JPS6046347A - Fiber reinforced metal composite material - Google Patents

Fiber reinforced metal composite material

Info

Publication number
JPS6046347A
JPS6046347A JP15454783A JP15454783A JPS6046347A JP S6046347 A JPS6046347 A JP S6046347A JP 15454783 A JP15454783 A JP 15454783A JP 15454783 A JP15454783 A JP 15454783A JP S6046347 A JPS6046347 A JP S6046347A
Authority
JP
Japan
Prior art keywords
fiber
coefficient
tensile strength
thermal expansion
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15454783A
Other languages
Japanese (ja)
Inventor
Hideo Otsu
大津 日出男
Kenichi Akutagawa
芥川 憲一
Jun Hasegawa
順 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP15454783A priority Critical patent/JPS6046347A/en
Publication of JPS6046347A publication Critical patent/JPS6046347A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to set tensile strength and coefficient of heat expansion to predetermined values corresponding to a use without losing the strong points of a material, in the title composition material comprising an Al base metal matrix, by using a carbon fiber and a fiber having specific coefficient of heat expansion and tensile strength in a combined form. CONSTITUTION:In a fiber reinforced metal composite material wherein fibers are embedded in a metal matrix based on Al, the fibers consist of a carbon fiber and one or more of a fiber large in coefficient of heat expansion and having tensile strength of 200kg/mm.<2> or more. As the latter fiber, for example, there are an SiC fiber and an Al2O3 fiber. By using this fiber, the various characteristics of the composite material is not uniquely determined by fiber content as shown in a case only comprising a carbon fiber and can be changed corresponding to a use so that coefficient of heat expansion is enhanced while tensile strength is kept same or an opposite case is performed.

Description

【発明の詳細な説明】 、本発明は、m雑像化金属複合材料(以下、「FRMJ
と略す)の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an m-irregular metal composite material (hereinafter referred to as "FRMJ").
(abbreviated as)).

FRMとしては、従来、例えばアルミニウムの軽量性と
炭素繊維の高い強度とを生かした複合材料である炭素繊
維強化アルミニウム複合材料(以下、rcFRAI J
と略す)が知られている。
Conventionally, FRM has been made using carbon fiber reinforced aluminum composite material (hereinafter referred to as rcFRAI J), which is a composite material that takes advantage of the light weight of aluminum and the high strength of carbon fiber.
) is known.

FRMとしての性能を!l’F l1ii するための
特性としては、引張強度、熱膨張率、弾性率等の品持性
がある。
Performance as FRM! Properties for l'F l1ii include properties such as tensile strength, coefficient of thermal expansion, and modulus of elasticity.

第1図は従来製造されているC F I< A Iにつ
い。
Figure 1 shows the conventionally manufactured C FI < A I.

て、その引張強度及び熱膨張率を、該CF RA l中
における炭素繊維の含有率をそれぞれ変えて測定した結
果を表わすグラフである。尚、CF RAIとしては直
径7〜8μ、長繊維形状の炭素繊維を、強化方向(一方
向)にアルミニウム中に埋設 ・したものを用いた。な
お、長繊維形状でなく、アスペクト比(繊N長ざ/繊維
径)が20以上の短繊維を用いてもよい。
2 is a graph showing the results of measuring the tensile strength and coefficient of thermal expansion while varying the carbon fiber content in the CFRA1. As the CF RAI, carbon fibers having a diameter of 7 to 8 μm and a long fiber shape were embedded in aluminum in the reinforcing direction (one direction). Note that instead of the long fiber shape, short fibers having an aspect ratio (fiber N length/fiber diameter) of 20 or more may be used.

第1図かられかるようにCF RA、 lの熱膨張率及
び引張強度は、該CFRAIの炭素U&雄含イi率を定
めることにより一義的に定まる。
As can be seen from FIG. 1, the thermal expansion coefficient and tensile strength of CFRAI are uniquely determined by determining the carbon U and male content of the CFRAI.

第2図は第1図に示す測定結果に基づき、引張強度を横
軸にとり、熱膨張率を′l11軸にとったグラフであり
、これら両者間の関係を表すものである。
FIG. 2 is a graph based on the measurement results shown in FIG. 1, with tensile strength plotted on the horizontal axis and thermal expansion coefficient plotted on the 'l11 axis, and represents the relationship between these two.

第2図から分かるように従来のCFRAIでは炭素繊維
含有率を定めることにより引張強度と熱膨張率とは一義
的に定まる。例えば、繊維含有率が20%である場合は
、引張強度は65 kg/ mll’であり、又熱膨張
率は8.3X10−6/’Cである。即ち、引張強度が
65 kQ/ mmZであれば熱膨張率は8.3X10
−’/”Cとして定まり、それ以外の直を取ることはで
きない。ところが、FRMの用途によっては引張強度は
同じくしたまま熱膨張率を高クシたいとか、あるいは逆
に、熱膨張率は同じくしたまま引張強度は大きくしたい
場合がある。
As can be seen from FIG. 2, in the conventional CFRAI, the tensile strength and coefficient of thermal expansion are uniquely determined by determining the carbon fiber content. For example, when the fiber content is 20%, the tensile strength is 65 kg/ml' and the thermal expansion coefficient is 8.3X10-6/'C. That is, if the tensile strength is 65 kQ/mmZ, the coefficient of thermal expansion is 8.3X10
-'/"C, and other directivity cannot be taken. However, depending on the use of FRM, it may be desirable to have a high coefficient of thermal expansion while keeping the tensile strength the same, or conversely, it is desirable to have a high coefficient of thermal expansion while maintaining the same tensile strength. There are cases where it is desired to increase the tensile strength.

本発明は、従来製造されているC F R=“A1の品
持性が、上記した様に炭素繊維含有率を定めることによ
り一義的に定まってしまうという事情に鑑み案出された
ものであり、CFRAIの有する長所(高強度、軽囮性
)を失うことなく、該CFRAIの用途に応じ、引張強
度及び熱膨張率を所望の値に設定し得るCFRAIを提
供することを目的とする。
The present invention was devised in view of the fact that the quality of conventionally manufactured CFR = "A1" is uniquely determined by determining the carbon fiber content as described above. The present invention aims to provide a CFRAI whose tensile strength and coefficient of thermal expansion can be set to desired values according to the use of the CFRAI without losing its advantages (high strength, light decoyability).

即ち、本発明は、アルミニウムを主成分とする金属マト
リクス中上繊維が埋設された繊維強化金faX視合材料
において、前記繊維は、炭素繊組と、該炭素繊維よりも
熱膨張率が大きく、かつ引張強度が2. OOko/ 
ml 2以上である少なくとも1秤の繊維とJ)Xら一
成ることを特徴とする繊維強化金属複合材料である。
That is, the present invention provides a fiber-reinforced gold faX optical material in which fibers in a metal matrix containing aluminum as a main component are embedded, wherein the fibers have a larger coefficient of thermal expansion than the carbon fibers, and And the tensile strength is 2. OOko/
A fiber-reinforced metal composite material characterized by comprising at least one weight of fibers having a volume of 2 or more and J) X et al.

炭素繊維よりも熱膨張率が大きく、かつ引張強° 度が
200kg/mm2以上である繊維としCは、例えば炭
化珪素(Si C)繊維、アルミ力(△1203)繊維
等がある。引張強度が200にり/mm2以上必要な理
由は、もしそれより小さければ、炭素m維の有する利点
の一つである高強度という14性が減殺され、FRMの
強度が低下しりぎるからである。尚、これら繊維の熱膨
張率は2X10−6/’C以上であることが望ましい。
Examples of fibers C having a coefficient of thermal expansion larger than that of carbon fibers and a tensile strength of 200 kg/mm2 or more include silicon carbide (SiC) fibers and aluminum (Δ1203) fibers. The reason why the tensile strength is required to be 200 mm/mm2 or more is because if it is smaller than that, the high strength, which is one of the advantages of carbon fibers, will be diminished, and the strength of the FRM will be too low. . The coefficient of thermal expansion of these fibers is preferably 2X10-6/'C or more.

もし、2X10−67”Cよりも小さければ炭素繊維の
熱膨張率との差が小さくなりすぎ、2種類の特性の異な
るm維を強化材として使用する利点がなくなるからであ
る。
If it is smaller than 2X10-67''C, the difference in thermal expansion coefficient from that of carbon fiber will be too small, and there will be no advantage of using two types of m-fibers with different properties as a reinforcing material.

炭素mtaと、該炭素m維よりも熱膨張率が大きくかつ
引張強度が200kg/l11m2以上である繊維との
混合請合、及びこれら繊維のFRM中における総含有率
は、所望のFRMの用途に応じて定める。例えば熱膨張
率の大きなF RM (−得たい場合は炭素繊維の割合
を相対的に少なくする。又、これら繊維の配向も所望の
FRMの用途に応じて定める。−次元方向に強化したF
RMを得たい場合は繊維の配向は一次元方向に、又、二
次元方向に強化したFRMを得たい場合は二次元方向に
配列する。又、三次元方向に等方向な性質のF RMを
得たい場合には繊維は三次元方向に等方向かつ無秩序に
配列する。
The mixing of carbon mta with fibers having a larger coefficient of thermal expansion than the carbon m fibers and a tensile strength of 200 kg/l11m2 or more, and the total content of these fibers in the FRM are determined according to the desired use of the FRM. To be determined accordingly. For example, if you want to obtain an FRM with a large coefficient of thermal expansion, the proportion of carbon fibers should be relatively small.Also, the orientation of these fibers should be determined depending on the desired use of the FRM.
If it is desired to obtain RM, the fibers are oriented in one dimension, and if it is desired to obtain FRM reinforced in two dimensions, the fibers are arranged in two dimensions. Furthermore, if it is desired to obtain an FRM having properties that are isodirectional in three dimensions, the fibers are arranged equidirectionally and randomly in three dimensions.

母材金属であるアルミニウム又はアルミニウム合金中に
繊維を埋設する方法は、従来知られている拡散接合法、
溶融含浸法、あるいは溶場鍛造法−等の方法を用いるこ
とができる。拡散接合法とは金属箔、あるいは金属粉末
と繊維とをホットプレスにより、じっくり時間をかけて
一体化する方法である。溶融含浸法とは繊維に溶融した
母材金虜を接触、浸透させることにより一体化する方法
であり、溶湯鍛造法とは該接触、浸透を加圧下において
行なう方法である。
The method of embedding fibers in the base metal of aluminum or aluminum alloy is the conventionally known diffusion bonding method,
A method such as a melt impregnation method or a melt-field forging method can be used. Diffusion bonding is a method in which metal foil or metal powder and fibers are slowly and slowly integrated using hot pressing. The melt impregnation method is a method in which the fibers are brought into contact with and penetrated by a molten base material, and the molten metal forging method is a method in which the contact and penetration are carried out under pressure.

本発明のFRMは補強材として炭M繊維のみを用いる従
来のCFRAIと異なり、熱膨張率、引張強度等の特性
をFRMの用途に応じ所望の値に任意に設定することが
でき゛る。又、炭素繊維のみを補強材として用いる従来
のCF RA Iの有する利点はそのまま兼ね備えてい
る。従って用途が広い°。
The FRM of the present invention differs from conventional CFRAI in which only carbon fibers are used as reinforcing materials, and properties such as thermal expansion coefficient and tensile strength can be arbitrarily set to desired values depending on the use of the FRM. In addition, it still has the advantages of the conventional CF RA I that uses only carbon fiber as a reinforcing material. So versatile°.

以下、本発明の実施例を説明する。Examples of the present invention will be described below.

第1実施例 本実施例では、母材金属としてアルミニウムを用い、強
化繊維として長繊維の炭素繊維(引張強度300 kl
J/ mmZ 、熱膨張率−〇、lX10−6/℃、直
径7μ)と長繊維の炭化珪素繊維(引張強度250 k
g/1l12 、熱膨張率3.2X10−’7℃、直径
10μ)とを用いた。炭化珪素繊維と炭素繊維との混合
性i、炭化珪素様N:炭素繊維を、O:10.3ニア、
5:5.7:3.10:Oの5種類とし、かつそれぞれ
について、Fl’(M中における繊維の総含有率を10
%、20%、30%、40%に設定し製造した。繊維の
配向は一方向に配列し、繊維と母材金属との一体化は7
8i!!鍛造法によって行なった。
First Example In this example, aluminum was used as the base metal, and long-fiber carbon fiber (tensile strength 300 kl) was used as the reinforcing fiber.
J/mmZ, thermal expansion coefficient -〇, lX10-6/℃, diameter 7μ) and long-fiber silicon carbide fiber (tensile strength 250 k
g/1l12, coefficient of thermal expansion 3.2X10-'7°C, diameter 10μ). Mixability i of silicon carbide fiber and carbon fiber, silicon carbide-like N: carbon fiber, O: 10.3 near,
5:5.7:3.10:O, and for each, Fl' (total fiber content in M is 10
%, 20%, 30%, and 40%. The fibers are oriented in one direction, and the integration of the fibers and the base metal is 7.
8i! ! This was done using the forging method.

第3図は、本実施例において製造したFRMの引張強度
と熱膨張率の特性を、総繊維含有率を横軸として表わす
グラフである。第3図から分かるように、総繊維含@率
が同じである場合、引張強度は、繊維中におtプる炭素
!I維の割合が減少するにつれ低下し、逆に熱膨張率は
炭素繊維の割合が減少するにつれ増加している。
FIG. 3 is a graph showing the tensile strength and thermal expansion coefficient characteristics of the FRM manufactured in this example, with total fiber content as the horizontal axis. As can be seen from Figure 3, when the total fiber content is the same, the tensile strength depends on the amount of carbon in the fiber! The coefficient of thermal expansion decreases as the proportion of I fibers decreases, and conversely, the coefficient of thermal expansion increases as the proportion of carbon fibers decreases.

第4図は、第3図に表わす測定結果より引張強度と熱膨
張率との関係をグラフ上に表わしたものである。第4図
に示すように、炭素繊維と炭化珪素繊維との混合割合を
変えることにより、引張強度が同一であっても熱膨張率
が異なるFRMを得ることができる。即ら、強化材とし
て炭素繊耗と炭化珪素Ql維との2種類の繊維を用いる
と、第4図に示す斜線部に含まれる特性のFRMを製造
することができる。
FIG. 4 is a graph showing the relationship between tensile strength and coefficient of thermal expansion based on the measurement results shown in FIG. 3. As shown in FIG. 4, by changing the mixing ratio of carbon fibers and silicon carbide fibers, FRMs with different coefficients of thermal expansion can be obtained even if the tensile strength is the same. That is, when two types of fibers, carbon fibers and silicon carbide Ql fibers, are used as reinforcing materials, an FRM having characteristics included in the shaded area shown in FIG. 4 can be manufactured.

第2実施例 第2実施例も第1実施例と略同様である。第2実施例が
第1実施例と異なる点は、強化繊維として炭化珪素、!
&!雑に変えてアルミナ繊維!維を用いた点である。ア
ルミニウムの引張強度は250 kc+/ mm2、熱
膨張率は8.8x101’/”C1直径番よりμである
Second Embodiment The second embodiment is also substantially the same as the first embodiment. The difference between the second example and the first example is that silicon carbide is used as the reinforcing fiber!
&! Alumina fiber instead! The point is that fibers were used. The tensile strength of aluminum is 250 kc+/mm2, and the coefficient of thermal expansion is 8.8x101'/"μ from C1 diameter number.

第5図及び第6図に、第2実施例にがかるF RMの特
性を示す。第5図から分かるように強化材中における炭
素繊維の割合が減少すると;n1実施例の場合と同様に
引張強度は減少し、逆に熱膨張率は増加している。ただ
し熱膨張率増加の程度は第1実施例の場合よりも大きい
。これは/ルミノー繊維が炭化珪素繊維よりも熱膨張率
が大きいためである。又、第6図から分かるように、本
第2実施例では同一の引張強度に対し、製造し待る熱膨
張率の幅が第1実施例の場合よりも大きくなっている。
FIGS. 5 and 6 show the characteristics of the FRM according to the second embodiment. As can be seen from FIG. 5, when the proportion of carbon fiber in the reinforcing material decreases; the tensile strength decreases, as in the case of Example n1, and conversely, the coefficient of thermal expansion increases. However, the degree of increase in the coefficient of thermal expansion is greater than in the first embodiment. This is because the Lumino fiber has a larger coefficient of thermal expansion than the silicon carbide fiber. Furthermore, as can be seen from FIG. 6, in the second embodiment, for the same tensile strength, the range of thermal expansion coefficients after manufacturing is larger than in the first embodiment.

即ち第2実施例にがかるFRMの特性は、第6図の斜線
部で示されるが、該斜線部の面積が第1実施例の場合の
第4図の斜線部の面積よりも広くなっている。
That is, the characteristics of the FRM according to the second embodiment are shown by the shaded area in FIG. 6, and the area of the shaded area is wider than the area of the shaded area in FIG. 4 in the case of the first embodiment. .

以上、要するに本発明のFRMは、母材金属としてアル
ミニウム又はアルミニウム合金を用い、強化材としては
炭素繊維と、該炭N繊維よりも熱膨張率が大きく、かつ
引張強度が200 kg/ n+1以上あるm雑、例え
ば炭化珪素繊維、アルミナ繊維等を用いたものである。
In summary, the FRM of the present invention uses aluminum or aluminum alloy as the base metal, carbon fiber as the reinforcing material, and has a coefficient of thermal expansion larger than that of the carbon-N fiber and a tensile strength of 200 kg/n+1 or more. For example, silicon carbide fibers, alumina fibers, etc. are used.

実施例に述べたところからも明らかな様に、本発明のF
RMでは引張強度と熱膨張率とを2種類の繊維の配合割
合を変えることにより任意に設定することができる。従
って、FRMの用途に応じた特性を得られる。又、炭素
繊維のみを強化材として用いている従来のCFRAIの
利点(軽口性、高強度)はそのまま兼ね備えている。
As is clear from the examples described, F of the present invention
In RM, the tensile strength and coefficient of thermal expansion can be arbitrarily set by changing the blending ratio of the two types of fibers. Therefore, characteristics suitable for the use of the FRM can be obtained. Furthermore, it still has the advantages of conventional CFRAI that uses only carbon fiber as a reinforcing material (lightness, high strength).

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のCFRAIの惣膨張率と引張強度を繊維
含有率を横軸として表わしたグラフであり、第2図は該
CFRAIの引張強度と熱膨張率の関係を表わすグラフ
である。第3図は本発明の第1実施例であるFRMの熱
膨張率と引張強度を総繊帷含有率を横軸として表わした
グラフであり、第4図は該FRMの引張強度と熱膨張率
のII係を表わすグラフである。第5因は本発明の第2
実施例のFRMの熱膨張率と引張強度を総繊維含り率を
横軸として表わしたグラフであり、第6図は該FRMの
熱膨張率と引張強度との関係を表わすグラフである。 特許出願人 日本電装株式会社 代理人 弁理士 大川 宏 同 弁理士 原料 湛 同 弁理士 丸山明夫 第1図 第2図 引、う晶す5五度 (kg/mm2) 第3図 臓維含有卒* (vO(’10) 5L震り加変(kg/mm”) ・てS5しjj 繊維含有率(vol’10) 5I−張り鎮度 (kg7mm”)
FIG. 1 is a graph showing the coefficient of thermal expansion and tensile strength of conventional CFRAI with fiber content as the horizontal axis, and FIG. 2 is a graph showing the relationship between the tensile strength and coefficient of thermal expansion of CFRAI. FIG. 3 is a graph showing the thermal expansion coefficient and tensile strength of the FRM according to the first embodiment of the present invention, with the total fiber content as the horizontal axis, and FIG. 4 shows the tensile strength and thermal expansion coefficient of the FRM. It is a graph showing the II part of. The fifth factor is the second factor of the present invention.
FIG. 6 is a graph showing the thermal expansion coefficient and tensile strength of the FRM of the example with the total fiber content as the horizontal axis, and FIG. 6 is a graph showing the relationship between the thermal expansion coefficient and tensile strength of the FRM. Patent Applicant Nippondenso Co., Ltd. Agent Patent Attorney Hirotoshi Okawa Patent Attorney Raw Materials Tando Patent Attorney Akio Maruyama Figure 1 Figure 2 Reference, Crystallization 55 degrees (kg/mm2) Figure 3 Visceral fiber content* (vO('10) 5L vibration change (kg/mm") ・TeS5shijj Fiber content (vol'10) 5I-Tension (kg7mm")

Claims (3)

【特許請求の範囲】[Claims] (1)アルミニウムを主成分とする金属マトリクス中に
繊維が埋設された繊維強化金属複合材料において、 前記!!維は、炭素!!紺と、該炭素繊維よりも熱膨張
率が大ぎく、かつ引張強度が200kg/l12以上で
ある少なくとも1種の繊維とから成ることを特徴とする
繊維強化金属複合材料。
(1) In a fiber-reinforced metal composite material in which fibers are embedded in a metal matrix whose main component is aluminum, the above! ! Carbon is carbon! ! A fiber-reinforced metal composite material comprising navy blue and at least one type of fiber having a larger coefficient of thermal expansion than the carbon fiber and a tensile strength of 200 kg/l12 or more.
(2)前記炭素繊維より熱膨張率の大きな!![の熱膨
張率は2X10”/”C以上である特許請求の範囲第1
項記載の複合材料。
(2) It has a higher coefficient of thermal expansion than the carbon fiber mentioned above! ! The coefficient of thermal expansion of [is 2X10"/"C or more] Claim 1
Composite materials as described in Section.
(3)前記炭素繊維より熱膨張率の大きな繊維は炭化珪
JR(SiC)Ia維、7/Lzミナ(AI 203)
繊維の少なくとも1種以上である特許請求の範囲第1項
記載の複合材料。
(3) The fiber with a larger coefficient of thermal expansion than the carbon fiber is silicon carbide JR (SiC) Ia fiber, 7/Lz mina (AI 203)
The composite material according to claim 1, which is at least one type of fiber.
JP15454783A 1983-08-24 1983-08-24 Fiber reinforced metal composite material Pending JPS6046347A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15454783A JPS6046347A (en) 1983-08-24 1983-08-24 Fiber reinforced metal composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15454783A JPS6046347A (en) 1983-08-24 1983-08-24 Fiber reinforced metal composite material

Publications (1)

Publication Number Publication Date
JPS6046347A true JPS6046347A (en) 1985-03-13

Family

ID=15586632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15454783A Pending JPS6046347A (en) 1983-08-24 1983-08-24 Fiber reinforced metal composite material

Country Status (1)

Country Link
JP (1) JPS6046347A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6369932A (en) * 1986-09-11 1988-03-30 Honda Motor Co Ltd Fiber reinforced metallic member
JPH01159335A (en) * 1987-09-03 1989-06-22 Honda Motor Co Ltd Fiber reinforced light alloy member having excellent heat conductivity and sliding characteristics
JPH01319639A (en) * 1988-06-17 1989-12-25 Mitsubishi Electric Corp Composite material having low thermal expansion
JPH04147654A (en) * 1990-10-09 1992-05-21 Mitsubishi Electric Corp Base material for mounting electronic component
US5385195A (en) * 1991-10-23 1995-01-31 Inco Limited Nickel coated carbon preforms
CN103628005A (en) * 2013-11-22 2014-03-12 江苏大学 Carbon fiber reinforced aluminum base composite material for brake disc and preparation method of composite material
CN105839034A (en) * 2016-05-24 2016-08-10 苏州创浩新材料科技有限公司 Preparation process of low-thermal-expansion wear resistant shaft sleeve

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6369932A (en) * 1986-09-11 1988-03-30 Honda Motor Co Ltd Fiber reinforced metallic member
JPH01159335A (en) * 1987-09-03 1989-06-22 Honda Motor Co Ltd Fiber reinforced light alloy member having excellent heat conductivity and sliding characteristics
JPH01319639A (en) * 1988-06-17 1989-12-25 Mitsubishi Electric Corp Composite material having low thermal expansion
JPH04147654A (en) * 1990-10-09 1992-05-21 Mitsubishi Electric Corp Base material for mounting electronic component
US5437921A (en) * 1990-10-09 1995-08-01 Mitsubishi Denki Kabushiki Kaisha Electronic components mounting base material
US5385195A (en) * 1991-10-23 1995-01-31 Inco Limited Nickel coated carbon preforms
US5578386A (en) * 1991-10-23 1996-11-26 Inco Limited Nickel coated carbon preforms
CN103628005A (en) * 2013-11-22 2014-03-12 江苏大学 Carbon fiber reinforced aluminum base composite material for brake disc and preparation method of composite material
CN105839034A (en) * 2016-05-24 2016-08-10 苏州创浩新材料科技有限公司 Preparation process of low-thermal-expansion wear resistant shaft sleeve

Similar Documents

Publication Publication Date Title
KR950013288B1 (en) Fibre-reinforced metal matrix composites
Prewo et al. High-strength silicon carbide fibre-reinforced glass-matrix composites
US5939216A (en) Fiber reinforced ceramic matrix composite and method of manufacturing the same
Levitt High-strength graphite fibre/lithium aluminosilicate composites
US5835841A (en) Composite material and production thereof
PT89318B (en) PROCESS FOR THE PREPARATION OF SELF-SUPPORTED BODIES AND PRODUCTS MANUFACTURED BY THAT PROCESS
US4474233A (en) Tube bundle heat exchanger
Singh et al. Mechanical Properties of a Uniaxially Reinforced Mullite‐Silicon Carbide Composite
ES2045169T3 (en) MANUFACTURING PROCEDURE OF A COMPOSITE MATRIX MATERIAL VITRO-CERAMIC OR CERAMIC BY VIA SOLGEL AND COMPOSITE MATERIAL SO OBTAINED.
JPS6046347A (en) Fiber reinforced metal composite material
Brennan Interfacial chemistry and bonding in fiber reinforced glass and glass-ceramic matrix composites
US4789605A (en) Composite material with light matrix metal and with reinforcing fiber material being short fiber material mixed with potassium titanate whiskers
JPH0551268A (en) Fiber-reinforced functionally gradient material
JPH10236887A (en) Ceramic porous film using titania as binder, ceramic filter using the same and production of these
US5968671A (en) Brazed composites
US4743340A (en) High-temperature zirconia insulation and method for making same
US5292692A (en) Method for improving ceramic fiber reinforced molybdenum disilicide composites
JP2000247745A (en) Ceramics-base fiber composite material, its production and gas turbine part
JPS6184351A (en) Porous material
JP3510710B2 (en) Method for manufacturing ceramic-based fiber composite member
李鵬遠 et al. Fracture behavior of monazite-coated alumina fiber-reinforced alumina-matrix composites at elevated temperature
Xue et al. A New SiC‐Whisker‐Reinforced Lithium Aluminosilicate Composite
JPH11255567A (en) Ceramic fiber-combined material part and its production
JPH09268065A (en) Continuous filament composite ceramics and their production
JP2000344582A (en) Fiber/reinforced composite material