JPS6045957B2 - Treatment method for fluorine in flue gas desulfurization wastewater - Google Patents

Treatment method for fluorine in flue gas desulfurization wastewater

Info

Publication number
JPS6045957B2
JPS6045957B2 JP57147827A JP14782782A JPS6045957B2 JP S6045957 B2 JPS6045957 B2 JP S6045957B2 JP 57147827 A JP57147827 A JP 57147827A JP 14782782 A JP14782782 A JP 14782782A JP S6045957 B2 JPS6045957 B2 JP S6045957B2
Authority
JP
Japan
Prior art keywords
fluorine
wastewater
aluminum
cooling process
flue gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57147827A
Other languages
Japanese (ja)
Other versions
JPS5939385A (en
Inventor
信一 荒尾
朗 柿本
治男 北村
勇 藤原
章男 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP57147827A priority Critical patent/JPS6045957B2/en
Publication of JPS5939385A publication Critical patent/JPS5939385A/en
Publication of JPS6045957B2 publication Critical patent/JPS6045957B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Removal Of Specific Substances (AREA)

Description

【発明の詳細な説明】 本発明は石灰炭ボイラの排脱廃水中のフゾ素の処理方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for treating fuzomine in wastewater discharged from a lime coal boiler.

石炭焚ポイラの排脱排水中のフッ素濃度を15m9ll
以下(全国一律基準)とする方法として、従来、第1図
に示すように廃水に石灰乳あるいは消石灰粉を加え、p
H7〜11程度にし、CaF2として析出させ、固液分
離する方法等がある。
Fluorine concentration in wastewater discharged from coal-fired boilers was reduced to 15ml9ll
Conventionally, as shown in Figure 1, lime milk or slaked lime powder is added to wastewater to achieve the following (uniform nationwide standard).
There is a method in which the temperature is adjusted to about H7 to 11, precipitated as CaF2, and solid-liquid separation is performed.

第1図について以下に簡単に説明する。FIG. 1 will be briefly explained below.

石炭を燃料とする燃焼排ガスは石炭−石膏法による脱硫
装置により処理される。
Combustion exhaust gas using coal as fuel is treated by a desulfurization device using the coal-gypsum method.

すなわち、燃焼排ガスは冷却工程1において冷却、除聖
され、ついて吸収工程2に導かれ吸収液により硫黄酸化
物が吸収除去されたのち清浄ガスとして放出される。そ
の際、冷却工程1からは燃料に起因するC1。
That is, the combustion exhaust gas is cooled and decontaminated in a cooling step 1, and then led to an absorption step 2, where sulfur oxides are absorbed and removed by an absorption liquid, and then released as clean gas. At this time, from the cooling step 1, C1 is caused by the fuel.

、F、B、重金属等を含む冷却工程廃水21が、フライ
アッシュを固液分離したのち、もしくはそのまま排出さ
れる。また、吸収工程2、酸化工程3を経て石膏分離工
程4からは排煙処理システムに起因する難分解性のニチ
オン酸イオン等のCOD成分を含む上澄水22が排出さ
れ、副生石膏11が回収される。
, F, B, heavy metals, etc., is discharged after solid-liquid separation of fly ash or as it is. Furthermore, after passing through the absorption process 2 and oxidation process 3, supernatant water 22 containing COD components such as persistent nithionic acid ions caused by the flue gas treatment system is discharged from the gypsum separation process 4, and by-product gypsum 11 is recovered. Ru.

この石膏分離工程4からの上澄水22はCOD酸分離工
程5に導き、硫酸31を添加し、蒸気3・2により加熱
して排水中のニチオン酸イオンを分解したのち、冷却工
程1に回収し冷却工程1の補給水として再利用する。一
方、冷却工程1からのF、B、重金属を含む冷却工程排
水21は第1pH調整工程7に導き、消石灰34を加え
てPH7〜11に調整し、排水中のFおよび重金属をそ
れぞれ難溶性のフッ化カルシウムおよび水酸化物等とし
て析出させ、ついで固液分離工程8に導き、高分子凝集
剤35を添加して該フッ化カルシウムおよび水酸化物等
を粗大フロック化したのち沈殿分離する。
The supernatant water 22 from this gypsum separation process 4 is led to the COD acid separation process 5, where sulfuric acid 31 is added and heated with steam 3 and 2 to decompose the nitionate ions in the waste water, and then recovered in the cooling process 1. Reuse as make-up water for cooling process 1. On the other hand, the cooling process wastewater 21 containing F, B, and heavy metals from the cooling process 1 is led to the first pH adjustment process 7, where slaked lime 34 is added to adjust the pH to 7 to 11, and the F and heavy metals in the wastewater are removed by slightly soluble Calcium fluoride, hydroxide, etc. are precipitated, and then led to a solid-liquid separation step 8, where a polymer flocculant 35 is added to form coarse flocs of calcium fluoride, hydroxide, etc., and then precipitated and separated.

沈殿分離した固液分離工程分離スラリー23は脱水工程
10に導き、脱水したのちライン12から抜出し、処分
する。F等を除去して固液分離工程8からの排水か第2
PH調整工程9に導き、硫酸31を添加して、PHを放
流規制範囲内に調整し、処理水24として放流する。
The precipitated solid-liquid separation step separated slurry 23 is led to a dehydration step 10, and after being dehydrated, it is extracted from a line 12 and disposed of. After removing F etc., the waste water from solid-liquid separation step 8 or the second
The water is led to a pH adjustment step 9, where sulfuric acid 31 is added to adjust the pH to within the discharge regulation range, and the treated water is discharged as treated water 24.

しかし、上記の従来の方法は以下のような欠点があつた
However, the above conventional method has the following drawbacks.

石炭焚ボイラ排脱廃水の冷却工程廃水はF,重金属以外
にフッ素の処理性に悪影響を与えるB(ホウフッ化物他
)等を含んでおり、かつその水質は燃料条件(炭種、石
炭混焼率)および排ガス処理システムの構成、操作条件
等により大幅に変動するため、従来の方法ては処理水F
濃度を安定して15m91′以下にすることは困難てあ
つた。
The wastewater from the cooling process of coal-fired boiler discharge wastewater contains F and heavy metals as well as B (borofluoride, etc.), which have a negative effect on the processability of fluorine, and the quality of the water depends on the fuel conditions (coal type, coal co-combustion rate). The conventional method uses treated water
It was difficult to keep the concentration stably below 15m91'.

以上のように、フッ素処理は石炭焚ボイラ排脱廃水処理
システムの重要な部分を構成しているが、上記したよう
に、従来の方法では処理水F濃一度か15mgI′以下
(全国一律基準)を安定して得られない欠点があつた。
従来法では、該F濃度は通常20〜30m91′程度て
あつた)。そこて本発明者らは上記の対策として、当該
廃水中に共存し、かつFと鎖体(AlFg−N,ここで
2nは1〜6)を形成してF−イオンの活性を失わせ、
冷却工程の装置材料に対する腐食抑制効果を生せせしめ
るA1(特開昭55−15976号公報参照)を利用す
ることを考え、本発明に到達したものである。
As mentioned above, fluorine treatment constitutes an important part of the coal-fired boiler discharge wastewater treatment system, but as mentioned above, in the conventional method, the treated water F concentration is 1 or less than 15 mg I' (national uniform standard). The drawback was that it was not possible to obtain stable results.
In the conventional method, the F concentration was usually about 20 to 30 m91'). Therefore, the present inventors have taken as a countermeasure against the above problem, coexisting in the wastewater and forming a chain with F (AlFg-N, where 2n is 1 to 6) to lose the activity of F- ions.
The present invention was developed by considering the use of A1 (see Japanese Unexamined Patent Publication No. 15976/1983) which produces a corrosion inhibiting effect on equipment materials in the cooling process.

すなわち本発明は、排煙脱硫廃水中のフゾ素を処理する
方法において、排煙の冷却工程にアルミニウム化合物を
注入し、冷却工程廃水中に含まれるホウフッ化物を分解
してフッ素−アルミニウム鎖体を生成させ、次いで冷却
工程廃水にカルシウィム化合物を添加し、析出するフッ
化カルシウムを分離することを特徴とする排煙脱硫廃水
中のフッ素の処理方法に関するものである。
That is, the present invention provides a method for treating fluorine in flue gas desulfurization wastewater, in which an aluminum compound is injected into the flue gas cooling process to decompose borofluoride contained in the cooling process wastewater to form fluorine-aluminum chains. The present invention relates to a method for treating fluorine in flue gas desulfurization wastewater, which is characterized by adding a calciwim compound to the cooling process wastewater and separating precipitated calcium fluoride.

本発明方法によれば、石炭焚ボイラ脱硫装置の冷却工程
廃水中にF−イオンとともに共存するホウフッ化物を分
解することによつて処理水F濃度を15m91e以下と
し、Fの処理性の安定を図ることができると同時に、F
−イオンがAlによりマスキング(錯体形成)されるこ
とによつて、冷却工程の装置材料に対する腐食抑制効果
が期待され、また、冷却工程廃水はフライアッシュの溶
解等によるアルミニウムを含有しており、上記錯体のN
源として利用できるため好都合である等の効フ果を奏し
得る。
According to the method of the present invention, by decomposing borofluoride coexisting with F- ions in the cooling process wastewater of a coal-fired boiler desulfurization equipment, the F concentration in treated water is reduced to 15 m91e or less, and the F treatment performance is stabilized. At the same time, F
- Masking (complex formation) of ions with Al is expected to have a corrosion inhibiting effect on equipment materials in the cooling process, and the cooling process wastewater contains aluminum due to dissolution of fly ash, etc. Complex N
Since it can be used as a source, it can produce effects such as convenience.

以下、添付図面等を参照して本発明方法を詳細に説明
する。
Hereinafter, the method of the present invention will be explained in detail with reference to the accompanying drawings and the like.

第2図は本発明方法の一実施態様例を示すフローシー
トである。
FIG. 2 is a flow sheet showing an embodiment of the method of the present invention.

第2図中、第1図を同一符号は門第1図と同一機能部品
を示す。 第2図に示すように、アルミニウム調整工程
6からアルミニウム化合物33としてアルミニウムの水
酸化物、塩(硫酸塩、塩酸塩他)、アルミン酸の塩、例
えば水酸化アルミニウム、硫酸アルミ身ニウム、ポリ塩
化アルミニウム、アルミニウム酸ソーダ等の1種または
2種以上を直接もしくはCOD酸分解工程5からの排水
を経て冷却工程1に流入させ、冷却工程1において、F
−イオンとともに該廃水に含まれかつ難処理性てあるホ
ウフッ化物を第1式に示すように分解し、フッ素一アル
ミニウム錯体を生成させる。
In FIG. 2, the same reference numerals as in FIG. 1 indicate the same functional parts as in FIG. 1. As shown in FIG. 2, from the aluminum preparation step 6, aluminum compounds 33 include aluminum hydroxides, salts (sulfates, hydrochlorides, etc.), aluminic acid salts, such as aluminum hydroxide, aluminum sulfate, polychloride. One or more types of aluminum, sodium aluminate, etc. are introduced into the cooling process 1 directly or through the waste water from the COD acid decomposition process 5, and in the cooling process 1, F
- Borofluoride, which is contained in the wastewater together with ions and is difficult to treat, is decomposed as shown in the first formula to generate a fluorine-aluminum complex.

Al3++BFn(0H)−4−。Al3++BFn(0H)-4-.

+(n−1)H2O=AlFk?n+B(0H)3+(
n−1)H+ 第1式 この反応は冷却工程1の条件(
温度50〜60゜C,PH5〜2,滞留時間10〜20
Hr)で可能であるため、特にこの反応のための工程を
必要としない利点がある。 また、アルミニウム化合物
33の添加量はアルミニウム化合物33を添加したのち
の冷却工程廃水21中における溶解性アルミニウムのフ
ッ素に対するモル比が0.4J)).上、好ましくは0
.5以上となるようにする。
+(n-1)H2O=AlFk? n+B(0H)3+(
n-1) H+ Formula 1 This reaction is carried out under the conditions of cooling step 1 (
Temperature 50~60°C, PH5~2, Residence time 10~20
Hr), there is an advantage that no special step for this reaction is required. Further, the amount of the aluminum compound 33 added is such that the molar ratio of soluble aluminum to fluorine in the cooling process wastewater 21 after adding the aluminum compound 33 is 0.4 J)). above, preferably 0
.. Make it 5 or more.

ついで、フッ素−アルミニウム錯体を含む冷却工程廃
水21を第1PH調整工程7に導き、消石灰【 等の
カルシウム化合物を添加してPHを7〜11,好ましく
は7〜9に調整し、第2式に示すようにフッ素−アルミ
ニウム錯体を分解し、難溶性のフッ化カルシウムとして
析出させる。
Next, the cooling process wastewater 21 containing the fluorine-aluminum complex is led to the first pH adjustment process 7, and a calcium compound such as slaked lime is added to adjust the pH to 7 to 11, preferably 7 to 9, and the pH is adjusted to 7 to 11, preferably 7 to 9. As shown, the fluorine-aluminum complex is decomposed and precipitated as poorly soluble calcium fluoride.

同時に、冷却工程廃水21中に存在するF−イオンは、
第3式に示すように反応して、難溶性のフッ化カルシウ
ムとして析出させる。
At the same time, the F- ions present in the cooling process wastewater 21 are
It reacts as shown in the third equation and is precipitated as poorly soluble calcium fluoride.

f−+Ca(0H)2=CaF2+0H−・・ ・・
・第3式上記フッ化カルシウムの他に水酸化アルミニウ
ム、重金属水酸化物等を含む第1PH調整工程7のJ排
水は固液分離工程8に導き、高分子凝集剤35を添加し
て該フッ化カルシウム等を粗大フロック化したのち沈殿
分離する。
f-+Ca(0H)2=CaF2+0H-...
・Formula 3 The J wastewater from the first PH adjustment step 7, which contains aluminum hydroxide, heavy metal hydroxides, etc. in addition to the above calcium fluoride, is led to the solid-liquid separation step 8, where a polymer flocculant 35 is added to remove the fluoride. Calcium chloride, etc. are formed into coarse flocs and then separated by precipitation.

この際、第2式に示す反応により生成した水酸化アルミ
ニウムは凝集剤としての作用を有するものであるから、
この沈殿j分離を促進させる効果がある。沈殿分離した
固液分離工程分離スラリー23は、脱水工程10に導き
、脱水したのち処分される。
At this time, since the aluminum hydroxide produced by the reaction shown in the second equation acts as a flocculant,
It has the effect of promoting this precipitation separation. The precipitated solid-liquid separation step separated slurry 23 is led to a dehydration step 10, dehydrated, and then disposed of.

フッ素等を除去した固液分離工程8からの排水は、第2
PH調整工程9に導き、硫酸31を添加2してPHを放
流規制範囲内に調整し、フッ素濃度15mgIf以下の
処理水24として放流される。本発明方法の具体例を以
下に示す。実施例1 出力150MWの石炭火力発電設備から排出され−る排
ガス(400000NdIH)を石炭一石膏法て脱硫し
た際に発生する冷却工程廃水中のフッ素を第2図に示す
フローで処理した。
The wastewater from the solid-liquid separation process 8 from which fluorine etc. have been removed is
The water is led to a pH adjustment step 9, where sulfuric acid 31 is added 2 to adjust the pH to within the discharge regulation range, and the water is discharged as treated water 24 with a fluorine concentration of 15 mg If or less. Specific examples of the method of the present invention are shown below. Example 1 Fluorine in cooling process wastewater generated when exhaust gas (400,000 NdIH) discharged from a coal-fired power generation facility with an output of 150 MW was desulfurized using the coal-gypsum method was treated according to the flow shown in FIG. 2.

条件および結果は以下の通りてあつた。The conditions and results were as follows.

(1)アルミニウム調整工程6からのアルミニウム化合
物33の添加条件アルミニウム化合物の種類 アルミン
酸ソーダ添加量 3.2kgA
11H(2)冷却工程1からの冷却工程廃水21の水量
および水質水量 8.0RIH PH1.0Ss18000m 91eF950mg ノ′ BlOOmgIlAl75OmgI ′ A1/F(モル比)0.56 (3)第1PH調整工程7のPH調整条件カルシウム化
合物の種類 消石灰 Rnυ 滞留時間 ? :4) 第1PH調整工程7の出口水量および水質水量
8.6d1HPH8.1SS36000m g1f (5)固液分離工程8の分離条件 高分子凝集剤の種類 サンポリー305 添加量 3ppm 滞留時間 ? (6)固液分離工程8の出口水量および水質水量
8.4rr1IHPH8.1SS6mgIeF 9m91eA12 7m91′ (7)固液分離工程8からの固液分離工程分離スラリー
23の量および水質スラリー量 0.2d1H PH8.2ss18Wt % (8)第2PH調整工程9PH調整条件 PH7.5 滞留時間 101111n (9)処理水24の量および水質 水量 8.4ぼIH PH7.6SS8mgI ′ F9m9le 実施例2 実施例1のアルミニウム調整工程6からのアルミニウム
化合物33の添加量を変えて、実施例1と同様に第2図
に示すフローで処理し、アルミニウム化合物33の添加
擁と処理水F濃度との関係)−を調べた結果は第3図に
示す通りであつた。
(1) Addition conditions for aluminum compound 33 from aluminum adjustment step 6 Type of aluminum compound Addition amount of sodium aluminate 3.2 kgA
11H (2) Water quantity and quality of cooling process wastewater 21 from cooling process 1 8.0RIH PH1.0Ss18000m 91eF950mg No'BlOOmgIlAl75OmgI' A1/F (molar ratio) 0.56 (3) PH adjustment in first PH adjustment process 7 Conditions Type of calcium compound Slaked lime Rnυ Residence time ? :4) Outlet water volume and water quality of the first PH adjustment step 7
8.6d1HPH8.1SS36000m g1f (5) Separation conditions for solid-liquid separation step 8 Type of polymer flocculant Sunpoly 305 Addition amount 3ppm Residence time ? (6) Outlet water volume and water quality of solid-liquid separation step 8
8.4rr1IHPH8.1SS6mgIeF 9m91eA12 7m91' (7) Amount of solid-liquid separation step separation slurry 23 from solid-liquid separation step 8 and water quality slurry amount 0.2d1H PH8.2ss18Wt% (8) Second PH adjustment step 9 PH adjustment conditions PH7. 5 Residence time 101111n (9) Amount and quality of treated water 24 Quantity 8.4 IH PH7.6SS8mgI'F9m9le Example 2 Example 2 by changing the amount of aluminum compound 33 from aluminum adjustment step 6 of Example 1 Similarly to 1, the treatment was carried out according to the flow shown in FIG. 2, and the relationship between the addition of aluminum compound 33 and the F concentration of the treated water was investigated. The results were as shown in FIG.

なお、第3図の横赳A1/F(モル比)は、アルミニウ
ム化合物33を添加した後の冷却工程廃水21について
のA1/F(モル比)てある。以上の実施例から明らか
なように、本発明方法に従つて石炭焚ボイラ排脱廃水の
フッ素化処理に際し、硫酸装置の冷却工程にアルミニウ
ム化合物を添加することにより下記の効果を得ることが
できる。
Note that the horizontal A1/F (molar ratio) in FIG. 3 is the A1/F (molar ratio) for the cooling process wastewater 21 after adding the aluminum compound 33. As is clear from the above examples, the following effects can be obtained by adding an aluminum compound to the cooling process of the sulfuric acid equipment during fluorination treatment of coal-fired boiler discharged wastewater according to the method of the present invention.

(1)冷却工程廃水中にF−イオンとともに共存するホ
ウフッ化物は脱硫装置の冷却工程においてフゾ素−アル
ミニウム錯体への分解が可能であり、特に分解反応のた
めの別途工程を必要としない。
(1) Cooling process The borofluoride coexisting with F- ions in the wastewater can be decomposed into a fusorine-aluminum complex in the cooling process of the desulfurizer, and no special process for the decomposition reaction is required.

(Ii)冷却工程廃水中にはフライアッシュの溶解等に
起因するアルミニウムを含んでおり、このアルミニウム
をフッ素−アルミニウム錯体生成のためのアルミニウム
源として利用できるため、アルミニウム化合物の添加量
を低減できる。
(Ii) Cooling process wastewater contains aluminum resulting from dissolution of fly ash, etc., and since this aluminum can be used as an aluminum source for producing a fluorine-aluminum complex, the amount of aluminum compounds added can be reduced.

(Iii)アルミニウム化合物の添加量は、アルミニウ
ム化合物を添加したのちの冷却工程廃水中における溶解
性アルミニウムのフッ素に対するモル比(A1/F)が
0.似上、好ましくは0.5以上となるようにすること
により、処理水F濃度15m91f以下(約10m91
f)で、かつ安定したフッ素処理性が得られる。(Iv
)上記のフッ素処理性以外にアルミニウムによりフッ素
イオンがマスキングされることにより、冷却工程の装置
材料に対する腐食抑制効果も得られる。
(Iii) The amount of the aluminum compound added is such that the molar ratio (A1/F) of soluble aluminum to fluorine in the cooling process wastewater after adding the aluminum compound is 0. Similarly, by setting the value to preferably 0.5 or more, the treated water F concentration is 15 m91f or less (approximately 10 m91
f) and stable fluorine treatment properties can be obtained. (Iv
) In addition to the above-mentioned fluorine treatment properties, the masking of fluorine ions by aluminum also provides a corrosion inhibiting effect on equipment materials during the cooling process.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の排煙脱硫廃水中のフッ素処理方法を示す
フローシート、第2図は本発明方法の一実施態様を示す
フローシート、第3図は本発明の実施例で得られたAl
lFモル比と処理水F濃度との関係を示す図表である。
Figure 1 is a flow sheet showing a conventional method for treating fluorine in flue gas desulfurization wastewater, Figure 2 is a flow sheet showing an embodiment of the method of the present invention, and Figure 3 is an Al
It is a chart showing the relationship between IF molar ratio and treated water F concentration.

Claims (1)

【特許請求の範囲】[Claims] 1 排煙脱硫廃水中のフッ素を処理する方法において、
排煙の冷却工程にアルミニウム化合物を注入し、冷却工
程廃水中に含まれるホウフッ化物を分解してフッ素−ア
ルミニウム鎖体を生成させ、次いで冷却工程廃水にカル
シウム化合物を添加し、析出するフッ化カルシウムを分
離することを特徴とする排煙脱硫廃水中のフッ素の処理
方法。
1. In a method for treating fluorine in flue gas desulfurization wastewater,
An aluminum compound is injected into the flue gas cooling process to decompose the borofluoride contained in the cooling process wastewater to produce fluorine-aluminum chains, and then a calcium compound is added to the cooling process wastewater to precipitate calcium fluoride. A method for treating fluorine in flue gas desulfurization wastewater, the method comprising separating fluorine from flue gas desulfurization wastewater.
JP57147827A 1982-08-27 1982-08-27 Treatment method for fluorine in flue gas desulfurization wastewater Expired JPS6045957B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57147827A JPS6045957B2 (en) 1982-08-27 1982-08-27 Treatment method for fluorine in flue gas desulfurization wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57147827A JPS6045957B2 (en) 1982-08-27 1982-08-27 Treatment method for fluorine in flue gas desulfurization wastewater

Publications (2)

Publication Number Publication Date
JPS5939385A JPS5939385A (en) 1984-03-03
JPS6045957B2 true JPS6045957B2 (en) 1985-10-12

Family

ID=15439126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57147827A Expired JPS6045957B2 (en) 1982-08-27 1982-08-27 Treatment method for fluorine in flue gas desulfurization wastewater

Country Status (1)

Country Link
JP (1) JPS6045957B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2934549B2 (en) * 1992-02-03 1999-08-16 三菱重工業株式会社 Exhaust gas treatment method
CN113511739A (en) * 2021-04-13 2021-10-19 兰州石化职业技术学院 Preparation method of low-chlorination external-drainage recycled circulating water

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5310553A (en) * 1976-07-15 1978-01-31 Kurita Water Ind Ltd Mehtod of treating waste water containing fluorine and boron
JPS5547119A (en) * 1978-09-29 1980-04-03 Asahi Glass Co Ltd Treatment of exhaust gas containing fluorine
JPS5781881A (en) * 1980-11-11 1982-05-22 Kurita Water Ind Ltd Treatment of water containing boron
JPS57105284A (en) * 1980-12-22 1982-06-30 Kurita Water Ind Ltd Purification of waste water used in desulfurization of exhaust gas
JPS57144086A (en) * 1981-03-03 1982-09-06 Kurita Water Ind Ltd Treatment of water contg. fluoride

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5310553A (en) * 1976-07-15 1978-01-31 Kurita Water Ind Ltd Mehtod of treating waste water containing fluorine and boron
JPS5547119A (en) * 1978-09-29 1980-04-03 Asahi Glass Co Ltd Treatment of exhaust gas containing fluorine
JPS5781881A (en) * 1980-11-11 1982-05-22 Kurita Water Ind Ltd Treatment of water containing boron
JPS57105284A (en) * 1980-12-22 1982-06-30 Kurita Water Ind Ltd Purification of waste water used in desulfurization of exhaust gas
JPS57144086A (en) * 1981-03-03 1982-09-06 Kurita Water Ind Ltd Treatment of water contg. fluoride

Also Published As

Publication number Publication date
JPS5939385A (en) 1984-03-03

Similar Documents

Publication Publication Date Title
JP4747382B1 (en) Flue gas purification treatment method
US3961021A (en) Method for removing sulfur dioxide from combustion exhaust gas
JP4330693B2 (en) Treatment method for fluorine-containing wastewater
JPH01107890A (en) Treatment of effluent water containing fluorine
JPS6045957B2 (en) Treatment method for fluorine in flue gas desulfurization wastewater
JP2912237B2 (en) Treatment method for fluorine-containing wastewater
KR100324078B1 (en) Process for removing fluorine from desulfurization waste water of flue gas
JP3282648B2 (en) Treatment method for fluorine-containing wastewater
JP2596908B2 (en) Treatment method for fluorine-containing wastewater
JPH0910548A (en) Treatment of drain containing fluorine
JP4169497B2 (en) Combustion exhaust gas treatment method and treatment apparatus
JP2001286875A (en) Method for treating arsenic-containing waste water
JP2578112B2 (en) Method for treating fluorine in flue gas desulfurization wastewater
JP3967398B2 (en) Treatment method for fluorine-containing wastewater
JP2562222B2 (en) Prevention method of phosphorus scattering in melting furnace
JP3739935B2 (en) Wastewater treatment method
JPS63252526A (en) Treatment method for exhaust gas desulfurization and drainage
JP3519555B2 (en) Exhaust gas treatment method for heavy oil fuel fired boiler
JPS5948675B2 (en) Treatment method for wet flue gas treatment liquid
JPS63336Y2 (en)
JPH0673670B2 (en) Wastewater treatment method
JP2000176241A (en) Treatment of fluoride ions in waste water in stack gas desulfurization
JPS62129194A (en) Method of treating fluorine of waste water from waste gas desulfurization process
JPS6242738Y2 (en)
JPS61268393A (en) Method for removing fluorine in waste water of waste gas desulfurization