation light P3 in the sample 5 changes.
In this case, in the sample 5, the excitation light P3 is hardly excited in a portion where the spot diameter passes through in a relatively large state, and the excitation light P3 changes along the path of the measurement light P1 due to the displacement of the lens 4. Only the focal position (condensing position) becomes the main excitation part, and the excitation part (that is, measurement position Q) changes in the depth direction of the sample 5.
Here, the measurement light P1 also passes through the displaced lens 4. However, if the spot diameter of the beam-shaped measurement light P1 is set to a sufficiently small diameter, the displacement of the lens 4 gives the measurement light P1. The effect is almost negligible.
Even with such a configuration, measurement can be performed while sequentially changing the measurement position Q in the sample 5, so that the distribution in the depth direction of the characteristic change due to the photothermal effect in the sample 5 can be measured.

<第3実施形態>
次に,図3の概略構成図を用いて,光熱変換測定装置の測定位置変更機構Z3について説明する。
図3に示す測定位置変更機構Z3は,測定光P1及び励起光P3の両経路は固定した状態で,試料5の位置を変位(移動)させることにより測定位置Qを変化させるものであり,試料5の支持部22とその支持部22を測定光P1の試料5への入射方向に沿って変位(移動)させるピエゾステージ等からなる試料変位装置51とを具備している。
図3に示す例は,試料5に対し測定光P1の入射方向に対して斜め方向から励起光P3が入射される状態において,試料5の支持部22を変位させる構成を示しているが,これに限らず,図2に示したレンズ集光方式により励起光P3を測定光P1の経路上のある定位置に集光させた状態において,試料5の支持部22を変位させるものであってもかまわない。
このような構成によっても,試料5中の測定位置Qを順次変化させながら測定することができるので,試料5中における光熱効果による特性変化の深さ方向の分布を測定することができる。
また,前記測定位置変更機構Z1やZ2と同Z3とを組み合わせた構成も考えられる。これにより,ピエゾステージ等を用いた位置変更機構各々の位置調節可能範囲が狭くても,全体として測定位置Qの位置調節可能範囲を大きくできる。また,一方を粗調整に他方を微調整に用いること等も考えられる。
<Third Embodiment>
Next, with reference to the schematic diagram of FIG. 3 will be described measuring position changing mechanism Z3 light heat conversion measuring instrument.
The measurement position changing mechanism Z3 shown in FIG. 3 changes the measurement position Q by displacing (moving) the position of the sample 5 with both paths of the measurement light P1 and the excitation light P3 fixed. supporting portion 22 5 and you are and a sample displacement device 51 that becomes the supporting portion 22 from the piezo stage like for displacing (moving) along the incident direction of the sample 5 of the measuring light P1.
The example shown in FIG. 3 shows a configuration in which the support portion 22 of the sample 5 is displaced in a state where the excitation light P3 is incident on the sample 5 from an oblique direction with respect to the incident direction of the measurement light P1. However, the support 22 of the sample 5 may be displaced in a state where the excitation light P3 is condensed at a certain position on the path of the measurement light P1 by the lens condensing method shown in FIG. It doesn't matter.
Even with such a configuration, measurement can be performed while sequentially changing the measurement position Q in the sample 5, so that the distribution in the depth direction of the characteristic change due to the photothermal effect in the sample 5 can be measured.
Moreover, the structure which combined the said measurement position change mechanism Z1 and Z2 and the same Z3 is also considered. Thereby, even if the position adjustable range of each position changing mechanism using a piezo stage or the like is narrow, the position adjustable range of the measurement position Q can be increased as a whole. It is also conceivable to use one for coarse adjustment and the other for fine adjustment.

本発明は,光熱変換測定に利用可能である。     The present invention can be used for photothermal conversion measurement.

本発明の第1実施形態に係る光熱変換測定装置Xの概略構成図。The schematic block diagram of the photothermal conversion measuring apparatus X which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る光熱変換測定装置における測定位置走査機構Z2の概略構成図。The schematic block diagram of the measurement position scanning mechanism Z2 in the photothermal conversion measuring apparatus which concerns on 2nd Embodiment of this invention. 熱変換測定装置における測定位置走査機構Z3の概略構成図。Schematic diagram of the measurement position scanning mechanism Z3 in the light heat conversion measuring instrument.

符号の説明Explanation of symbols

X…光熱変換測定装置
Z1〜Z3…測定位置変更機構
1…白色光源(励起光源)
2…チョッパ
3…ハーフミラー
4…レンズ
5…試料
6…反射ミラー
7…レーザ光源(測定光照射手段)
10,11…音響光学変調機(AOM)
20…光検出器
21…信号処理装置
30…ピエゾステージ
31…移動ミラー
32…固定ミラー
40…フーリエ分光部
50…レンズ変位装置
51…試料変位装置
P1…偏波(測定光)
P2…偏波(参照光)
P3…励起光
Q…測定位置
X ... Photothermal conversion measuring device Z1-Z3 ... Measurement position changing mechanism 1 ... White light source (excitation light source)
2 ... Chopper 3 ... Half mirror 4 ... Lens 5 ... Sample 6 ... Reflection mirror 7 ... Laser light source (measurement light irradiation means)
10, 11 ... Acousto-optic modulator (AOM)
DESCRIPTION OF SYMBOLS 20 ... Optical detector 21 ... Signal processing apparatus 30 ... Piezo stage 31 ... Moving mirror 32 ... Fixed mirror 40 ... Fourier spectroscopy part 50 ... Lens displacement apparatus 51 ... Sample displacement apparatus P1 ... Polarization (measurement light)
P2: Polarization (reference light)
P3 ... Excitation light Q ... Measurement position

Claims (2)

励起光が照射された試料の光熱効果により生じる前記試料の特性変化を測定する光熱変換測定装置であって,
前記試料にビーム状の測定光を照射する測定光照射手段と,
前記測定光の経路を固定した状態で,前記試料に対し前記測定光の入射方向に対して交差する方向からビーム状の前記励起光を入射させる際のその入射位置と入射方向との一方又は両方を変化させることにより前記試料中における前記測定光の通過経路と前記励起光による励起部とが重複する測定位置を変化させる測定位置変更手段と,
前記測定位置変更手段により前記測定位置が変化した各状態における前記試料の通過による前記測定光の位相変化を光干渉法で測定する光測定手段と,
を具備してなることを特徴とする光熱変換測定装置
A photothermal conversion measuring device for measuring a change in characteristics of a sample caused by a photothermal effect of a sample irradiated with excitation light,
Measuring light irradiation means for irradiating the sample with beam-shaped measuring light;
With the measurement light path fixed, one or both of the incident position and the incident direction when the beam-like excitation light is incident on the sample from a direction intersecting the incident direction of the measurement light. A measurement position changing means for changing a measurement position where a passage path of the measurement light in the sample and an excitation part by the excitation light overlap in the sample,
A light measurement means for measuring a phase change of the measurement light by the passage of the sample in each state in which the measurement position is changed by the measurement position changing means by an optical interferometry;
Photothermal conversion measuring apparatus characterized by comprising comprises a.
励起光が照射された試料の光熱効果により生じる前記試料の特性変化を測定する光熱変換測定方法であって,
前記試料にビーム状の測定光を照射するとともに,その照射の際の前記試料中における前記測定光の通過経路と前記励起光による励起部とが重複する測定位置を変化させ,該測定位置が変化した各状態における前記試料の通過による前記測定光の位相変化を光干渉法で測定し,その際,前記測定光の経路を固定した状態で,前記試料に対し前記測定光の入射方向に対して交差する方向からビーム状の前記励起光を入射させる際のその入射位置と入射方向との一方又は両方を変化させることにより,前記測定位置を変化させてなることを特徴とする光熱変換測定方法
A photothermal conversion measurement method for measuring a change in characteristics of a sample caused by a photothermal effect of a sample irradiated with excitation light,
While irradiating the sample with beam-shaped measurement light, the measurement position where the measurement light passing path and the excitation part by the excitation light overlap in the sample at the time of irradiation is changed, and the measurement position is changed. The phase change of the measurement light due to the passage of the sample in each state is measured by optical interferometry, and the measurement light path is fixed with respect to the sample in the incident direction of the measurement light. A photothermal conversion measurement method, wherein the measurement position is changed by changing one or both of the incident position and the incident direction when the beam-like excitation light is incident from an intersecting direction .
JP2005035964A 2005-02-14 2005-02-14 Photothermal conversion measuring apparatus and method Expired - Fee Related JP4284284B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005035964A JP4284284B2 (en) 2005-02-14 2005-02-14 Photothermal conversion measuring apparatus and method
EP06101473A EP1691189A3 (en) 2005-02-14 2006-02-09 Photothermal conversion measurement apparatus, photothermal conversion measurement method, and sample cell
US11/350,954 US7522287B2 (en) 2005-02-14 2006-02-10 Photothermal conversion measurement apparatus, photothermal conversion measurement method, and sample cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005035964A JP4284284B2 (en) 2005-02-14 2005-02-14 Photothermal conversion measuring apparatus and method

Publications (2)

Publication Number Publication Date
JP2006220600A JP2006220600A (en) 2006-08-24
JP4284284B2 true JP4284284B2 (en) 2009-06-24

Family

ID=36983018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005035964A Expired - Fee Related JP4284284B2 (en) 2005-02-14 2005-02-14 Photothermal conversion measuring apparatus and method

Country Status (1)

Country Link
JP (1) JP4284284B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4102836B2 (en) * 2006-03-22 2008-06-18 株式会社神戸製鋼所 Separation and purification analyzer
JP5149874B2 (en) * 2009-06-30 2013-02-20 株式会社神戸製鋼所 Thermophysical property analysis apparatus and thermophysical property analysis method
JP2013092691A (en) * 2011-10-26 2013-05-16 Ricoh Co Ltd Powder adhesion amount detection method, and image forming apparatus
DE102012106955B4 (en) * 2012-07-31 2014-04-03 Netzsch-Gerätebau GmbH Apparatus and method for photothermal examination of a sample
JP7262067B2 (en) * 2018-10-23 2023-04-21 国立大学法人埼玉大学 Optical property measuring device

Also Published As

Publication number Publication date
JP2006220600A (en) 2006-08-24

Similar Documents

Publication Publication Date Title
US7522287B2 (en) Photothermal conversion measurement apparatus, photothermal conversion measurement method, and sample cell
KR0163627B1 (en) Evaluation of sample by measurement of thermo-optical displacement
RU2544876C1 (en) Device to measure optical characteristics and method to measure optical characteristics
EP1724550A1 (en) Interferometer and shape measuring method
JP3949600B2 (en) Photothermal conversion measuring apparatus and method
US20230063843A1 (en) Method and apparatus for high performance wide field photothermal imaging and spectroscopy
US20160299080A1 (en) Light Measuring Device and Light Measuring Method
JP4284284B2 (en) Photothermal conversion measuring apparatus and method
JP5428538B2 (en) Interfering device
JP4119411B2 (en) Photothermal conversion measuring apparatus and method
KR101316548B1 (en) Time-domain Spectroscope for High-speed and Sensitivity Measure Based on Light-bias Double Frequency Modulation
JP4290142B2 (en) Photothermal conversion measuring apparatus and method
JP2004117298A (en) Measuring method and apparatus using total reflection attenuation
TW200928301A (en) Apparatus for measuring displacement by using wavelength-modulated heterodyne grating interferometer
US6958817B1 (en) Method of interferometry with modulated optical path-length difference and interferometer
JP4119385B2 (en) Photothermal conversion measuring device
JP3029757B2 (en) Sample evaluation method by photothermal displacement measurement
US11181423B2 (en) Birefringent interferometer for measuring photoluminescence properties of samples
US8804128B2 (en) Interferometer with a space-variant polarization converter to produce radially and azimuthally polarized beams
JP4116979B2 (en) Photothermal conversion measuring apparatus and method
JP4838012B2 (en) Photothermal conversion measuring device
TWI818438B (en) Spectrometry device
JP4290139B2 (en) Photothermal conversion measuring apparatus and method
JP7508566B2 (en) Apparatus and method for high performance wide-field infrared spectroscopy and imaging - Patents.com
JPS60500733A (en) Dynamic mirror alignment control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090317

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090323

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140327

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees