JPS6042813A - Method and device for epitaxial crystal growth - Google Patents

Method and device for epitaxial crystal growth

Info

Publication number
JPS6042813A
JPS6042813A JP15018383A JP15018383A JPS6042813A JP S6042813 A JPS6042813 A JP S6042813A JP 15018383 A JP15018383 A JP 15018383A JP 15018383 A JP15018383 A JP 15018383A JP S6042813 A JPS6042813 A JP S6042813A
Authority
JP
Japan
Prior art keywords
hydrogen
hydrogen gas
crucible
crystal growth
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15018383A
Other languages
Japanese (ja)
Other versions
JPH0129052B2 (en
Inventor
Yoshiharu Horikoshi
佳治 堀越
Hiroshi Okamoto
岡本 紘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP15018383A priority Critical patent/JPS6042813A/en
Publication of JPS6042813A publication Critical patent/JPS6042813A/en
Publication of JPH0129052B2 publication Critical patent/JPH0129052B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PURPOSE:To obtain an epitaxial film safely and at low cost by a method in which an H-molecular flow is generated with the H pressure maintained from 1-10<-7>mm. Hg inside the high vacuum container, and a semiconductor material evaporated from its upstream crucible is bonded to a substrate which is placed to oppose to the flow and is heated. CONSTITUTION:Material of required elements are filled in the crucible of cells 3, and substrate crystals 5 are loaded through a plenum chamber 2. Valves are operated such that the air in the chamber 1 is discharged to reach les than 10<-8> mm.Hg by means of a turbo- molecular pump 7 and a rotary pump 8. The valve 20 is closed and the valve 13 is open to introduce high-purity H2. Then the needle valve 12 is adjusted. In case of utilizing the reduction property of H2 only, the adequate H pressure may be 10<-3>-10<-7>mm. Hg, while in case of utilizing H2 also for transportation it may be 10<0>-10<14>mm. Hg. Under the condition, the cells 3 are heated to evaporate the material to form an epitaxial film on the substrate crystals 5. After completing this operation, the substrate is taken out from the chamber 2. If H2 is ionized or excited, the reduction effect will be remarkably improved. According to this constitution, crystal growth can be realized safely and at a low cost without need of any huge equipment and free from toxic gas.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、高品質で制御性にすぐれた半導体エピタキシ
ャル結晶製造方法およびその装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method and apparatus for producing semiconductor epitaxial crystals of high quality and excellent controllability.

(従来技術) 電気的、光学的緒特性に優れ、かつ、厚さやヘテロ接合
の界面組成の急峻性にすぐれたエピタキシャル結晶成長
方法、としては、分子線エピタキシャル成長法(MBK
法)、気相成長法(vpu法)、有機金属OVD法(M
OOVD法)などの提案がすでに行なわれ、実際に使用
されている。しかし々からこれらの方法には、以下に述
べる問題点がある。
(Prior art) Molecular beam epitaxial growth method (MBK
method), vapor phase growth method (VPU method), organometallic OVD method (M
Proposals such as OOVD method) have already been made and are actually used. However, these methods have the following problems.

まずMBE法に関しては、超真空−持のための巨大なポ
ンプ系が必要であること、成長にあたっては゛液体窒素
を大−iK油消費ること、真空容器内に倒木ばGaAs
の成長の場合には大量のヒ素が「老廃物」として蓄積さ
れてしまうこと、などの問題点がある。一方vpz法、
 MQOVD法では多量の毒性ガス、反応性ガスを使用
、排出するため、成長従事者の安全性のみならず、毒ガ
ス排出に伴う環境問題の見地からも危険性が高い〜こと
、完全なドライプロセスではないため、他のプロセス装
置との結合が困難であること、危どの問題点を持つ。
First of all, regarding the MBE method, it requires a huge pump system to maintain an ultra-vacuum, it consumes a large amount of liquid nitrogen and iK oil during growth, and if a fallen tree falls in a vacuum container, GaAs
In the case of growth, there are problems such as large amounts of arsenic being accumulated as "waste". On the other hand, the vpz method,
The MQOVD method uses and discharges a large amount of toxic and reactive gases, which is highly dangerous not only for the safety of growers but also for the environmental issues associated with toxic gas emissions. Therefore, there are problems such as difficulty in connecting with other process equipment and danger.

MBE法において、巨大なポンプ系と大量の液体窒素が
必要とされるのは、真空室内の残留ガス、と<K酸素、
水・、二酸化炭素、−酸化炭素など、酸素原子を含むガ
スが成長結晶の品質を著しく損うため、これらの残留ガ
スを低下させることが良質の結晶を得る上で不可欠なた
めであり、vPIIl法。
The MBE method requires a huge pump system and a large amount of liquid nitrogen to remove residual gas in the vacuum chamber, <K oxygen,
This is because gases containing oxygen atoms, such as water, carbon dioxide, and carbon oxide, significantly impair the quality of grown crystals, so reducing these residual gases is essential to obtaining high-quality crystals. Law.

MOOVD法等で反応性ガス、有毒ガスが不可欠な理由
は、これらの“方法が実施される比較的高い気圧(yo
〜760m1H/)では、反応性ガス、有害ガスをなく
しては、半導体材料の輸送が不可能だからである。
The reason why reactive gases and toxic gases are indispensable in MOOVD methods is that these methods are carried out at relatively high atmospheric pressure (yo
~760m1H/), it is impossible to transport semiconductor materials without reactive gases and harmful gases.

これらの問題点を除去することは、結晶成長プロセスの
安全性の向上、成長結晶のコストダウン。
Eliminating these problems will improve the safety of the crystal growth process and reduce the cost of growing crystals.

量産性の向上等の観点できわめて重要である。This is extremely important from the perspective of improving mass productivity.

(発明の目的) 本発明はMBFi法、 VPE法、 MOOVD法等に
おけるこれらの欠点を除去するために提案されたもので
(Object of the Invention) The present invention was proposed to eliminate these drawbacks in the MBFi method, VPE method, MOOVD method, etc.

材料の輸送はMBRと同様な分子の熱運動、または中性
またはイオン化した水素ガス分子または原子による強制
輸送によって行い、酸素を含む残留ガスの除去は中性ま
たはイオン化した水素分子または原子の還元作用を利用
することによって、巨大な装置を必要とせず、かつ有毒
ガスの発生することの々い結晶成長方法およびそれに用
いる装置を提供することを目的とする。
Materials are transported by thermal movement of molecules similar to MBR, or forced transport by neutral or ionized hydrogen gas molecules or atoms, and residual gases including oxygen are removed by the reduction action of neutral or ionized hydrogen molecules or atoms. An object of the present invention is to provide a crystal growth method that does not require a huge apparatus and generates less toxic gas, and an apparatus used therefor.

(発明の構成) 上記の目的を達成するため、本発明は高真空に保持でき
る容器内に1水素ガス圧力を1〜10−’u HPの範
囲に保ちながら高速の水素分子の流れをつくり、この分
子流の上、流側に■族、m−v族、1−■族などの半導
体の原料を加熱蒸発させるためのルツボを複数個設置し
、これらのルツボから蒸発させた上記半導体材料を対向
して設置された加熱された基板上に付着させ、半導体エ
ピタキシャル膜を成長させることを特徴とするエピタキ
シャル結晶成長法を発明の要旨とするものでおる。
(Structure of the Invention) In order to achieve the above object, the present invention creates a high-speed flow of hydrogen molecules while maintaining the hydrogen gas pressure in the range of 1 to 10-'u HP in a container that can be maintained at high vacuum. Above this molecular flow, a plurality of crucibles for heating and evaporating raw materials for semiconductors such as group Ⅰ, m-v group, and 1-■ group are installed on the flow side, and the semiconductor materials evaporated from these crucibles are heated and evaporated. The gist of the invention is an epitaxial crystal growth method characterized by growing a semiconductor epitaxial film by depositing it on heated substrates placed opposite to each other.

さらに本発明は水素ガス導入口を有する高真空容器と、
前記の高真空容器の内部において、前記の導入口の近傍
に半導体材料を加熱蒸発させるためのルツボと、前記の
ルツボと対向して設置され。
Furthermore, the present invention provides a high vacuum container having a hydrogen gas inlet;
Inside the high vacuum container, a crucible for heating and evaporating the semiconductor material is installed near the inlet and facing the crucible.

かつ加熱手綾を有する基板保持装置と、前記のルツボと
反対側において前記の高真空容器に設置された水素ガス
排出装置とを備えることを特徴とするエピタキシャル結
晶成長装置を発明の要旨とするものである。
The gist of the invention is an epitaxial crystal growth apparatus, characterized in that it is equipped with a substrate holding device having a heating handshaft, and a hydrogen gas evacuation device installed in the high vacuum container on the opposite side from the crucible. It is.

要約すれば、本発明の特徴は、成長室内に定常的に「新
鮮な」高純度の中性またはイオン化した水素分子または
原子の流れを形成しておくことにある。
In summary, a feature of the present invention is the constant formation of a stream of "fresh", highly pure, neutral or ionized hydrogen molecules or atoms within the growth chamber.

次に本発明の実施例を添附図面について説明する。なお
実施例は一つの例示であって、本発明の精神を逸脱しな
い範囲で、種々の変更あるいは改良を行いうろことは云
うまでもない。
Next, embodiments of the present invention will be described with reference to the accompanying drawings. It should be noted that the embodiments are merely illustrative, and it goes without saying that various changes and improvements may be made without departing from the spirit of the present invention.

第1図は本発明の一つの実施例のブロックダイ、ヤグラ
ムを示す。図において1は高真空に保持できる成長室(
以下成長室と呼ぶ)、2は基板交換のための前室および
前室のポンプ系、3は材料蒸発用ルツボを内蔵する小形
電気炉(以下セルと呼ぶ)、4は加熱手段を持つ基板保
持装置、5は単結晶基板、6は成長室と前室を結ぶゲー
トパルプ、7は水素ガス排出に用いるターボ分子ポンプ
、8はターボ分子ポンプ7とロータリーポンプ9を結ぶ
パルプ、10は水素ボンベ、11は水素ガス高純度化装
置、12は水素ガス流量を調節するニードルパルプ、1
3は水素ガス供給系と成長室を分離するためのノ′(ル
プ、14は水素供給管、15は成長室内に形成される水
素ガス分子の流れ、16は成長室と露点計17の間のパ
ルプ、18はガス排出口、19は成長室とり□−ボ分子
ポンプ7を結ぶゲートパルプ、20は高純度水素ガスの
バイパスパルプ、21は水素ガスの成長室への導入口で
ある。
FIG. 1 shows a block diagram of one embodiment of the invention. In the figure, 1 is a growth chamber that can be maintained at a high vacuum (
2 is a front chamber for exchanging substrates and a pump system for the front chamber; 3 is a small electric furnace containing a crucible for material evaporation (hereinafter referred to as a cell); 4 is a substrate holder with heating means. 5 is a single crystal substrate, 6 is a gate pulp that connects the growth chamber and the front chamber, 7 is a turbo molecular pump used for discharging hydrogen gas, 8 is a pulp that connects the turbo molecular pump 7 and the rotary pump 9, 10 is a hydrogen cylinder, 11 is a hydrogen gas purification device, 12 is a needle pulp that adjusts the hydrogen gas flow rate, 1
3 is a nozzle for separating the hydrogen gas supply system and the growth chamber, 14 is a hydrogen supply pipe, 15 is a flow of hydrogen gas molecules formed in the growth chamber, and 16 is a hole between the growth chamber and the dew point meter 17. 18 is a gas exhaust port, 19 is a gate pulp connecting the growth chamber to the □-Bo molecular pump 7, 20 is a bypass pulp for high-purity hydrogen gas, and 21 is an inlet for introducing hydrogen gas into the growth chamber.

この装置の動作は以下の順序によりおこなう。The operation of this device is performed in the following order.

゛まずセル3中のルツボに必要な元素の材料を充てんす
る。さらに前室2を通して基板結晶5を装てんする。続
いてパルプ13,16.6を閉じ、パルプ8.19を開
けてターボ分子ポンプ7、ロータリーポンプ9を作動さ
せ、成長室1内を10−”l1aH!以下まで排気する
。このプロセスでは、高純度化された水素ガスはパルプ
20を開くことにより外部へ放出されている。上記の真
空度に達した時点でパルプ20を閉じ、パルプ13を開
き高純度水素ガスを成長室1内に導入する。成長室l内
の水素ガス圧力が適当な値になるようにニードルパルプ
12を調節する。適当な値とは、水素ガスの還元性のみ
を利用する場合には101〜l O−’ w Hpの範
囲の値であり、水素ガスを原料材料の輸送にも利用する
場合にはlO°〜10−’ IIIJ) Hpの範囲の
値が適当である。このプpセ゛スによυ成長室1の内部
には】5に示すような高度の水素ガスの分子流が形成さ
れる。
``First, the crucible in cell 3 is filled with the necessary elemental materials. Furthermore, a substrate crystal 5 is loaded through the front chamber 2. Next, the pulps 13 and 16.6 are closed, the pulp 8.19 is opened, and the turbo molecular pump 7 and rotary pump 9 are activated to evacuate the inside of the growth chamber 1 to below 10-''l1aH!. Purified hydrogen gas is released to the outside by opening the pulp 20. When the above degree of vacuum is reached, the pulp 20 is closed and the pulp 13 is opened to introduce high purity hydrogen gas into the growth chamber 1. Adjust the needle pulp 12 so that the hydrogen gas pressure in the growth chamber l becomes an appropriate value.The appropriate value is 101 to 1 O-' w Hp when only the reducing property of hydrogen gas is used. If hydrogen gas is also used for transporting raw materials, a value in the range of lO° to 10-' Hp is appropriate. Inside, a high molecular flow of hydrogen gas is formed as shown in 5.

この状況のもとてセル3を加熱し、原料材料を蒸発させ
ることにより、基板結晶5上に結晶成長がおこなわれる
。成長終了後ゲーi・パルプ6を開き前室2を通して結
晶、を取り出す。本装置の動作を終了する場合は、結晶
取勺出し後ゲートパルプ6.19を閉じる。これによっ
て成長室内の水素圧力は徐々に上昇し、やがて大気圧を
超える。成・・長室内の圧力が大気圧を超えた時点でパ
ルプ16を開き、水素ガスの定常流をつくり、この状態
で装置を放置する。この間、ターボ分子ポンプ7゜ロー
タリーポンプ9は停止しておくことも可能である。本装
置は、装置組立て後に水素流中で1気圧)におけるベー
キング、およびターボ分子ポンプ((10= wHj’
 )におけるベーキングによって十分に系を枯らす必要
があるが、その後使用状態に入れば、成長を行なわない
場合には上記のJ:5に水素ガス流通状態(1気圧)で
保持することが本方法、装置の大きな特徴である。
Under this condition, by heating the cell 3 and evaporating the raw material, crystal growth is performed on the substrate crystal 5. After the growth is completed, the game pulp 6 is opened and the crystals are taken out through the front chamber 2. To end the operation of this device, close the gate pulp 6.19 after removing the crystals. As a result, the hydrogen pressure inside the growth chamber gradually increases and eventually exceeds atmospheric pressure. Formation: When the pressure inside the long chamber exceeds atmospheric pressure, the pulp 16 is opened to create a steady flow of hydrogen gas, and the apparatus is left in this state. During this time, the turbo molecular pump 7° rotary pump 9 can also be stopped. The device is suitable for baking in a hydrogen flow at 1 atm after device assembly, and for a turbomolecular pump ((10 = wHj'
It is necessary to sufficiently dry the system by baking in ), but once the system is put into use after that, if growth is not performed, it is necessary to maintain the system in a hydrogen gas flowing state (1 atm) at J:5 above. This is a major feature of the device.

このような構成をとることによシ、次に述べるような特
徴が得られる。まず高純度水素ガス流通状態での保持(
1気圧)により、外部からの不純物の導入の機会がMB
]l!!法等に比べて比較的少ない。
By adopting such a configuration, the following characteristics can be obtained. First, hold it in a state where high-purity hydrogen gas is flowing (
1 atm), the opportunity for introducing impurities from the outside is MB.
]l! ! This is relatively small compared to the law.

加えて成長時における水素分子の還元作用のため、酸素
を含む残留ガスの効果が激減し、このため、液体窒素シ
ュラウドの設置は不必要である。このため液体窒素の消
費はMBFi法に比べて著しく少なくなる特徴がある。
In addition, due to the reducing action of hydrogen molecules during growth, the effectiveness of residual gases containing oxygen is greatly reduced, thus making the installation of a liquid nitrogen shroud unnecessary. Therefore, the consumption of liquid nitrogen is significantly lower than that of the MBFi method.

またポンプ系が単純化できる□こと、成長しない場合に
はポンプ動作が不要であること、kと運転上のメリット
も多い。さらに蒸発金属の蒸気圧の比較的高いものは、
水素ガス流メともに外部に排出され、成長室には蓄積し
ない。
There are also many operational advantages, such as the fact that the pump system can be simplified, and the pump operation is not required when there is no growth. Furthermore, the vapor pressure of evaporated metals is relatively high.
Both hydrogen gas streams are exhausted to the outside and do not accumulate in the growth chamber.

一方毒ガスや反応性ガスは全く利用しないから、MOO
VD法やVPB法に見られる問題点は存在しない。
On the other hand, since no poisonous or reactive gases are used, MOO
There are no problems found in the VD method or VPB method.

上記した水素ガスの還元効果は、水素分子をイオン化す
るか、励起状態にすることによシ大幅に増加する。第2
図は成長室内に導入される水素ガス分子をイオン化する
ための装置の例を示したもので、この装置を水素ガス導
入口(第1図の21)の成長室l内部に設置する。第2
図で1は成長室、20′は水素ガス導入口、101はイ
オン化装置本体フランジ、102はイオン化装置ヒータ
用絶縁端子、103は陽極用絶縁端子、IO2は円筒形
陽極、105はヒータ、106は高純度水素ガス導入口
、107は導入水素ガス、10Bはイオン化水素を示す
。第3図はイオン化装置の他の例を示すもので、110
は円筒形の陽極の中心に配置された中心導体、111は
中心導体の電極取シ出しのための絶縁端子である。これ
らのイオン化装置の動作は次のようにおこなう。嬉2図
において成長室1を高貢窒(〈1x lO” waHl
 ) K L、た後、端子1ozKt流’e ML l
、、ヒータ105より熱電子を放出させる。このとき、
このヒータ105と円筒形陽極104の間に数百Vの電
圧を印加しておくと、電子はこの陽極104に向って加
速され、水素ガス導入管106を通して導入された水素
分子をイオン化する。第2図に示すイオン化装置はとく
に水素圧力が10−4μHp以下の場合に効果的である
。I O−’ w H/以上の水素圧力の場合には、第
3図に示すイオン化装置が効果的である。この場合円筒
形陽極104と中心電極1100間に数百■の電圧を印
加することによジグロー放電が生じ、内部を通過する水
素分子を効果的にイオン化で、きる。
The above-mentioned reducing effect of hydrogen gas is greatly increased by ionizing hydrogen molecules or bringing them into an excited state. Second
The figure shows an example of a device for ionizing hydrogen gas molecules introduced into the growth chamber, and this device is installed inside the growth chamber l at the hydrogen gas inlet (21 in FIG. 1). Second
In the figure, 1 is the growth chamber, 20' is the hydrogen gas inlet, 101 is the flange of the ionizer main body, 102 is the insulated terminal for the ionizer heater, 103 is the insulated terminal for the anode, IO2 is the cylindrical anode, 105 is the heater, and 106 is the insulated terminal for the anode. A high-purity hydrogen gas inlet, 107 indicates introduced hydrogen gas, and 10B indicates ionized hydrogen. Figure 3 shows another example of the ionization device, 110
1 is a center conductor placed at the center of the cylindrical anode, and 111 is an insulated terminal for taking out the electrode of the center conductor. These ionization devices operate as follows. In Figure 2, growth chamber 1 is
) K L, then terminal 1ozKt style'e ML l
, , the heater 105 emits thermoelectrons. At this time,
When a voltage of several hundred V is applied between the heater 105 and the cylindrical anode 104, electrons are accelerated toward the anode 104 and ionize hydrogen molecules introduced through the hydrogen gas introduction tube 106. The ionization apparatus shown in FIG. 2 is particularly effective when the hydrogen pressure is 10@-4 .mu.Hp or less. In the case of a hydrogen pressure of I O-' w H/ or more, the ionization device shown in FIG. 3 is effective. In this case, by applying a voltage of several hundred μ between the cylindrical anode 104 and the center electrode 1100, a jiglow discharge is generated, and hydrogen molecules passing through the interior are effectively ionized and terminated.

ここで本方法における二つの成長モード、すなわち水素
分子流の還元性のみを利用する成長法と、還元性と輸送
効果の両方を利用する成長法についてH1l明する。ガ
ス中の分子の平均自由行程Jは、密度nとガス分子の直
径σによって ’ ” (、/T71: n a” )−”のように表
わされる。第4図は平均自由行程1と圧力p (rmH
l )の関係を示したものである。水素ガス圧力が〜1
0−’ 15 H/以下では平均自由行程は、100c
rn以上になる。セルと基板結晶の間隔は50m以下と
すれば、上記の圧力条件下ではセル内のルツボから蒸発
した分子は水素ガス分子と衝突することなく基板結晶表
面に到達できる。このような状況はMBF!成長法の場
合と同じであるが、例えば水素圧力が10”−’ wt
bH/の場合、基板表面に入射する水素分子は2 x 
loI708m・(8)に達し、基板の表面原子数よシ
もはるかに^いから、十分な還元作用が得られる。一方
水素圧力が1o−1〜1m+11417の場合、1は1
顛〜10crn程度に短く、なシ、原料材料から蒸発し
た分子は水素分子と多くの衝突をくり返して基板表面に
到達することになる。従って、水素ガスの成長室への入
口における圧力とポンプ側の圧力差によって生じる水素
分子の運動エネルギは、蒸発分子r(効率よく伝達され
、蒸発分子は水素分子によって輸送されることになる。
Here, we will explain the two growth modes in this method, namely, a growth method that utilizes only the reducibility of the flow of hydrogen molecules, and a growth method that utilizes both the reducibility and the transport effect. The mean free path J of a molecule in a gas is expressed by the density n and the diameter σ of the gas molecule as ''' (,/T71: na'') -''. (rmH
1) shows the relationship. Hydrogen gas pressure is ~1
Below 0-' 15 H/, the mean free path is 100c
It becomes more than rn. If the distance between the cell and the substrate crystal is 50 m or less, under the above pressure conditions, molecules evaporated from the crucible in the cell can reach the substrate crystal surface without colliding with hydrogen gas molecules. This situation is MBF! The same as in the case of the growth method, but for example when the hydrogen pressure is 10"-'wt
In the case of bH/, the number of hydrogen molecules incident on the substrate surface is 2 x
Since the loI reaches 708m·(8) and the number of surface atoms of the substrate is much larger, sufficient reducing action can be obtained. On the other hand, if the hydrogen pressure is 1o-1 to 1m+11417, 1 is 1
If the length is as short as ~10 crn, the molecules evaporated from the raw material will repeatedly collide with hydrogen molecules and reach the substrate surface. Therefore, the kinetic energy of the hydrogen molecules caused by the difference between the pressure at the inlet of the hydrogen gas growth chamber and the pressure on the pump side is efficiently transferred to the evaporated molecules (r), and the evaporated molecules are transported by the hydrogen molecules.

この場合基板と衝突する水素分子の数は著し゛〈増加し
強い還元作用が得られる。
In this case, the number of hydrogen molecules that collide with the substrate increases significantly, resulting in a strong reduction effect.

(実施例1) 第1図に示した本発明のエピタキシャル結晶成長装置を
用い、10−’m胛の水素圧でGaAa基板上1cGa
AaおよびAjGaAsをエピタキシャル成長させた。
(Example 1) Using the epitaxial crystal growth apparatus of the present invention shown in FIG.
Aa and AjGaAs were epitaxially grown.

ノ成長したエピタキシャル層の残留アクセプタ濃度は1
0′4/6118程度であり、従来のMBIe法によシ
成長したエピタキシャル層と同等テあった。
The residual acceptor concentration of the grown epitaxial layer is 1
It was about 0'4/6118, which was equivalent to that of an epitaxial layer grown by the conventional MBIe method.

(実施例2) 実施例1と同一の条件で第2図に示したイオン化装置を
作動させてGaAa基板上にGaAaおよびAj Ga
 Aaをエピタキシャル成長させた。成長したエピタキ
シャル層の残留アクセプタ濃度はGaAsでは実施例1
とらまシ変化しなかったがAJGaAa。
(Example 2) The ionization apparatus shown in FIG. 2 was operated under the same conditions as in Example 1 to deposit GaAa and Aj Ga on the GaAa substrate.
Aa was epitaxially grown. The residual acceptor concentration of the grown epitaxial layer was that of Example 1 for GaAs.
Toramashi did not change, but AJGaAa.

では1O1s/crnsに減少した。It decreased to 1O1s/crns.

実施例1および2の条件で、約ioo時間運転後におい
て、貞窒容器の内壁の付着物はごく微量で本発明の効果
が確認された。
Under the conditions of Examples 1 and 2, after approximately 100 hours of operation, there was only a very small amount of deposits on the inner wall of the chaste nitrogen container, confirming the effects of the present invention.

なお、本発明は上記の実施例に限定されることなく、半
導体原料として■族、m−v族、I−4族などの原料に
対しても適用しうろことは云う壕でもない。
It should be noted that the present invention is not limited to the above-mentioned embodiments, but can also be applied to semiconductor materials such as group 1, MV group, and group I-4.

(発明の効果) 紙上のように、本発明によれば半導体材料の基板結晶上
への輸送はMBllを法と同様な分子の熱運動、または
水素ガス分子による強制輸送によっておこない、酸素を
含む残留ガスの除去は水素の中性、またはイオン化した
分子または原子の還元作用に 1上っておこなうことが
可能な構成が実現された。
(Effects of the Invention) As described in the paper, according to the present invention, the semiconductor material is transported onto the substrate crystal by thermal movement of molecules similar to the MBll method or by forced transport by hydrogen gas molecules, and residual oxygen containing oxygen is transported. A configuration has been realized in which gas removal can be performed by reducing the neutrality of hydrogen or ionized molecules or atoms.

このため従来のMBIIt法、 MOOVD法に比べて
下記のような利点がある。
Therefore, it has the following advantages compared to the conventional MBIIt method and MOOVD method.

(1) MBIli法におけるような巨大なポンプ系が
不要。
(1) There is no need for a huge pump system like in the MBIli method.

また運転時に大量の液体窒素を必要としない。Also, it does not require a large amount of liquid nitrogen during operation.

(1) MBIjl法に比べて半導体材料金属の成長室
内への蓄積が軽減される。
(1) Compared to the MBIjl method, accumulation of semiconductor material metal in the growth chamber is reduced.

(Ill)水素ガス雰囲気でおこなうがMOOVD法や
VPln法のように有毒ガスや反応性ガスを用いないた
め、作業の安全性向上、環境汚染の低減をはかることが
できる。
(Ill) Although it is carried out in a hydrogen gas atmosphere, unlike the MOOVD method and the VPln method, no toxic or reactive gas is used, so it is possible to improve work safety and reduce environmental pollution.

(vl)上記のように装置運転上の著しい簡略化による
運転費用の低減、スループットの著しい改善、および材
料の成長室内蓄積の低減による装置の長寿命化、および
安全性の増加等が達成されるが、水素ガスによる強力な
還元作用を利用しているため、これによって成長結晶の
品質は全く損われず、従来のMBFi法に成る結晶と同
等の品質をもつ結晶が得られる。
(vl) As mentioned above, reduction in operating costs due to significant simplification of device operation, significant improvement in throughput, and longer life of the device due to reduction in material accumulation within the growth chamber, increased safety, etc. are achieved. However, since the strong reducing effect of hydrogen gas is utilized, the quality of the grown crystal is not impaired at all, and a crystal having the same quality as the crystal produced by the conventional MBFi method can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のブロックダイヤグラム、第
2図及び第3図は水素分子のイオン化装置1、第4図は
ガス圧力と蒸発分子の平均自由行程の関係を示す。・ 1・・成長室、2・・前室、3・・・セル(ルツボを含
む)、4・・基板保持装置、5・・・単結晶基板、6・
・・成長室−前室1171ゲートパルプ、7・・・ター
ボ分子ポンプ、8・・・パルプ、9・・・ロータリーポ
ンプ、10・・・水素ボンベ、’11・・・水素ガス純
化装置、12・・・ニードルパルプ、13・・・パルプ
、14・・・水素ガス供給管、15・・・水素ガス分子
の流れ、16・・・パルプ、17・・総点針、18・・
・ガス排出口、19・・・ゲートパルプ、20・・・水
素ガスバイパスパルプ、20′・・・水素ガス導入口、
21・・・水素ガスの成長室1への導入口、、 101
・・・イオン化装置本体フランジ、102・・・イオン
化装置ヒータ用絶縁端子、103・・・陽極用絶縁端子
、104・・・円筒形陽極、105・・・ヒータ、10
6・・高純度水素ガス導入口、107・・・導入水素ガ
ス、108・・・イオン化水素、110・・・中心導体
、111・・・中心導体用絶縁端子 第2図 0 08 上 第3図 0 8 第4図 1ogP (P:MQ、mmHg )
FIG. 1 is a block diagram of an embodiment of the present invention, FIGS. 2 and 3 show a hydrogen molecule ionization device 1, and FIG. 4 shows the relationship between gas pressure and mean free path of vaporized molecules.・ 1. Growth chamber, 2. Front chamber, 3. Cell (including crucible), 4. Substrate holding device, 5. Single crystal substrate, 6.
・Growth chamber - front chamber 1171 Gate pulp, 7...Turbo molecular pump, 8...Pulp, 9...Rotary pump, 10...Hydrogen cylinder, '11...Hydrogen gas purifier, 12 ... Needle pulp, 13... Pulp, 14... Hydrogen gas supply pipe, 15... Flow of hydrogen gas molecules, 16... Pulp, 17... Total point needle, 18...
・Gas exhaust port, 19...gate pulp, 20...hydrogen gas bypass pulp, 20'...hydrogen gas inlet,
21...Hydrogen gas introduction port to the growth chamber 1, 101
... Ionization device main body flange, 102 ... Insulated terminal for ionization device heater, 103 ... Insulated terminal for anode, 104 ... Cylindrical anode, 105 ... Heater, 10
6... High purity hydrogen gas inlet, 107... Introduced hydrogen gas, 108... Ionized hydrogen, 110... Center conductor, 111... Insulated terminal for center conductor Fig. 2 0 08 Upper Fig. 3 0 8 Fig. 4 1ogP (P:MQ, mmHg)

Claims (3)

【特許請求の範囲】[Claims] (1)高真空に保持できる容器内に、水素ガス圧力を1
−10−’ xnHlの範囲に保ちながら高速の水素分
子の流れをつくり、この分子流の上流側に■族、■−V
族、 n−IJ族などの半導体の原料を加熱蒸発させる
ためのルツボを複数個設置し、これらのルツボから蒸発
させた上記半導体材料を対向して設置された加熱された
基板上に付着させ、半導体エピタキシャル膜を成長させ
ることを特徴とするエピタキシャル結晶成長法。
(1) In a container that can maintain a high vacuum, apply hydrogen gas pressure of 1
-10-' Create a flow of high-speed hydrogen molecules while maintaining the range of xnHl, and on the upstream side of this molecular flow
A plurality of crucibles are installed for heating and evaporating raw materials for semiconductors such as semiconductors such as group members and n-IJ group members, and the semiconductor materials evaporated from these crucibles are deposited on heated substrates placed facing each other. An epitaxial crystal growth method characterized by growing a semiconductor epitaxial film.
(2)高真空に保持できる容器内の水素分子および水素
分子流を形成する水素分子の一部または全部をイオン化
したことを特徴とする特許請求の範囲第1項記載のエピ
タキシャル結晶成長法。
(2) The epitaxial crystal growth method according to claim 1, characterized in that some or all of the hydrogen molecules and the hydrogen molecules forming the hydrogen molecule flow are ionized in a container that can be maintained in a high vacuum.
(3)水素ガス専入口を有する高真空容器と、前記の高
X空容器の内部において、前記の導入口の近佛に半導体
材料を加熱蒸発させるためのルツボと、前記のルツボと
対向して設置され、かつ加熱手段を有する基板保持装置
と、前記のルツボと反対側において前記の高真空容器に
設置された水素ガス排出装置とを備えることを特徴とす
るエピタキシャル結晶成長装置。 (4ン水導ガス導入口の内側に、水素分子をイオン化す
るイオン化室を付加したことを特徴とする特許請求の範
囲第3項記載のエピタキシャル結晶成長装置。
(3) A high-vacuum container having an inlet exclusively for hydrogen gas, a crucible for heating and evaporating the semiconductor material in the vicinity of the inlet in the high-X empty container, and a crucible facing the crucible. 1. An epitaxial crystal growth apparatus comprising: a substrate holding device installed therein and having a heating means; and a hydrogen gas evacuation device installed in the high vacuum container on the opposite side from the crucible. (The epitaxial crystal growth apparatus according to claim 3, characterized in that an ionization chamber for ionizing hydrogen molecules is added inside the water guide gas inlet.)
JP15018383A 1983-08-19 1983-08-19 Method and device for epitaxial crystal growth Granted JPS6042813A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15018383A JPS6042813A (en) 1983-08-19 1983-08-19 Method and device for epitaxial crystal growth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15018383A JPS6042813A (en) 1983-08-19 1983-08-19 Method and device for epitaxial crystal growth

Publications (2)

Publication Number Publication Date
JPS6042813A true JPS6042813A (en) 1985-03-07
JPH0129052B2 JPH0129052B2 (en) 1989-06-07

Family

ID=15491318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15018383A Granted JPS6042813A (en) 1983-08-19 1983-08-19 Method and device for epitaxial crystal growth

Country Status (1)

Country Link
JP (1) JPS6042813A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62500998A (en) * 1984-11-30 1987-04-23 アメリカン テレフオン アンド テレグラフ カムパニ− Chemical beam deposition method
US5122393A (en) * 1987-04-08 1992-06-16 British Telecommunications Public Limited Company Reagent source for molecular beam epitaxy
JPH08285048A (en) * 1995-04-18 1996-11-01 Kawasaki Heavy Ind Ltd Three-dimensional tooth surface modification structure in helical/double-helical gear

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62500998A (en) * 1984-11-30 1987-04-23 アメリカン テレフオン アンド テレグラフ カムパニ− Chemical beam deposition method
US5122393A (en) * 1987-04-08 1992-06-16 British Telecommunications Public Limited Company Reagent source for molecular beam epitaxy
JPH08285048A (en) * 1995-04-18 1996-11-01 Kawasaki Heavy Ind Ltd Three-dimensional tooth surface modification structure in helical/double-helical gear

Also Published As

Publication number Publication date
JPH0129052B2 (en) 1989-06-07

Similar Documents

Publication Publication Date Title
Rudder et al. Remote plasma‐enhanced chemical‐vapor deposition of epitaxial Ge films
US4799454A (en) Apparatus for forming a thin film
JPS6042813A (en) Method and device for epitaxial crystal growth
JPH09298159A (en) Semiconductor manufacturing method and semiconductor manufacturing apparatus
JPH0274587A (en) Forming of thin film and device therefor
JP2002121673A (en) Thermal cvd system for depositing graphite nanofiber thin film
JPH06112133A (en) Method of covering upper section of base body with transparent dielectric film
JP3952556B2 (en) Molecular beam epitaxy system
JPS58190898A (en) Method for growing crystal by molecular beam
JPH09263931A (en) Vacuum treatment and vacuum treating device
JPS6040497B2 (en) Vacuum heat treatment furnace with highly clean atmosphere generation mechanism
JP2623715B2 (en) Thin film forming equipment
JP3728538B2 (en) Thin film growth apparatus and thin film growth method
JP2646582B2 (en) Plasma CVD equipment
JPH05311403A (en) Gas regenerating device for film forming device
JP2008120632A (en) Molecular beam source, molecular beam crystal growth apparatus, molecular beam crystal growth method
AKPAN Preventing Back-Streaming And Back-Migration Of Rotary And Diffusion Pumps Oil Vapour In An Evacuation System
JPS61222112A (en) Forming method for compound semiconductor thin-film
JPS61261296A (en) Method of molecular beam epitaxial growth of single crystal thin film and device for generating atomic hydrogen used in said method
JPH03126868A (en) Inline type film forming device
JPS60244018A (en) Cluster ion beam evaporation device
JPH0532467B2 (en)
JPS61256640A (en) Plasma chemical vapor deposition apparatus
Mori et al. Design of an atom‐cluster generator for a transmission electron microscope and in situ observation of the deposition process of large atom clusters
JPS6042816A (en) Vapor growth method