JPS6039535A - Screening method of quartz glass - Google Patents

Screening method of quartz glass

Info

Publication number
JPS6039535A
JPS6039535A JP58146686A JP14668683A JPS6039535A JP S6039535 A JPS6039535 A JP S6039535A JP 58146686 A JP58146686 A JP 58146686A JP 14668683 A JP14668683 A JP 14668683A JP S6039535 A JPS6039535 A JP S6039535A
Authority
JP
Japan
Prior art keywords
quartz glass
fluorescence
quartz
copper
sorting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58146686A
Other languages
Japanese (ja)
Other versions
JPH0125018B2 (en
Inventor
Reiji Oguma
小熊 黎児
Akihiro Hirai
平居 明宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP58146686A priority Critical patent/JPS6039535A/en
Publication of JPS6039535A publication Critical patent/JPS6039535A/en
Publication of JPH0125018B2 publication Critical patent/JPH0125018B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence

Landscapes

  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Glass Compositions (AREA)

Abstract

PURPOSE:To discriminate the content of copper in quartz glass by irradiating the UV light of a short wavelength to the quartz glass and detecting the difference in the fluorescent intensity at the optional wavelength in the specific range of the fluorescence radiated from the quartz glass. CONSTITUTION:Quartz glass which contains copper at an extremely high rate of >=1,000ppb emits the fluorescence having a peak at about 490nm when irradiated with UV light. Such fluorescence is not observed at all with the ordinary quartz glass having an extremelly small content of copper. The copper contained in the core part in use as an optical path in an optical fiber tends to increase transmission loss. UV light is thereupon irradiated to the quartz glass contg. copper by using a low-pressure mercury-arc lamp having a strong emission line at about 253.7nm by noticing the presence of fluorescence of a yellowish green color having a peak at about 490nm in said quartz glass. The fluorescent intensity of the fluorescence having a peak at 490nm or at the skirt on the long wavelength side of said fluorescence is comparatively observed and the quartz glass is classified according to the fluorescent intensities. When the quartz glass having the small fluorescent intensity is used, optical fiber having the stable transmission characteristic as shown by the curve A of the figure is easily obtd.

Description

【発明の詳細な説明】 この発明は石英ガラスの選別方法に関する。[Detailed description of the invention] This invention relates to a method for sorting quartz glass.

さらに詳細に言えば、この発明は石英ガラス中の銅の含
有をチェックすることのできる石英ガラスの判別方法に
関するものである。
More specifically, the present invention relates to a method for determining quartz glass that can check the content of copper in quartz glass.

この発明は種々の石英ガラスの判別に適用できるが、β
シ明の便宜上、この明細書においては、主として石英ガ
ラス系の光ファイバを例にとって説明する。
Although this invention can be applied to the discrimination of various quartz glasses, β
For the sake of clarity, in this specification, a silica glass-based optical fiber will be mainly explained as an example.

石英ガラス系の光ファイバの製造方法は母材(プリフォ
ーム)を製造する工程と、それを線引きする工程から成
り立っている。そして1(1材の製造方法の代表的なも
のとしては、MCVD法、ovpo法、VAN)法等が
ある。
A method for manufacturing a silica glass optical fiber consists of a process of manufacturing a base material (preform) and a process of drawing it. Typical methods for manufacturing 1 material include the MCVD method, the OVPO method, and the VAN method.

MCVD法はガラス原料となるSi C14゜Ge C
14,POCI 2 、BBr3などのガスを酸素とと
もに加熱した石英ガラス管内に送り込み、酸化反応とと
もに生ずるガラス微粒子を管内壁に(=J Wさせてガ
ラス層を形成Jる。初めにクラッド層を作り、続いてコ
ア層を作った後、湿度を上げ中空部をつぶして透明の母
材とする。
The MCVD method uses SiC14゜GeC as the glass raw material.
14. A gas such as POCI 2 or BBr3 is sent into a heated quartz glass tube together with oxygen, and the glass particles generated during the oxidation reaction are caused to form a glass layer on the inner wall of the tube. First, a cladding layer is made, Next, after forming a core layer, the humidity is increased and the hollow parts are crushed to form a transparent base material.

ovpo法は棒状中心部月下に外径方向にガラスを堆積
させる。ガラス原料となるガスを酸水素炎とともに中心
部材上に吹き付けて火炎加水分解反応で生ずるガラス微
粒子を層状にJ#積させて多孔質母材と覆る。その後、
中心部材を取り除き、電気炉中で加熱溶融してパイプ状
の母材を作る。この[IJの内外面を研磨した後、中空
部をつぶして透明母材とする。
In the ovpo method, glass is deposited in the outer radial direction below the center of the rod. A glass raw material gas is blown onto the central member along with an oxyhydrogen flame, and glass fine particles produced by the flame hydrolysis reaction are deposited in a layer to cover the porous base material. after that,
The central member is removed and heated and melted in an electric furnace to create a pipe-shaped base material. After polishing the inner and outer surfaces of this IJ, the hollow part is crushed to obtain a transparent base material.

VAD法はガラス合成を軸方向に(うなうものであり、
ガラス原料となるガスを酸水素炎とともに石英ガラス製
の出発棒の先端に吹きつ番プ、多孔質母材を成長さUる
。多孔質母材の軸方向への成長速度に合ヒて出発棒を軸
方向に引上げていく。多孔質母材は電気炉中で脱OH処
理と高部焼結を行って透明m材どする。
The VAD method is an axial method for glass synthesis.
A glass raw material gas is blown onto the tip of a quartz glass starting rod together with an oxyhydrogen flame to grow a porous base material. The starting rod is pulled up in the axial direction in accordance with the growth rate of the porous base material in the axial direction. The porous base material is subjected to deOH treatment and high-section sintering in an electric furnace to form a transparent m material.

これらの方法で作った透明母材はでのまま(あるいは所
定の寸法の石英ガラス管に挿入・被覆して)光フアイバ
用のプリフォームとする。このプリフォームは通常直径
10〜20mmに仕上げられ、加熱して直径100〜1
50μmのファイバに引伸ばして光ファイバとする。
The transparent base material made by these methods is used as a preform for optical fibers (or inserted into and coated with a quartz glass tube of a predetermined size). This preform is usually finished to a diameter of 10 to 20 mm, and heated to a diameter of 10 to 1 mm.
The fiber is stretched to 50 μm to obtain an optical fiber.

しかし、この状・態での光ファイバは表面に小さな傷が
つき易ぐ、機械的強度も弱い。そのため、紡糸と同時に
樹脂を塗布して補強す′る。樹脂を塗布して補強した素
線はドラムに巻取り、伝送損失などの検査や選別を打つ
Ic後、ケーブル化工程に送られる。
However, the optical fiber in this state is susceptible to small scratches on its surface and has weak mechanical strength. Therefore, resin is applied and reinforced at the same time as spinning. The strands of wire, which have been reinforced with resin coating, are wound onto a drum, and after being inspected for transmission loss and subjected to sorting, they are sent to the cable production process.

光ファイバの伝送損失は光信号の到達距離に直接影響す
るので、幾多の研究が行なわれ、理論的限稈に近似の結
果も得られている。しかし、実際の生産で使用する石英
ガラス管は天然水晶を溶融したものが一般に使われてい
る。この石英ガラス管は光フアイバ用として十分に吟味
して製造されているが、VC,VD法、ovpo法、V
AD法などによるコア部分と比較りると、金石不純物m
が格段に多い。
Since the transmission loss of an optical fiber directly affects the distance traveled by an optical signal, many studies have been conducted, and some results have been obtained that approximate the theoretical limit. However, the quartz glass tubes used in actual production are generally made from fused natural crystal. This quartz glass tube has been carefully examined and manufactured for use in optical fibers.
Compared to the core part obtained by AD method etc., goldstone impurities m
are significantly more common.

そのため、Cれらの不純物がコア部分に影響を与えない
ようプリフォーム製造工程などに、例えば石英ガラス管
内表面にCVD法などにより純粋な石英ガラス層を形成
してから使用するなどして、十分な対策がとられている
Therefore, in order to prevent these impurities from affecting the core part, a pure quartz glass layer is formed on the inner surface of the quartz glass tube by CVD method etc. during the preform manufacturing process. Measures are being taken.

しかしながら、銅などの一部不純物は紡糸1稈などの高
温における加工茶イ′1にd3いて容易にファイバ内を
拡散移動してしまう。その場合、一部はコアおよびクラ
ッドの光路部分に進入して伝送損失の原因となっている
と考えられる。
However, some impurities such as copper are easily diffused into the fiber when they are processed at high temperatures such as by spinning one culm. In that case, it is thought that a part of it enters the optical path portion of the core and cladding, causing transmission loss.

光フアイバ用石英ガラス中に含まれる金属不純物は、ロ
ット毎の化学分析により、おJ3よそ表1(明細書末尾
)のごどく管理されている。
Metal impurities contained in quartz glass for optical fibers are controlled by chemical analysis for each lot as shown in Table 1 (at the end of the specification).

なお、光フアイバ用石英ガラス管の菅埋項目としては、
金屈不純物含有吊の他にKJ法、泡、汚れなどがある。
In addition, the burying items for quartz glass tubes for optical fibers are as follows:
In addition to the Kinku impurity-containing suspension, there are other methods such as the KJ method, foam, and dirt.

第1図は、表1の不純物含有量の石英ガラス管を使用し
て従来技術にJ:り製造した多モード光ファイバの伝送
損失の波長特性の範囲の一例を示づ。
FIG. 1 shows an example of the range of the wavelength characteristic of the transmission loss of a multimode optical fiber manufactured using a conventional technique using a quartz glass tube having the impurity content shown in Table 1.

第1図において、二つの曲線A及びBにはさJ、れた斜
線部分が従来技術により得られた光ファイバの伝送損失
の存在範囲を示している。同一波長における伝送損失最
小のファイバの伝送距離(J伝送損失最大のファイバの
約2倍強に相当する。光フアイバケーブルの伝送距−1
を伸ばし、しかも信頼性を高めるには、伝送損失を川面
な限り小さくすることが重要である。しかし、第1図に
おける伝送損失最小の曲線は石英ガラス系のマルチモー
ド光ファイバの理論伝送損失限界と近似している(0.
85μm : 2.50d B/km、1.3am :
 0.44 d B/km) 、それゆえ、これ以上に
伝送損失を改善することは、実際上はとんど不1il能
である。
In FIG. 1, the shaded area between the two curves A and B indicates the range of transmission loss in the optical fiber obtained by the prior art. The transmission distance of the fiber with the minimum transmission loss at the same wavelength (J corresponds to approximately twice that of the fiber with the maximum transmission loss.Transmission distance of the optical fiber cable -1
In order to extend the transmission efficiency and improve reliability, it is important to reduce transmission loss as much as possible. However, the minimum transmission loss curve in FIG. 1 is close to the theoretical transmission loss limit of a silica glass multimode optical fiber (0.
85μm: 2.50dB/km, 1.3am:
0.44 dB/km), therefore, it is practically impossible to improve the transmission loss further than this.

理論伝送損失限界に近い光ファイバを安定的に作る方法
としては無水無泡の超高純度の合成石英ガラスを精密な
寸法に仕上げて、これを支持管どして使用する方法があ
る。しかし、このような合成石英ガラス管は極めて高価
なものであり、通常の生産には採用できない。
One way to stably produce an optical fiber close to the theoretical transmission loss limit is to finish water-free, bubble-free, ultra-high purity synthetic quartz glass to precise dimensions and use it as a support tube. However, such synthetic quartz glass tubes are extremely expensive and cannot be used in normal production.

何らかの1稈の改良により第1図にお(プる伝送損失の
最大値(曲!B)を!ゴえるファイバの出現を無くし、
得られるファイバの伝送損失のバラツキを小さクシ、第
1図におりる曲線Bに相当す“る伝送損失の最大値を伝
送損失最小の曲線Aに近づけることが出来れば、伝送距
離を伸ぽJことが可能どなり、ひいては光フアイバ通信
にお【ノる中継点の減少を可能とし、光フアイバ通信に
多大のメリットを与えることになる。
By some improvement of one culm, the maximum value of transmission loss (song! B) shown in Figure 1 can be eliminated!
If we can reduce the variation in the transmission loss of the resulting fiber and bring the maximum value of the transmission loss, which corresponds to curve B in Figure 1, closer to the minimum transmission loss curve A, we can increase the transmission distance. This in turn makes it possible to reduce the number of relay points in optical fiber communications, which brings great benefits to optical fiber communications.

この発明の目的は前述のような実情を考慮し℃゛石英ガ
ラス中の銅の含有を容易に判別でさる方法を提供づ−る
ことにある。
An object of the present invention is to provide a method for easily determining the content of copper in quartz glass in consideration of the above-mentioned circumstances.

この発明の要旨とするところは、石英ガラス中の銅の含
有を蛍光によつ−C判別りることを特徴とする石英ガラ
スの選別方法である。
The gist of the present invention is a method for sorting quartz glass, which is characterized by determining -C content of copper in quartz glass using fluorescence.

以下、この発明を石英ガラス系の光ファイバに適用した
実流例について詳細に説明づる。
Hereinafter, an actual example in which the present invention is applied to a silica glass optical fiber will be explained in detail.

VAD法により製造した透明母料を、水晶を溶融して作
った石英ガラス製の支持管に挿入してブリフA−ムを形
成Jるが、そのようなブリフA−ム形成工程において、
あらかじめ暗掌内にて253.7nmのところで強い輝
線を有する低圧力水銀ランプを紫外光の光源として用い
て、紫外光透過可視光吸収フィルタど組合せて、蛍光検
査灯を構成し、それにより使用する支持管に照射し、そ
こから放Q」される蛍光をY−49色ガラスフィルタを
挿着しだ1鏡を用いて肉眼で観察する。銅の含有量が多
くなるにしたがって黄色の発生が多く見える。
A transparent matrix produced by the VAD method is inserted into a support tube made of quartz glass made by melting crystal to form a brief A-me. In such a brief A-me forming process,
In advance, a low-pressure mercury lamp with a strong emission line at 253.7 nm is used as an ultraviolet light source in a dark palm, and a fluorescent inspection lamp is constructed by combining it with an ultraviolet light transmitting visible light absorbing filter, and then used. The support tube is irradiated and the fluorescence emitted from it is observed with the naked eye using a mirror fitted with a Y-49 color glass filter. As the copper content increases, more yellow color appears.

石英ガラス管の端面に弱く見られる黄緑色の蛍光につい
て、限痕兄木として用意しであるほぼ同じX1法の石英
ガラス管の発1′る黄緑色の蛍光の明るさと比較し、見
本のものよりも蛍光の弱い(寸なわち暗く見えるか蛍光
が全く見えない)石英ガラス管と、見本のものよりも強
い石英管とに区分して、それぞれ10本づつを支持管と
してプリフオームを製造し、ざらに光フIイハ素線とし
て波長0.85μmと1.3μIllの光の伝)ス損失
を測定しlこ 。
Regarding the yellow-green fluorescence that is weakly observed on the end face of the quartz glass tube, we compared it with the brightness of the yellow-green fluorescence emitted by a quartz glass tube using almost the same X1 method, which is prepared as a limit marker. Separate the quartz glass tubes into quartz glass tubes with weaker fluorescence (that is, they appear darker or no fluorescence at all) and quartz tubes with stronger fluorescence than the sample, and manufacture preforms using 10 of each as support tubes. We roughly measured the transmission loss of light at wavelengths of 0.85 μm and 1.3 μm using the optical fiber as a bare wire.

測定結果は明細書末尾の表2に示1通りである。蛍光に
よる石英ガラス管の選別が光ファイバの伝送特性の向上
に447めで有効であることがわかる。
The measurement results are shown in Table 2 at the end of the specification. It can be seen that sorting quartz glass tubes using fluorescence is effective in improving the transmission characteristics of optical fibers.

このように、蛍光にJこる石英ガラス管の選別を行ない
、可能な限り蛍光の弱い石英ガラス管を使用するように
づれば、長距離伝送用光ファイバの伝送特性は向上し、
かつ信頼性の高いものになる。
In this way, by selecting quartz glass tubes with low fluorescence and using quartz glass tubes with weak fluorescence as much as possible, the transmission characteristics of optical fibers for long-distance transmission can be improved.
and highly reliable.

通常、石英ガラスは253.7nmに強い輝線を有Jる
蛍光検査幻ぐ黒用りるどさには39011m(d近にピ
ークを右する青紫色の強い蛍光を生ずる。しかし、この
蛍光は光ツノ・イバの伝送損失とは全く無関係である。
Normally, quartz glass has a strong emission line at 253.7 nm, and in the case of fluorescence inspection, it produces strong blue-violet fluorescence with a peak near 39011 nm (d). However, this fluorescence This is completely unrelated to the transmission loss of the horned arbor.

1カ(めで高い銅含有m (1000++pI+ 以上
) 03M合、石英ガラスは紫外光の照射により4.9
 Q nm付近にピークのある蛍光を発づ−る。銅含有
量の極めて少ない通常の石英ガラスでは、この蛍光は全
く見られない。
03M (high copper content m (1000++pI+ or more)), quartz glass is 4.9% when irradiated with ultraviolet light.
Emit fluorescence with a peak around Q nm. This fluorescence is not observed at all in ordinary quartz glass, which has an extremely low copper content.

一般に、光ファイバにおいては光路となるコア部分に含
;Lれる銅は伝送損失を高めるので、数ppbまで除去
している。しかし、光路の外側どなる石英ガラス支持管
の銅含有量についてはそれほど深い検討は行なわなかっ
た。
Generally, in optical fibers, copper contained in the core portion that serves as the optical path increases transmission loss, so it is removed to a few ppb. However, no deep study was conducted on the copper content of the quartz glass support tube located outside the optical path.

また、天然水晶を溶融した石英ガラス中には通常200
 ppb以下の含有しかないので、これまでは、あまり
大きな問題どはなうなかつIC。
In addition, quartz glass made by melting natural crystal usually contains 200%
Since the content is only ppb or less, there have been no major problems until now.

ところが、近年光フアイバ技術が急速に進展し、長距離
伝送用としてはコア径が50μm程度のマルチモード形
よりもコア径が5〜10μm1と小さいシングルモード
形が多く採用されるようになってきた。このため支持管
となる石英ガラスからコア部分へ掻く微量の不純物が拡
散しても問題となる−0 この不純物としての銅の影響に肴目し、何らかの方法で
銅含有mの少ないイj矢ガラスの選別を可能とする方法
の有無を検問した。その結果、銅含有の石英ガラスの/
I 90 n’m(;J近にピークのある黄緑色の蛍光
のγj在を名目した。この弱い蛍光を容易に兄λるJ、
うに覆るため、例えば390+vビークの青紫色の蛍光
を消去する方法として透過限シー!波長が420〜60
0 nmのフィルタを用いて、これよりり、0い波長側
の光をカットし、490 nn+nmクの黄緑色の蛍光
あるいはこの蛍光の長い波長側の裾の蛍光強度を比較観
察しlこ。このように蛍光強度に応じて石英カラスを区
分して使用覆ることにより、容易に安定しIご^い伝送
特性の光ファイバが得られるようになった。
However, as optical fiber technology has progressed rapidly in recent years, single-mode fibers with a smaller core diameter of 5 to 10 μm are now more commonly used for long-distance transmission than multi-mode fibers with a core diameter of around 50 μm. . For this reason, even if a small amount of impurity diffuses from the quartz glass that serves as the support tube to the core, it becomes a problem. We investigated whether there is a method that allows for the selection of As a result, copper-containing quartz glass /
I 90 n'm (; The presence of yellow-green fluorescence with a peak near J is named γj.
For example, as a way to eliminate the blue-violet fluorescence of 390+V peak, the transmission limit sea! Wavelength is 420-60
Using a 0 nm filter, cut out the light on the 0 wavelength side and compare and observe the yellow-green fluorescence of 490 nn+nm or the fluorescence intensity of the tail of this fluorescence on the longer wavelength side. By dividing and using quartz glass according to fluorescence intensity in this way, it has become possible to easily obtain stable optical fibers with excellent transmission characteristics.

前述の実験に使用した石英ガラスについてフレームレス
・グラフアイ]〜・11〜マイIf−による原子吸光合
析法によりOu含イ1量を分析したところ、黄緑色の蛍
光の弱い石英ガラス管ではすべてのサンプルについて3
0 ppb以下の銅含有量が認められた。また黄緑色蛍
光の強い石英ガラス管では100〜30 ppbの銅含
有mが認められた。銅含有量と黄緑色蛍光の強度は明確
に対応していた。
When the O content of the quartz glass used in the above experiment was analyzed by atomic absorption analysis using Frameless Grapheye]~・11~MyIf-, it was found that all of the quartz glass tubes with weak yellow-green fluorescence About the sample 3
Copper content below 0 ppb was observed. Further, in the quartz glass tube with strong yellow-green fluorescence, copper content of 100 to 30 ppb was observed. There was a clear correspondence between the copper content and the intensity of yellow-green fluorescence.

本発明の方法を光ファイバに用いる石英ガラス管′のj
ハ別に使用することにより、第1図にお()る伝送損失
の上限を従来の曲FA8から曲線C(破線)まで下げる
ことを可能にした。
A quartz glass tube using the method of the present invention for an optical fiber
By using C separately, it is possible to lower the upper limit of the transmission loss shown in FIG. 1() from the conventional curve FA8 to curve C (broken line).

その結果、伝送可能距離は1.25〜1.5イlツに延
長可OLとなった(伝送損失の最大値から1u定)。
As a result, the possible transmission distance was extended to 1.25 to 1.5 il (1 u fixed from the maximum value of transmission loss).

光フアイバ用の石英ガラス管はそのほとんどが天然水晶
を原料としているため原料水晶に含まれる不純物■によ
り石英ガラス管の糺瓜は左右される。また銅等の極く微
量の不純物成分は溶融工程や加工工程にお番プる純化お
よび汚染により必ずしも溶融に使用した水晶の不純物含
有mと関連した純度で製品ガラスとなるものではない。
Since most quartz glass tubes for optical fibers are made from natural quartz, the strength of the quartz glass tube is affected by impurities (2) contained in the raw quartz. Further, extremely small amounts of impurity components such as copper do not necessarily result in product glass having a purity related to the impurity content of the crystal used for melting due to purification and contamination during the melting and processing steps.

そのため製品石英ガラス管中の不純物含有量はあるバラ
ツキの範囲内にある。これを製品となった後に化学分析
を行ない製品ガラス管を1本fuに区分づることは実際
上不可能である。
Therefore, the impurity content in the product quartz glass tube is within a certain range of variation. It is practically impossible to perform chemical analysis on this product after it becomes a product and classify the product glass tube into one fu.

本発明は石英ガラス製品を光フアイバ用に供するに際し
て非破壊的に全数検査し区分づることを可OLとザるも
のであり、光フッ・イバ用として掻く微小の銅含有が問
題となる時に極めて効果的な選別方法どなる。
The present invention makes it possible to non-destructively inspect and classify 100% of quartz glass products when used for optical fibers, and is extremely effective when minute copper content in optical fibers becomes a problem. What a selection method.

この発明を例えば石英ガラス系の光フアイバ製造工程に
使用する石英ガラス管の判別に使用づると、従来工程を
(Jとlυど変更しなくても、容易な方法でOL率良く
低伝送損失の石英ガラス系光ファイバを大損(、二安定
供給することができる。
For example, if this invention is used to identify quartz glass tubes used in the manufacturing process of quartz glass optical fibers, it is possible to easily improve the OL rate and low transmission loss without changing the conventional process (J and lυ). Silica glass optical fiber can be supplied with large loss (, bistable).

本発明は前述の実施例に限定されるものではなく、光フ
アイバ用だ【〕でなく、半導体用ボー1〜に使用する石
英ガラスや、銅の影響が問題となる他の石英ガラス製品
の選別方法としでも効果的な方法である。
The present invention is not limited to the above-mentioned embodiments, and is applicable not only to optical fibers but also to the selection of quartz glass used in semiconductor boards and other quartz glass products where the influence of copper is a problem. It is also an effective method.

なお、この明細書にJ5いては、「選別」は広義に使用
しており、検査等も含むものである。
Note that in J5 of this specification, "selection" is used in a broad sense, and includes inspection, etc.

【図面の簡単な説明】 第1図は石英ガラス系光ノ1イバの伝送損失の波長特性
を示すものである。図中、曲線Aと曲線Bにはさまれた
斜線部分は従来技術により得られた光ファイバの伝送損
失の出現範囲を示したもので、曲FA8はその上限を示
し、曲線Δは下限を示している。曲線C(破線)は本発
明の方法により限度見本を用いて比較選別した黄緑色蛍
光の弱い石英ガラス管を使用した場合の光フアイバ伝送
損失出現の上限を示している。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows the wavelength characteristics of transmission loss of a silica glass optical fiber. In the figure, the shaded area between curves A and B indicates the range in which the transmission loss of optical fibers obtained using the conventional technology appears. Curve FA8 indicates the upper limit, and curve Δ indicates the lower limit. ing. Curve C (broken line) shows the upper limit of optical fiber transmission loss when using a quartz glass tube with weak yellow-green fluorescence, which was comparatively selected using a limit sample according to the method of the present invention.

Claims (11)

【特許請求の範囲】[Claims] (1)石英ガラス中の銅の含有を蛍光によって判別する
ことを特徴とする石英ガラスの選別方法。
(1) A method for sorting quartz glass characterized by determining the content of copper in the quartz glass by fluorescence.
(2)測定づべき石英ガラスに340r+n+J:りも
短い波長の紫外光を照射し、その石英ガラスから放射さ
れる蛍光の420 nmから600nn+の範囲の任意
の波長における蛍光強度の相違により石英ガラス中の銅
の含有を選別する特許請求の範囲第1項に記載の石英ガ
ラスの選別方法。
(2) The quartz glass to be measured is irradiated with ultraviolet light with a short wavelength of 340r+n+J, and the difference in fluorescence intensity at any wavelength in the range of 420 nm to 600 nm+ is detected in the quartz glass. The method for sorting quartz glass according to claim 1, which screens out copper content.
(3)所定の波長の光をカッ1−するフィルタを介して
、石英ガラスから放射される蛍光を観察づ゛る特許請求
の範囲第1項又は第2項に記載の石英ガラスの選別方法
(3) A method for sorting quartz glass according to claim 1 or 2, wherein fluorescence emitted from quartz glass is observed through a filter that cuts out light of a predetermined wavelength.
(4)紫外光の光源として低圧力水銀ランプを使用し、
フィルタとしI紫外透過可視光吸収フィルタを使用する
特許請求の範囲u13項に記載の石英ガラスの選別方法
(4) Using a low-pressure mercury lamp as the ultraviolet light source,
The method for sorting quartz glass according to claim 13, wherein an I ultraviolet transmitting visible light absorbing filter is used as the filter.
(5)吸収限界波長が420〜560nmの範囲内にあ
り、これよりも短い波長側を吸収域とするフィルタを介
して石英ガラスを観察し、目視的に蛍光強度の比較を行
うことを特徴とする特許請求の範囲第3項又は4項に記
載の石英ガラスの選別方法。
(5) The quartz glass is observed through a filter whose absorption limit wavelength is within the range of 420 to 560 nm, and whose absorption range is on the shorter wavelength side, and the fluorescence intensity is visually compared. A method for sorting quartz glass according to claim 3 or 4.
(6)透過中心波長が430nmから60 Q nmの
範囲内にある干渉フィルタを介して目視的に蛍光強度の
比較を行うことを特徴とする特許請求の範囲第3項又は
4項に記載の石英ガラスの選別方法。
(6) The quartz according to claim 3 or 4, wherein the fluorescence intensity is visually compared through an interference filter whose transmission center wavelength is within the range of 430 nm to 60 Q nm. How to sort glass.
(7)暗所において、蛍光強度の比較を行うことを特徴
とする特許請求の範囲第1〜6項のいずれかの項に記載
の石英ガラスの選別方法。
(7) The method for sorting quartz glass according to any one of claims 1 to 6, characterized in that the fluorescence intensity is compared in a dark place.
(8)選別基準として銅含有量50 ppb〜1ppb
の範囲内の石英ガラスを用い、これらの蛍光強度との比
較において石英ガラスを選別づることを特徴とする特許
請求の範囲第1〜7項のいずれかの項に記載の石英ガラ
スの選別方法。
(8) Copper content 50 ppb to 1 ppb as selection standard
The method for sorting quartz glass according to any one of claims 1 to 7, characterized in that the quartz glasses are selected by comparing the fluorescence intensities of the quartz glasses within the range of .
(9)銅含有量30111)l)以下の石英ガラス管を
使用してプリフォームを製3m ”Jることを特徴とす
る特許請求の範囲第1〜8項のいずれかの項に記載の石
英ガラスの選別方法。
(9) Copper content 30111) l) The quartz according to any one of claims 1 to 8, characterized in that the preform is manufactured using the following quartz glass tubes: How to sort glass.
(10)測定する石英ガラスが光フilイバ製造に供す
る石英ガラス製品の製造に用いる石英ガラス粗材である
特ffF請求の範囲第1〜9項のいずれかの項に記載の
石英ガラスの選別方法。
(10) Selection of quartz glass according to any one of claims 1 to 9, wherein the quartz glass to be measured is a quartz glass crude material used in the production of quartz glass products used in the production of optical fibers. Method.
(11)測定する石英ガラスが半導体用に使用する石英
ガラスである特許請求の範囲第1〜9項のいずれかの項
に記載の石英ガラスの選別方法。
(11) The method for sorting quartz glass according to any one of claims 1 to 9, wherein the quartz glass to be measured is quartz glass used for semiconductors.
JP58146686A 1983-08-12 1983-08-12 Screening method of quartz glass Granted JPS6039535A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58146686A JPS6039535A (en) 1983-08-12 1983-08-12 Screening method of quartz glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58146686A JPS6039535A (en) 1983-08-12 1983-08-12 Screening method of quartz glass

Publications (2)

Publication Number Publication Date
JPS6039535A true JPS6039535A (en) 1985-03-01
JPH0125018B2 JPH0125018B2 (en) 1989-05-16

Family

ID=15413284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58146686A Granted JPS6039535A (en) 1983-08-12 1983-08-12 Screening method of quartz glass

Country Status (1)

Country Link
JP (1) JPS6039535A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6428240A (en) * 1987-07-22 1989-01-30 Shinetsu Sekiei Kk Optical quartz glass member
JP2012197220A (en) * 2005-03-01 2012-10-18 Nikon Corp Method for inspecting synthetic quartz glass molded product, method for inspecting synthetic quartz glass member, and method for manufacturing the synthetic quartz glass member

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4161656A (en) * 1978-03-28 1979-07-17 Bell Telephone Laboratories, Incorporated Methods for measuring dopant concentrations in optical fibers and preforms

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4161656A (en) * 1978-03-28 1979-07-17 Bell Telephone Laboratories, Incorporated Methods for measuring dopant concentrations in optical fibers and preforms

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6428240A (en) * 1987-07-22 1989-01-30 Shinetsu Sekiei Kk Optical quartz glass member
JPH0535688B2 (en) * 1987-07-22 1993-05-27 Shinetsu Sekiei Kk
JP2012197220A (en) * 2005-03-01 2012-10-18 Nikon Corp Method for inspecting synthetic quartz glass molded product, method for inspecting synthetic quartz glass member, and method for manufacturing the synthetic quartz glass member
US8539793B2 (en) 2005-03-01 2013-09-24 Nikon Corporation Method of molding synthetic silica glass molded body
US8679994B2 (en) 2005-03-01 2014-03-25 Nikon Corporation Method of inspecting synthetic silicia glass molded body

Also Published As

Publication number Publication date
JPH0125018B2 (en) 1989-05-16

Similar Documents

Publication Publication Date Title
US4157906A (en) Method of drawing glass optical waveguides
US4154592A (en) Method of drawing optical filaments
AU596004B2 (en) Optical fibre attenuators
US4504114A (en) Method of transmitting UV light through optical fibers
JP2006151747A (en) Method of manufacturing optical fiber
Dianov et al. Origin of excess loss in single-mode optical fibers with high GeO2-doped silica core
KR900000755B1 (en) Optical fiber and its production method
EP0035237A1 (en) A single-mode-transmission optical fiber and a method of manufacturing the same
US20080031581A1 (en) Optical fiber and method of manufacturing an optical fiber
JPS6039535A (en) Screening method of quartz glass
JPS62176941A (en) Optical fiber
JP2006030655A (en) Optical fiber, method for evaluating and manufacturing the same
Girard et al. Spatial distribution of the red luminescence in pristine, γ rays and ultraviolet-irradiated multimode optical fibers
JP7507979B2 (en) Microstructured optical fiber and preform thereof
JP4463605B2 (en) Optical fiber preform and manufacturing method thereof
Eronyan et al. MCVD method for manufacturing polarization-maintaining and radiation resistant optical fiber with germanosilicate elliptical core
JP4409481B2 (en) Optical fiber manufacturing method
KR20120098415A (en) Processing method of silica glass and optical fiber
JPS6096545A (en) Optical fiber
US20080285926A1 (en) Optical Fiber Having Desired Waveguide Parameters and Method for Producing the Same
JP2004109124A (en) Optical fiber and method of estimating optical fiber
KR100203566B1 (en) Method of producing optical fiber and base material therefor
JP4459875B2 (en) Optical fiber preform and manufacturing method thereof, and optical fiber manufacturing method
JPS60186426A (en) Manufacture of optical fiber
EP0094236A1 (en) Method of transmitting uv light