JP3510710B2 - Method for manufacturing ceramic-based fiber composite member - Google Patents

Method for manufacturing ceramic-based fiber composite member

Info

Publication number
JP3510710B2
JP3510710B2 JP16904595A JP16904595A JP3510710B2 JP 3510710 B2 JP3510710 B2 JP 3510710B2 JP 16904595 A JP16904595 A JP 16904595A JP 16904595 A JP16904595 A JP 16904595A JP 3510710 B2 JP3510710 B2 JP 3510710B2
Authority
JP
Japan
Prior art keywords
ceramic
fiber composite
sic
composite member
based fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16904595A
Other languages
Japanese (ja)
Other versions
JPH0920572A (en
Inventor
雅弘 浅山
誠 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP16904595A priority Critical patent/JP3510710B2/en
Publication of JPH0920572A publication Critical patent/JPH0920572A/en
Application granted granted Critical
Publication of JP3510710B2 publication Critical patent/JP3510710B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はセラミックス基繊維複合
部材の製造方法に係り、特に複雑形状部品となるセラミ
ックス基繊維複合部材を構成するためにセラミックス繊
維からなる複数の予備成形体パーツを用いて製造される
ものに対し、各予備成形体パーツの接合部の機械的強度
特性の改善が図れるセラミックス基繊維複合部材の製造
方法に関する。
FIELD OF THE INVENTION The present invention relates to a ceramic base fiber composite.
In particular, a method for manufacturing a member, in which a plurality of preformed body parts made of ceramic fibers are used to form a ceramic base fiber composite member that is a complex shaped part Of a ceramic-based fiber composite member that can improve the mechanical strength characteristics of parts
Regarding the method .

【0002】[0002]

【従来の技術】セラミックス原料粉末を所定形状に成形
してセラミックス成形体とした後に、得られたセラミッ
クス成形体を焼結したセラミックス焼結体は、一般に高
温まで強度低下が少なく、硬度、電気絶縁性、耐摩耗
性、耐腐食性軽量性等の諸特性が従来の金属材料と比較
して優れているため、重電設備部品、航空機部品、自動
車部品、電子機器、精密機械部品、半導体装置材料など
の電子用材料や構造用材料として広い分野において使用
されている。
2. Description of the Related Art A ceramic sintered body obtained by molding a ceramic raw material powder into a predetermined shape to obtain a ceramic molded body and then sintering the resulting ceramic molded body generally has a small decrease in strength up to high temperatures, hardness, and electrical insulation. Since various properties such as heat resistance, wear resistance, corrosion resistance and lightness are superior to conventional metal materials, heavy electric equipment parts, aircraft parts, automobile parts, electronic equipment, precision machine parts, semiconductor device materials It is used in a wide range of fields such as electronic materials and structural materials.

【0003】但し、セラミックス焼結体は、本質的に引
張応力に弱く、破壊が一気に進行する、いわゆる脆性が
高いという欠点を有している。
However, the ceramics sintered body has a drawback that it is inherently weak to tensile stress and breaks at a stretch, that is, it is highly brittle.

【0004】このようなことから、高信頼性が要求され
る部位へのセラミックス部品の適用を可能にするために
セラミックス焼結体の高靭性化や破壊エネルギーの増大
を図ることが強く求められている。
Therefore, in order to make it possible to apply the ceramic parts to the parts requiring high reliability, it is strongly required to increase the toughness and increase the fracture energy of the ceramic sintered body. There is.

【0005】即ち、ガスタービン部品、航空機部品、自
動車部品等に使用されるセラミックス構成部品などのよ
うに耐熱性、および高温強度に加えて高い信頼性を要求
されるセラミックス構造部品としては、無機物質や金属
から成る補強繊維、ウイスカー、プレート、粒子等の強
化素材をマトリックス焼結体に分散複合化させて靭性値
や破壊エネルギー値等を高めたセラミックス複合材料部
品の実用化研究が内外の研究機関等において進められて
いる。
That is, as a ceramic structural component such as a ceramic component used in a gas turbine component, an aircraft component, an automobile component, etc., which requires high reliability in addition to heat resistance and high temperature strength, an inorganic substance is used. Research institutes for internal and external research on practical application of ceramics composite material parts that enhance the toughness value and fracture energy value by dispersing and reinforcing composite materials such as reinforcing fibers made of metal and metal, whiskers, plates, particles, etc. in a matrix sintered body Etc.

【0006】[0006]

【発明が解決しようとする課題】通常、このような場
合、補強繊維を配置するには、1次元的に配向した繊維
や、2次元的に形成されたクロスを積層して初期形状と
し、これを加工によって最終部品形状に仕上げていた。
しかしながら複雑形状物の場合、部品にかかる応力が複
雑で、積層層間剥離方向にも作用すると、一般に剥離強
度は繊維平行方向の強度に比べ極めて劣るため、本来期
待される特性を発揮できない。
Generally, in such a case, in order to arrange the reinforcing fibers, one-dimensionally oriented fibers and two-dimensionally formed cloths are laminated to form an initial shape, and Was processed into the final part shape.
However, in the case of a complex shaped article, the stress applied to the component is complicated, and when it also acts in the peeling direction between the laminated layers, the peeling strength is generally extremely inferior to the strength in the fiber parallel direction, so that the originally expected characteristics cannot be exhibited.

【0007】そこで、部品への応力状態に応じた繊維配
向方向にすべく設計を行い、各パーツ毎にセラミックス
基繊維複合部材を製造し、これを組み合せて接合する必
要がある。
Therefore, it is necessary to design a fiber orientation direction according to the stress state on the parts, manufacture a ceramic base fiber composite member for each part, and combine and join them.

【0008】この際、従来ではセラミックス基繊維複合
部材のパーツ同士を活性金属で接合する活性金属法が採
用されたが、この方法では複雑形状物故、接合荷重を充
分にとれないこともあった。
At this time, conventionally, an active metal method for joining the parts of the ceramic-based fiber composite member to each other with an active metal has been adopted. However, in this method, the joining load may not be sufficiently obtained due to the complicated shape.

【0009】さらに、この活性金属法では、セラミック
ス基繊維複合部材と活性金属との膨張係数の差によって
応力が発生し、接合部強度が低下する問題があり、ま
た、接合面積が大きい場合には接合部や複合材料にクラ
ックがはいる問題があった。
Further, in this active metal method, there is a problem that stress is generated due to the difference in expansion coefficient between the ceramic-based fiber composite member and the active metal, and the strength of the joint is lowered, and when the joint area is large, There was a problem that cracks were found in the joint and the composite material.

【0010】本発明はこのような事情に鑑みてなされた
もので、複雑形状部品となるセラミックス基繊維複合部
材を構成するためにセラミックス繊維からなる複数の予
備成形体パーツを用いて製造されるものに対し、各予備
成形体パーツの接合部の機械的強度特性の改善を図った
セラミックス基繊維複合部材の製造方法を提供すること
を目的とする。
The present invention has been made in view of the above circumstances, and is manufactured by using a plurality of preformed parts made of ceramic fibers to form a ceramic-based fiber composite member that is a complex shaped part. In contrast, the mechanical strength characteristics of the joints of each preform part were improved.
An object of the present invention is to provide a method for manufacturing a ceramic-based fiber composite member .

【0011】[0011]

【課題を解決するための手段および作用】これまで、複
合材料の製造方法のうち、セラミックスの反応を利用す
る反応焼結法(または反応含浸法:reactive infiltrat
ion)が知られている。
[Means and Actions for Solving the Problems] Among the methods for producing composite materials, the reactive sintering method (or reactive impregnation method) utilizing the reaction of ceramics has been used.
ion) is known.

【0012】この方法では、例えば〈カーボン(C)+
シリコン(Si)→炭化けい素(SiC)〉の反応によ
り、C繊維の予備成形体に溶融Siを含浸させる等が可
能であり、Si−C系、Si−Mo系等の金属間化合物
の生成等について種々研究が進められている。
In this method, for example, <carbon (C) +
By the reaction of silicon (Si) → silicon carbide (SiC)>, it is possible to impregnate a preformed body of C fiber with molten Si, etc., and form an intermetallic compound such as Si-C type or Si-Mo type. Various studies have been conducted on the above.

【0013】発明者においては、このような反応焼結の
技術を、複雑形状部品となるセラミックス基繊維複合部
材を構成するためにセラミックス繊維からなる複数の予
備成形体パーツを組立てる際の接合に利用することを想
到したものである。
The inventor of the present invention uses such a technique of reaction sintering for joining when assembling a plurality of preform parts made of ceramic fibers to form a ceramic matrix fiber composite member which is a complex shaped part. The idea is to do it.

【0014】[0014]

【0015】即ち、本発明に係るセラミックス基繊維複
合部材の製造方法は、セラミックス繊維およびセラミッ
クスウイスカーの少なくともいずれかからなる複数の予
備成形体パーツに反応焼結用材料を含有させ、得られた
成形体パーツの接合面に反応焼結用材料を塗布した状態
で組立てた後、この組立てられた成形体を熱処理部に導
入し、前記成形体にセラミックスマトリックスを構成す
るための溶融材料を毛細管により吸上げて含浸させなが
ら、前記反応焼結用材料と前記溶融材料との反応焼結に
より前記成形体内にセラミックスマトリックスを生成す
るとともに、前記成形体パーツをそれらの接合面に塗布
した反応焼結用材料の反応焼結により接合することを特
徴とする。
That is, the ceramic base fiber composite according to the present invention is
The manufacturing method of the composite member is made of ceramic fiber and ceramic.
Multiple pre-made whiskers
It was obtained by including the material for reactive sintering in the molded body parts.
A state in which the material for reactive sintering is applied to the joint surface of the molded part
After assembling in, the assembled compact is guided to the heat treatment section.
And form a ceramic matrix in the molded body.
The molten material for suction is taken up by a capillary tube and impregnated.
The reaction sintering of the material for reactive sintering and the molten material
To form a ceramic matrix in the compact
At the same time, apply the molded parts to their joint surfaces
The special feature is that the materials are bonded by reactive sintering of the materials for reactive sintering.
To collect.

【0016】本発明の方法で望ましくは、セラミックス
繊維およびセラミックスウイスカーとしてSiCを主成
分とするものを適用するとともに、成形体パーツの接合
面に塗布する反応焼結用材料として、Si粉末、SiC
粉末、およびC粉末の少なくとも1種以上の組合せのス
リップを適用し、組立てた成形体に溶融Siを含浸させ
る。さらに望ましくは、熱処理部として溶融Siが収容
されている真空加熱炉を適用し、前記溶融Siを毛細管
によって前記成形体パーツの内部および接合面に吸上げ
て充填させ、前記成形体パーツの内部および前記接合面
の界面層にSiCのみ、またはSiCとSiとからなる
組成のマトリックスおよび界面層をそれぞれ成形する。
In the method of the present invention, preferably, ceramic fibers and ceramic whiskers having SiC as a main component are applied, and Si powder or SiC is used as a reaction sintering material to be applied to the joint surface of the molded body part.
A slip of at least one combination of powder and C powder is applied to impregnate the assembled compact with molten Si. More preferably, a vacuum heating furnace containing molten Si as a heat treatment unit is applied, and the molten Si is sucked up and filled into the inside of the molded body part and the bonding surface by a capillary tube, and the inside of the molded body part and The interface layer on the joint surface is formed with a matrix of SiC alone, or a matrix of SiC and Si and an interface layer, respectively.

【0017】この望ましい方法によって製造されるセラ
ミックス基繊維複合部材においては、セラミックスマト
リックスおよびセラミックス繊維およびセラミックスウ
イスカーが主としてSiCによって構成され、さらに成
形体パーツ間の接合部分に主としてSiCまたはSiC
+Siの組成を有する界面層が形成される。
In the ceramic-based fiber composite member manufactured by this preferred method, the ceramic matrix, the ceramic fibers and the ceramic whiskers are mainly composed of SiC, and further SiC or SiC is mainly formed in the joint between the molded body parts.
An interface layer having a composition of + Si is formed.

【0018】このような反応焼結により形成されたセラ
ミックスは、その生成時に収縮を伴わず、かつ反応温度
は低い。それ故、接合をこの界面層により行うと、応力
の発生を低減させることが可能なうえ、一旦形成された
セラミックスは、耐熱性に優れ、高温までこの効果は維
持できる。
The ceramic formed by such reaction sintering does not shrink when it is formed, and the reaction temperature is low. Therefore, when the joining is performed by this interface layer, the generation of stress can be reduced, and the ceramic once formed has excellent heat resistance, and this effect can be maintained even at high temperatures.

【0019】[0019]

【実施例】以下、本発明の実施例を図面を参照して説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0020】実施例1 図1は本実施例によるセラミックス基繊維複合部材の製
造工程を示す図、図2(A),(B)は製造途中の状態
を示す図、図3は同実施例および下記の他の実施例の方
法によって製造されたセラミックス基繊維複合部材の特
性等を示す表である。
Example 1 FIG. 1 is a diagram showing a process for producing a ceramic-based fiber composite member according to this example, FIGS. 2 (A) and 2 (B) are diagrams showing a state in the middle of production, and FIG. It is a table which shows the characteristic etc. of the ceramic base fiber composite member manufactured by the method of the following other examples.

【0021】本実施例では図1に示すように、例えば1
対の予備成形体パーツ1,2を成形し(ステップS10
1,S102)、これらに反応焼結用材料を含浸(ステ
ップS103,S104)させた後、これらの予備成形
体パーツ1,2の組立て時に接合面となる部分に反応焼
結用材料を塗布する(ステップS105,S106)。
In this embodiment, as shown in FIG.
A pair of preformed body parts 1 and 2 are molded (step S10
1, S102), and impregnating these with a reaction sintering material (steps S103, S104), the reaction sintering material is applied to the portions that will become the joint surfaces when these preformed body parts 1 and 2 are assembled. (Steps S105 and S106).

【0022】ここで予備成形体パーツ1,2はSiCの
繊維束を2次元的または3次元的に織成したものを10
層積層し、図2(A)に示すように、クロス状にする。
また、予備成形体パーツ1,2に含浸させる反応焼結用
材料3は、本実施例ではSiC粉末とC粉末である。こ
れらの粉末を溶剤としての水に混合分散させてスリップ
とし、ステップS103,S104の含浸工程で予備成
形体パーツ1,2に含浸する。そして、各予備成形体パ
ーツ1,2に含浸させたスリップの水分を乾燥により除
去し、各パーツ1,2にSiC粉末およびC粉末を残存
させる。そして、予備成形体パーツ1,2同士の接合面
1aおよび(または)2aに塗布する反応焼結用材料と
してSi粉末とC粉末を用い、上記と同様にスリップと
してステップS105,S106の塗布工程で塗布す
る。ステップS105,S106はどちらか一方でも充
分である。
Here, the preformed parts 1 and 2 are made of SiC fiber bundles woven two-dimensionally or three-dimensionally.
Layers are laminated and formed into a cross shape as shown in FIG.
The reactive sintering material 3 with which the preformed parts 1 and 2 are impregnated is SiC powder and C powder in this embodiment. These powders are mixed and dispersed in water as a solvent to form a slip, which is impregnated into the preform parts 1 and 2 in the impregnation step of steps S103 and S104. Then, the water content of the slip impregnated in the preform parts 1 and 2 is removed by drying, and the SiC powder and the C powder are left in the parts 1 and 2. Then, Si powder and C powder are used as the reaction sintering material to be applied to the joint surfaces 1a and / or 2a of the preformed body parts 1 and 2, and as a slip, in the application process of steps S105 and S106 as described above. Apply. One of steps S105 and S106 is sufficient.

【0023】次に、得られた予備成形体パーツ1,2の
接合面1a,2aを互いに接合して1つの予備成形体4
として組立て、水分を乾燥により除去し、接合面にSi
粉末及びC粉末を残存させる(ステップ107)。
Next, the joining surfaces 1a and 2a of the obtained preform parts 1 and 2 are joined to each other to form one preform 4.
As assembled, remove moisture by drying, and bond surface with Si
The powder and the C powder are left (step 107).

【0024】この後、予備成形体4を熱処理部5に導入
し(ステップS108)、溶融マトリックスの含浸反応
焼結を行う(ステップ109)。
Thereafter, the preform 4 is introduced into the heat treatment section 5 (step S108), and the impregnation reaction sintering of the molten matrix is performed (step 109).

【0025】即ち、熱処理部5は図2(B)に示すよう
に、真空加熱炉であり、例えば10-4Pa以上の真空中で
1500℃の熱処理を行い粉末Siを溶融させる。この
溶融Si6は毛細管7によって予備成形体4に吸上げら
れ充填される。この場合、各予備成形体パーツ1,2の
内部および接合面1a,2aには、反応焼結用材料とし
てのC粉末が存在しているので、溶融Si6の含浸によ
って(Si+C→SiC)の反応が行われ、SiCマト
リックス8が生成されるとともに、各予備成形体パーツ
1,2の接合面にはSiCの界面層9が成形される。
That is, as shown in FIG. 2B, the heat treatment section 5 is a vacuum heating furnace, and heat-treats at 1500 ° C. in a vacuum of, for example, 10 −4 Pa or more to melt the powder Si. The molten Si 6 is sucked up and filled in the preform 4 by the capillary tube 7. In this case, since C powder as a reactive sintering material is present inside the preform parts 1 and 2 and the bonding surfaces 1a and 2a, the reaction of (Si + C → SiC) occurs by impregnation with molten Si6. Then, the SiC matrix 8 is generated, and the SiC interface layer 9 is formed on the joint surfaces of the preform parts 1 and 2.

【0026】この後、冷却およびその最終部品形状の仕
上加工を行い(ステップS110)、これによりSiC
基繊維複合部材としての製品が得られる。
Thereafter, cooling and finishing of the shape of the final part are performed (step S110).
A product as a base fiber composite member is obtained.

【0027】本実施例によると、反応生成物であるSi
Cが予備成形体パーツ1,2の接合面で確実に形成さ
れ、予備成形体パーツ1,2同士が極めて強固に接合さ
れる。
According to this embodiment, the reaction product Si
C is reliably formed on the joint surfaces of the preformed body parts 1 and 2, and the preformed body parts 1 and 2 are extremely strongly joined together.

【0028】そして、この場合、反応焼結により形成さ
れたSiCは、その生成時に収縮を伴わず、かつ、反応
温度は低い。それ故、接合界面にこの界面層が形成され
ると、応力の発生を低減させることが可能なうえ、一旦
形成されたSiCは、耐熱性に優れ、高温までこの効果
は維持できる。
In this case, the SiC formed by reaction sintering does not shrink when it is produced, and the reaction temperature is low. Therefore, when this interface layer is formed at the bonded interface, the generation of stress can be reduced, and once formed, SiC has excellent heat resistance, and this effect can be maintained even at high temperatures.

【0029】本実施例の方法で製造されたSiC基繊維
複合部材について、各予備成形体パーツ1,2間の接合
強度試験を行なった結果、図3に示すように150MP
aの接合強度を有することが確認された。
The SiC-based fiber composite member produced by the method of this embodiment was subjected to a joint strength test between the preform parts 1 and 2, and as a result, as shown in FIG.
It was confirmed to have a bonding strength of a.

【0030】実施例2 本実施例でも、図1および図2(A),(B)に示した
前記実施例1と同様の方法を用いてSiC基繊維複合部
材を製造したが、図3に示すように、予備成形体パーツ
1,2の接合面1a,2aの塗布材料をSiC粉末のス
リップのみとした。
Example 2 In this example as well, an SiC-based fiber composite member was manufactured using the same method as in Example 1 shown in FIGS. 1 and 2A and 2B. As shown, only the SiC powder slip was used as the coating material for the joint surfaces 1a and 2a of the preform parts 1 and 2.

【0031】本実施例において製造されるSiC基繊維
複合部材では、接合面1a,2aでのCによる反応焼結
が少ないため予備成形体パーツ1,2間に含浸したSi
の残存量が実施例1に比して多くなり、界面層は主とし
てSiC+Siの組成を有するものとなる。
In the SiC-based fiber composite member produced in this example, since the reaction sintering due to C on the joint surfaces 1a and 2a is small, the Si impregnated between the preform parts 1 and 2 is small.
The residual amount of the above is larger than that of the first embodiment, and the interface layer mainly has a composition of SiC + Si.

【0032】本実施例によって得られるSi基繊維複合
部材でも、前記実施例1のものと略同様の効果が奏され
る。予備成形体パーツ1,2間の接合強度は、試験結果
によると100MPaであった。
The Si-based fiber composite member obtained in this example also exhibits substantially the same effect as that of the first example. The joint strength between the preform parts 1 and 2 was 100 MPa according to the test result.

【0033】実施例3 本実施例でも、前記各実施例と同様の方法を用いてSi
C基繊維複合部材を製造したが、図3に示すように、予
備成形パーツ1,2の接合面1a,2aの塗布材料を
C粉末のスリップのみとし、Si粉末を用いない点が前
記各実施例と異なる。
Example 3 In this example as well, the same method as in each of the above-mentioned examples was used.
Were produced in C group fiber composite member, as shown in FIG. 3, the junction surface 1a of the preform part 1, the 2a of the coating material applied only to slip C powder, the points using no Si powder each Different from the embodiment.

【0034】本実施例において製造されるSiC基繊維
複合部材では、予備成形体パーツ1,2間の界面層は、
Cの密度が大の場合はSiC,Cの密度が低いときは主
としてSiC+Siの組成を有するものとなる。
In the SiC-based fiber composite member produced in this example, the interface layer between the preform parts 1 and 2 is
When the density of C is high, it has a composition of SiC + Si, and when the density of C is low, it has a composition of SiC + Si.

【0035】本実施例によって得られるSi基繊維複合
部材でも、前記実施例1のものと略同様の効果が奏され
る。予備成形体パーツ1,2間の接合強度は、試験結果
によると100MPaであった。
The Si-based fiber composite member obtained in this example also exhibits substantially the same effect as that of the first example. The joint strength between the preform parts 1 and 2 was 100 MPa according to the test result.

【0036】実施例4 本実施例でも、前記各実施例と同様の方法を用いてSi
C基繊維複合部材を製造したが、図3に示すように、予
備成形耐パーツ1,2の接合面1a,2aの塗布材料を
SiC粉末+C粉末のスリップとした。
Example 4 In this example also, the same method as in each of the above-mentioned examples was used.
Although a C-based fiber composite member was manufactured, as shown in FIG. 3, the coating material of the joining surfaces 1a and 2a of the preformed resistant parts 1 and 2 was a slip of SiC powder + C powder.

【0037】本実施例によって得られるSi基繊維複合
部材でも、前記実施例1のものと略同様の効果が奏され
る。予備成形体パーツ1,2間の接合強度は、試験結果
によると150MPaであった。
The Si-based fiber composite member obtained in this example also exhibits substantially the same effect as that of the first example. The joint strength between the preform parts 1 and 2 was 150 MPa according to the test result.

【0038】この実施例ではスラリーにおけるSi粉末
の分散がよく、またスラリーの粘度も調整しやすく製造
が容易である。
In this embodiment, the Si powder is well dispersed in the slurry, and the viscosity of the slurry can be easily adjusted to facilitate the production.

【0039】実施例4 本実施例でも、前記各実施例と同様の方法を用いてSi
C基繊維複合部材を製造したが、図3に示すように、予
備成形パーツ1,2の接合面1a,2aの塗布材料を
SiC粉末+C粉末のスリップとした。
Example 4 In this example also, the same method as in each of the above-described examples was used to obtain Si.
Was produced C based fiber composite member but, as shown in FIG. 3, the junction surface 1a of the preform part 1, the 2a of the coating material was slip SiC powder + C powder.

【0040】図4はSiCとCとの相対比を横軸にと
り、密度を縦軸にとって示したグラフである。これらの
図から分るように、例えばSiC100%の場合、密度
比(1.9/3.2)×100から40〜50%のSi
が導入されることになる。そこで、この場合にはSiC
の間をCで埋める形で補足することにより、残Si量を
殆ど零とすることができる。したがって、前記実施例
2,3の場合でも、接合面の界面層をSiCのみとする
ことが可能である。
FIG. 4 is a graph showing the relative ratio of SiC and C on the horizontal axis and the density on the vertical axis. As can be seen from these figures, for example, in the case of 100% SiC, the density ratio (1.9 / 3.2) × 100 to 40-50% Si
Will be introduced. Therefore, in this case, SiC
The amount of remaining Si can be made almost zero by supplementing by filling the space with C. Therefore, even in the cases of Examples 2 and 3, it is possible to use only SiC as the interface layer on the bonding surface.

【0041】このように、前記実施例2,3,4におい
ても界面層の組成のほとんど全てをSiCとなるように
調整することで、接合強度を実施例1と同様に高めるこ
とができる。
As described above, also in the second, third and fourth embodiments, the bonding strength can be increased similarly to the first embodiment by adjusting almost all the composition of the interface layer to be SiC.

【0042】比較例 マトリックスおよび繊維にSiCを適用して製造したS
iC基礎繊維複合部材を、接合面に活性金属、例えばチ
タン(Ti)を含む接合材を介在させて熱処理すること
により接合した。
Comparative Example S produced by applying SiC to matrix and fiber
The iC basic fiber composite member was joined by heat treatment with a joining material containing an active metal such as titanium (Ti) interposed on the joining surface.

【0043】ところが、この接合材料については、接合
面積が100cm2 以上になるとセラミックスにクラック
が入り、接合が不可能であった。
However, with this bonding material, when the bonding area was 100 cm 2 or more, the ceramics were cracked and bonding was impossible.

【0044】開示例 なお、界面層の組成については、Siとすることも可能
である。この場合には、Siがセラミックス基複合材料
の接合部において使用温度領域で組成変形する界面層と
することができ、使用温度領域にて負荷された応力集中
が、この接合部の塑性変形によって緩和でき、より高負
荷に耐えることが可能になる。
Disclosure Example The composition of the interface layer may be Si. In this case, Si can be used as an interface layer in which the composition of the ceramic-based composite material is deformed in the operating temperature range, and the stress concentration applied in the operating temperature range is relaxed by the plastic deformation of the bonding section. It is possible to withstand higher loads.

【0045】また、予備成形体パーツとして、SiCウ
イスカーや短繊維等をスラリーとしたものを乾燥するこ
とによって板状に成形したものでも、上記と同様の効果
を得ることができる。
The same effect as described above can be obtained even if the preform part is formed into a plate by drying a slurry of SiC whiskers or short fibers.

【0046】[0046]

【発明の効果】以上のように、本発明によれば、複雑形
状部品となるセラミックス基繊維複合部材を構成するた
めにセラミックス繊維からなる複数の予備成形体パーツ
を組立てて製造されるものに対し、各予備成形体パーツ
の接合部間の機械的強度特性の改善が図れるようになる
という効果が奏される。
As described above, according to the present invention, a plurality of preformed parts made of ceramic fibers are assembled and manufactured in order to form a ceramic base fiber composite member which is a complex shaped part. The effect of improving the mechanical strength characteristics between the joints of the preform parts can be achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るセラミックス基繊維複合部材の製
造方法の実施例を示す工程図。
FIG. 1 is a process drawing showing an embodiment of a method for manufacturing a ceramic-based fiber composite member according to the present invention.

【図2】(A)は図1で示したステップS104,S1
05を説明するための模式図、(B)は図1で示したス
テップS109を説明するための模式図。
2A shows steps S104 and S1 shown in FIG.
05 is a schematic diagram for explaining 05, and (B) is a schematic diagram for explaining step S109 shown in FIG. 1.

【図3】前記実施例の方法により製造されるセラミック
ス基繊維複合部材の組成および接合強度特性を比較例と
ともに示す表。
FIG. 3 is a ceramic produced by the method of the embodiment .
5 is a table showing the composition and joint strength characteristics of the fiber-based fiber composite member together with comparative examples.

【図4】本発明の他の実施例を説明するためのグラフ。FIG. 4 is a graph for explaining another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1,2 予備成形体パーツ 1a,2a 接合面 3 反応焼結用材料 4 予備成形体 5 熱処理部 6 溶融Si 7 毛細管 8 SiCマトリックス 9 界面層 1,2 Preformed parts 1a, 2a Bonding surface 3 Materials for reaction sintering 4 Preform 5 Heat treatment department 6 Molten Si 7 Capillaries 8 SiC matrix 9 Interface layer

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C04B 35/80 C (56)参考文献 特開 平2−149476(JP,A) 特開 平3−33071(JP,A) 特開 平3−83870(JP,A) 特開 昭55−116681(JP,A) 特開 昭58−95667(JP,A) 特開 昭60−122774(JP,A) (58)調査した分野(Int.Cl.7,DB名) C04B 37/00 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI C04B 35/80 C (56) References JP-A-2-149476 (JP, A) JP-A-3-33071 (JP, A) JP-A-3-83870 (JP, A) JP-A-55-116681 (JP, A) JP-A-58-95667 (JP, A) JP-A-60-122774 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) C04B 37/00

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 セラミックス繊維およびセラミックスウ
イスカーの少なくともいずれかからなる複数の予備成形
体パーツに反応焼結用材料を含有させ、得られた成形体
パーツの接合面に反応焼結用材料を塗布した状態で組立
てた後、この組立てられた成形体を熱処理部に導入し、
前記成形体にセラミックスマトリックスを構成するため
の溶融材料を毛細管により吸上げて含浸させながら、前
記反応焼結用材料と前記溶融材料との反応焼結により前
記成形体内にセラミックスマトリックスを生成するとと
もに、前記成形体パーツをそれらの接合面に塗布した反
応焼結用材料の反応焼結により接合することを特徴する
セラミックス基繊維複合部材の製造方法。
1. A plurality of preformed parts made of at least one of ceramic fibers and ceramic whiskers are made to contain a reaction sintering material, and the reaction sintering material is applied to the joint surface of the obtained molded part. After assembling in the state, introduce the assembled compact into the heat treatment section,
While the molten material for constituting the ceramic matrix impregnated with sucked up by the capillary into the compact, prior to
Before the reaction sintering of the material for reactive sintering and the molten material
Serial Generating a ceramic matrix forming body and <br/> Moni, ceramic-based fiber composite to said joining by reaction sintering of the reaction sintered material for a shaped body parts was applied to their bonding surfaces A method of manufacturing a member.
【請求項2】 請求項1記載のセラミックス基繊維複合
部材の製造方法において、セラミックス繊維およびセラ
ミックスウイスカーとしてSiCを主成分とするものを
適用するとともに、成形体パーツの接合面に塗布する反
応焼結用材料として、Si粉末、SiC粉末、およびC
粉末の少なくとも1種以上の組合せのスリップを適用
し、組立てた成形体に溶融Siを含浸させることを特徴
とするセラミックス基繊維複合部材の製造方法。
2. The method for producing a ceramic-based fiber composite member according to claim 1, wherein a ceramic fiber and a ceramic whisker containing SiC as a main component is applied, and the reaction sintering is applied to the joint surface of the molded body part. Materials for use include Si powder, SiC powder, and C
A method for producing a ceramic-based fiber composite member, characterized in that at least one combination of powders is applied as a slip to impregnate an assembled compact with molten Si.
【請求項3】請求項2記載のセラミックス基繊維複合部
材の製造方法において、熱処理部として溶融Siが収容
されている真空加熱炉を適用し、前記溶融Siを毛細管
によって前記成形体パーツの内部および接合面に吸上げ
て充填させ、前記成形体パーツの内部および前記接合面
の界面層にSiCのみ、またはSiCとSiとからなる
組成のマトリックスおよび界面層をそれぞれ成形するこ
とを特徴とするセラミックス基繊維複合部材の製造方
法。
3. The method for manufacturing a ceramic-based fiber composite member according to claim 2, wherein a vacuum heating furnace containing molten Si is applied as a heat treatment section, and the molten Si is applied to the inside of the molded body part by a capillary tube. A ceramic base characterized by sucking and filling the joint surface, and forming a matrix and an interface layer of only SiC or a composition of SiC and Si in the inside of the molded body part and the interface layer of the joint surface, respectively. A method for manufacturing a fiber composite member.
JP16904595A 1995-07-04 1995-07-04 Method for manufacturing ceramic-based fiber composite member Expired - Fee Related JP3510710B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16904595A JP3510710B2 (en) 1995-07-04 1995-07-04 Method for manufacturing ceramic-based fiber composite member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16904595A JP3510710B2 (en) 1995-07-04 1995-07-04 Method for manufacturing ceramic-based fiber composite member

Publications (2)

Publication Number Publication Date
JPH0920572A JPH0920572A (en) 1997-01-21
JP3510710B2 true JP3510710B2 (en) 2004-03-29

Family

ID=15879305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16904595A Expired - Fee Related JP3510710B2 (en) 1995-07-04 1995-07-04 Method for manufacturing ceramic-based fiber composite member

Country Status (1)

Country Link
JP (1) JP3510710B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4261130B2 (en) 2002-06-18 2009-04-30 株式会社東芝 Silicon / silicon carbide composite material
JP4956390B2 (en) * 2007-11-20 2012-06-20 株式会社ブリヂストン Silicon carbide bonding structure member and method for bonding silicon carbide bonding structure member
JP6489775B2 (en) * 2014-08-21 2019-03-27 株式会社フジコー Manufacturing method of SiC molded body and processing method of SiC molded body
CN107487054B (en) * 2016-06-12 2023-08-08 中国科学院宁波材料技术与工程研究所 Multilayer composite film, method for the production thereof and use thereof as a joining material for fiber-reinforced composite materials
JP2019156683A (en) * 2018-03-13 2019-09-19 イビデン株式会社 Production method of honeycomb structure

Also Published As

Publication number Publication date
JPH0920572A (en) 1997-01-21

Similar Documents

Publication Publication Date Title
US8956482B2 (en) Ceramics composite member and method of producing the same
KR101960264B1 (en) Residual stress free joined SiC ceramics and the processing method of the same
JP4106086B2 (en) Ceramic matrix fiber composite material
JP2006505951A (en) Semiconductor substrate having copper / diamond composite material and method of manufacturing the same
JP4536950B2 (en) Hot press manufacturing method for SiC fiber reinforced SiC composite material
WO2002098819A1 (en) Method for producing sic fiber-reinforced sic composite material
WO2004007401A1 (en) Silicon carbide matrix composite material, process for producing the same and process for producing part of silicon carbide matrix composite material
KR20010024921A (en) Method for producing a pin heater
JP3510710B2 (en) Method for manufacturing ceramic-based fiber composite member
JPH03112871A (en) Silicon carbide zygote and its junction
JPS60171274A (en) Ceramic bonding method
JP4537669B2 (en) Silicon carbide-based bonded component and method for manufacturing the same
JP3035230B2 (en) Manufacturing method of multilayer ceramics
JPH02137777A (en) Bonding of ceramics
JP3941455B2 (en) Bonding method for high heat resistant inorganic fiber bonded ceramics
JP3969106B2 (en) High heat resistant inorganic fiber bonded ceramic bonded body and bonding method thereof
JP6573303B2 (en) Mixed particle, slurry containing mixed particle, composite, and joined body
JP2675187B2 (en) Gradient silicon nitride composite material and method of manufacturing the same
JPS5884186A (en) Ceramics bonding method
JPH06272167A (en) Fiber for composite material
JP4427914B2 (en) Interlayer direction reinforced inorganic fiber-bonded ceramics and method for producing the same
JPH0867574A (en) Part prepared from fiber-reinforced ceramic-based composite material and its production
JPH11263668A (en) Ceramic matrix-fiber composite material parts and their production
JPH09263469A (en) High toughness sintered compact and its production
JPH09268080A (en) Production of composite ceramic of filament

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031226

LAPS Cancellation because of no payment of annual fees