JPS6037778A - Mos non-volatile memory cell - Google Patents

Mos non-volatile memory cell

Info

Publication number
JPS6037778A
JPS6037778A JP14703183A JP14703183A JPS6037778A JP S6037778 A JPS6037778 A JP S6037778A JP 14703183 A JP14703183 A JP 14703183A JP 14703183 A JP14703183 A JP 14703183A JP S6037778 A JPS6037778 A JP S6037778A
Authority
JP
Japan
Prior art keywords
gate
insulation film
gate insulation
injection
immediately under
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14703183A
Other languages
Japanese (ja)
Inventor
Masafumi Ogita
荻田 雅史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Suwa Seikosha KK
Original Assignee
Seiko Epson Corp
Suwa Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp, Suwa Seikosha KK filed Critical Seiko Epson Corp
Priority to JP14703183A priority Critical patent/JPS6037778A/en
Publication of JPS6037778A publication Critical patent/JPS6037778A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/788Field effect transistors with field effect produced by an insulated gate with floating gate
    • H01L29/7881Programmable transistors with only two possible levels of programmation

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Non-Volatile Memory (AREA)

Abstract

PURPOSE:To enable to write at low voltage in a short time by an increase in injection efficiency by a method wherein part or the whole of the gate insulation film immediately under a floating gate is made thinner than the gate insulation film immediately under a control gate. CONSTITUTION:The gate insulation film 9 immediately under a floating gate is partly removed with a resist mask 10 patterned by photolithography. After removal of this mask 10, the gate insulation film 11 with the film thickness reduced in part is formed by re-thermal oxidation. Thereafter, a control gate 12 and a floating gate 13 are formed by photolithography, and P type diffused layer regions 2-4 are formed by ion implantation and the heat treatment for the succeeding activation of impurity. Thus, the gate insulation film 11 immediately under the gate 13 is partly thin. The injection efficiency increases, because of electron injection through this thin gate insulation film, as a result, the decrease in the voltage for injection is enabled. Besides, the reduction of injection time becomes possible.

Description

【発明の詳細な説明】 本発明は不揮発性メモリに関し、特に、低電圧かつ短時
間での書き込みを可能にしたメモリセルのイ1117造
に係る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a nonvolatile memory, and in particular to a structure of a memory cell that enables writing at low voltage and in a short time.

PチャンネルMO8不揮発性メモリセル(以下FROM
セルという)は、通常2トランジスタで1メモリセルを
構成する。これを第1図に示す。
P-channel MO8 non-volatile memory cell (FROM
One memory cell (referred to as a memory cell) is usually composed of two transistors. This is shown in FIG.

同図において、1はN型シリコン基板であり、該シリコ
ン基板には、P型の拡散Jj・′1領域2,314が形
成され、ゲート絶縁膜5,6を介して、セルを選択する
だめのコントロールゲート7、電荷を蓄積するだめのフ
ローティングゲート8が形成される。この場合、フロー
ティングゲートへの電荷の注入はドレイン領域4へ負の
電圧パルスを加えて、ドレイン4と基板1との間にアバ
ランシェブレークダウンを起こすことによって行われる
。ブレークダウンによって発生した′[ニ子はゲート絶
縁膜6を110ってフローティングゲートへ注入される
が、このゲート絶縁膜は膜厚が薄いほど1:j:子の注
入効率は高くなる。しかし、従)にのF ROMセルは
、5と6のゲート絶縁膜を同一工程で形成しているため
、かかるゲート絶lf膜厚で決定される注入効率しか得
られなかった。
In the figure, reference numeral 1 denotes an N-type silicon substrate, on which a P-type diffusion Jj. A control gate 7 and a floating gate 8 for storing charge are formed. In this case, charge injection into the floating gate is performed by applying a negative voltage pulse to the drain region 4 to cause avalanche breakdown between the drain 4 and the substrate 1. The electrons generated by the breakdown are injected into the floating gate through the gate insulating film 6, and the thinner the gate insulating film is, the higher the injection efficiency of the 1:j: electrons becomes. However, in the F ROM cell of the previous example, the gate insulating films 5 and 6 were formed in the same process, so that only the injection efficiency determined by the gate insulating film thickness could be obtained.

本発明によるメモリセルはかかる欠点を改善した構造を
有している。以下図面を参照し、咽J造方法の一例を併
記して、本発明の詳細な説明する。
The memory cell according to the present invention has a structure that improves this drawback. DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to the drawings and an example of a method for constructing a throat.

第2図はN型シリコン基板を酸化してゲート絶hn’j
’:9を形成し、フォトリングラフィによりバターニン
グしたレジストマスク10で70−ティングゲート直下
のゲート絶縁膜の一部分を除去した直後の断面図である
。該レジストマスクを除去後、再度熱酸化を行うことに
よって第6図に示すような、膜厚の一部ft+j <な
ったゲート絶縁膜11が形成される。その後デー1〜電
極となるボリンリコン12.73をフォトリソグラフィ
により形成し、イオン打ち込みとそれに続く不純物活性
化のための熱処理によりP型の拡散J?7i領域2,3
.4を形成する。(第4]A)第4図の13が電荷のi
−L人されるフローディングゲートであり、かかるフロ
ーティングゲート直下のゲート絶縁膜は−f5(≦薄く
なっている。この薄いゲート絶縁膜を通って′jL子が
法人されるため注入効率は上がり、その結果、注入のた
めの電圧を下げることが可能になる。さらに、注入効率
がj二がることによって注入時間の短縮化がJ能となる
Figure 2 shows gate termination by oxidizing an N-type silicon substrate.
9 is a cross-sectional view immediately after a portion of the gate insulating film directly under the gate 70 is removed using a resist mask 10 patterned by photolithography. After removing the resist mask, thermal oxidation is performed again to form a gate insulating film 11 whose thickness is partially ft+j as shown in FIG. Thereafter, a bolin silicon 12.73 which will become an electrode is formed by photolithography, and P-type diffusion J? is performed by ion implantation and subsequent heat treatment for impurity activation. 7i area 2, 3
.. form 4. (4th) A) 13 in Figure 4 is the charge i
-L is a floating gate, and the gate insulating film directly under the floating gate is -f5 (≦ thinner. Since 'jL is incorporated through this thin gate insulating film, the injection efficiency increases, As a result, it becomes possible to lower the voltage for injection.Furthermore, the injection efficiency is reduced by J2, thereby making it possible to shorten the injection time.

また、第3図において薄いゲートを邑縁月(,3をフロ
ーテインクゲート15直下の全領域にわたって形成する
ことも可能である。(第5 ri )この場合は、第2
図でレジストによってバターニングする領域を広くとる
ことができ、フローティングゲートとの重なりを考慮し
なくて良いため、製造方法が1iii単になるという利
点をイfする。
It is also possible to form a thin gate in FIG. 3 over the entire area directly under the floating ink gate 15.
As shown in the figure, the area to be patterned using the resist can be widened, and there is no need to consider the overlap with the floating gate, which has the advantage that the manufacturing method is extremely simple.

以上、本発明によれば、単純な構造により注入効率が高
く、低電圧、短詩17Uでの書き込みを可能とした不揮
発性メモリセルを提供できるものである。
As described above, according to the present invention, it is possible to provide a nonvolatile memory cell that has a simple structure, has high injection efficiency, and is capable of writing at a low voltage and short length of 17U.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のF ROMセルの一例を示す図である。 第2図〜第4図は不発”)JによるF ROMセルの一
製造方法を示す図である。第5図はその応用例を示す図
である。それぞれの図は、シリコン基板の断面の概略を
表わしている。 1・・・・・・N型シリコン基4反 2.3,4,5.6 ・・・ ・・・ ゲ − ト 絶
t3西H次7・・・・・・コントロールゲート 8・・・・・・フローティングケート 9・・・・・・一部を除去したゲート絶縁膜10・・・
レジスト 11・・・膜厚の一部が薄いゲート絶縁膜12・・・コ
ントロールゲート 13・・・フローティングゲート 14・・・フローティングゲート直下の膜厚の全部分が
薄いゲート純緑膜 以 」−
FIG. 1 is a diagram showing an example of a conventional FROM cell. Figures 2 to 4 are diagrams showing a method of manufacturing an FROM cell by J. 1... N-type silicon base 4 anti-2.3, 4, 5.6... Gate off t3 West H order 7... Control gate 8... Floating cage 9... Gate insulating film 10 with a part removed...
Resist 11...Gate insulating film 12...Control gate 13...Floating gate 14...Gate pure green film where the entire film thickness directly under the floating gate is thin.

Claims (1)

【特許請求の範囲】[Claims] 電荷を蓄積するだめの浮遊ゲートを持つメモリトランジ
スタと、かかるトランジスタを選択するためのコントロ
ールゲートを持つトランジスタとの2つのトランジスタ
からなるPチャンネルMO8不揮発性メモリセルにおい
て、浮遊ゲート直下のゲート絶縁j漠を一部分もしくは
全部分、コントロールゲート直下のゲート絶縁jQより
も薄ぐすることを特徴とするMO8不揮発性メモリセル
In a P-channel MO8 nonvolatile memory cell consisting of two transistors: a memory transistor with a floating gate for storing charge and a transistor with a control gate for selecting such a transistor, the gate insulation immediately below the floating gate is An MO8 nonvolatile memory cell characterized in that part or all of the gate insulation jQ is made thinner than the gate insulation jQ directly under the control gate.
JP14703183A 1983-08-10 1983-08-10 Mos non-volatile memory cell Pending JPS6037778A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14703183A JPS6037778A (en) 1983-08-10 1983-08-10 Mos non-volatile memory cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14703183A JPS6037778A (en) 1983-08-10 1983-08-10 Mos non-volatile memory cell

Publications (1)

Publication Number Publication Date
JPS6037778A true JPS6037778A (en) 1985-02-27

Family

ID=15420968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14703183A Pending JPS6037778A (en) 1983-08-10 1983-08-10 Mos non-volatile memory cell

Country Status (1)

Country Link
JP (1) JPS6037778A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5359573A (en) * 1992-06-19 1994-10-25 Lattice Semiconductor Corporation Flash E2 PROM array with mingle polysilicon layer memory cell
US5418390A (en) * 1993-03-19 1995-05-23 Lattice Semiconductor Corporation Single polysilicon layer E2 PROM cell
US5886378A (en) * 1992-06-19 1999-03-23 Lattice Semiconductor Corporation Single polysilicon layer flash E2 PROM cell
JP2007024401A (en) * 2005-07-15 2007-02-01 Tokyo Gas Co Ltd Sealed container type heat exchanger

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5359573A (en) * 1992-06-19 1994-10-25 Lattice Semiconductor Corporation Flash E2 PROM array with mingle polysilicon layer memory cell
US5886378A (en) * 1992-06-19 1999-03-23 Lattice Semiconductor Corporation Single polysilicon layer flash E2 PROM cell
US5418390A (en) * 1993-03-19 1995-05-23 Lattice Semiconductor Corporation Single polysilicon layer E2 PROM cell
JP2007024401A (en) * 2005-07-15 2007-02-01 Tokyo Gas Co Ltd Sealed container type heat exchanger

Similar Documents

Publication Publication Date Title
US4420871A (en) Method of producing a monolithically integrated two-transistor memory cell in accordance with MOS technology
US5284785A (en) Diffusionless source/drain conductor electrically-erasable, electrically-programmable read-only memory and methods for making and using the same
JPH08316347A (en) Semiconductor element with recess channel structure and its preparation
JPH06112501A (en) Nonvolatile semiconductor memory device and its manufacture
JPH08167705A (en) Nonvolatile semiconductor memory and manufacture thereof
JPH07130894A (en) Eeprom flash memory cell, memory device and their manufacture
JPH0567789A (en) Non-volatile memory device and its manufacture
US6025229A (en) Method of fabricating split-gate source side injection flash memory array
JPH02222174A (en) Mos type semiconductor device
JPS6037778A (en) Mos non-volatile memory cell
JPS6178169A (en) Semiconductor memory
JP3016607B2 (en) Manufacturing method of nonvolatile memory
JPS5982770A (en) Semiconductor memory
JP2685506B2 (en) Semiconductor memory device
KR19990060607A (en) Nonvolatile Memory Device and Manufacturing Method Thereof
JP3120428B2 (en) Method for manufacturing MOS type semiconductor device
JPS5834979A (en) Nonvolatile semiconductor memory unit and manufacture thereof
JP2672530B2 (en) Method for manufacturing semiconductor memory device
JPH0529587A (en) Nonvolatile semiconductor memory and manufacture thereof
KR950003241B1 (en) Flash eerom cell and fabricating method thereof
JP2633547B2 (en) Semiconductor memory device and method of manufacturing the same
JP3139165B2 (en) Method for manufacturing nonvolatile memory cell
JPH01179369A (en) Manufacture of nonvolatile semiconductor memory
JPS60110167A (en) Manufacture of semiconductor device
JPH02105467A (en) Mos type semiconductor device