JPS60376A - Rf coil device of nuclear magnetic resonance imaging device - Google Patents

Rf coil device of nuclear magnetic resonance imaging device

Info

Publication number
JPS60376A
JPS60376A JP58107444A JP10744483A JPS60376A JP S60376 A JPS60376 A JP S60376A JP 58107444 A JP58107444 A JP 58107444A JP 10744483 A JP10744483 A JP 10744483A JP S60376 A JPS60376 A JP S60376A
Authority
JP
Japan
Prior art keywords
subject
outputs
coil
magnetic field
coils
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58107444A
Other languages
Japanese (ja)
Other versions
JPH0261252B2 (en
Inventor
Yasuto Takeuchi
康人 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GE Healthcare Japan Corp
Original Assignee
Yokogawa Medical Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Medical Systems Ltd filed Critical Yokogawa Medical Systems Ltd
Priority to JP58107444A priority Critical patent/JPS60376A/en
Publication of JPS60376A publication Critical patent/JPS60376A/en
Publication of JPH0261252B2 publication Critical patent/JPH0261252B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/36Electrical details, e.g. matching or coupling of the coil to the receiver
    • G01R33/3678Electrical details, e.g. matching or coupling of the coil to the receiver involving quadrature drive or detection, e.g. a circularly polarized RF magnetic field
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/34Constructional details, e.g. resonators, specially adapted to MR
    • G01R33/341Constructional details, e.g. resonators, specially adapted to MR comprising surface coils
    • G01R33/3415Constructional details, e.g. resonators, specially adapted to MR comprising surface coils comprising arrays of sub-coils, i.e. phased-array coils with flexible receiver channels

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

PURPOSE:To use a small-sized detecting coil and to improve the catching ratio of signals and the SN ratio by synthesizing outputs from amny detecting coils arranged close to the periphery of a subject to receive a magnetic response from the subject. CONSTITUTION:A uniform static magnetic field H0 and an RF magnetic field Hrf are applied to a slice 41 to be tested in the vertical direction and a radial direction around the axis of the H0 respectively. Two pairs of exciting coils 51a, 51b and 52a, 52b are arranged rectangularly and properly used to excite the magnetic fields. On the other hand, outputs from respective coils 53 arranged close to the periphery of the subject 41 are inputted to a weighing factor unit 55 through a receiving amplifier 54. When the respective outputs are to be selectively used, weights to be applied to the respective outputs are varied by the factor unit 55, and when all the outputs are to be used uniformly, respective weights are uniformed. All outputs from the weighing factor unit 55 are uniformly added to an additional amplifier 56 and outputted as one signal.

Description

【発明の詳細な説明】 本発明は、核磁気共鳴(N uclear M agn
eticResonance :以下これをNMRと呼
ぶ)現象を利用して、被検体内における特定原子核分布
等を被検体外部より知るようにしたNMRイメージング
装置におけるNMR信号(F ID : Free l
nd −uction Q ecay)を検出するRF
コイル装置に関づる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to nuclear magnetic resonance (Nuclear Magnetic Resonance).
An NMR signal (FID: Free I
RF that detects
Related to coil devices.

NMR手法を用いて特定原子核に注目した被検体の断層
像を得るNMRイメージング装置は従来から知られてい
る。このN M Rイメージング装置の原理の概要をま
ず簡単に説明する。
2. Description of the Related Art NMR imaging apparatuses that use NMR techniques to obtain tomographic images of a subject focusing on specific atomic nuclei have been known. First, an outline of the principle of this NMR imaging apparatus will be briefly explained.

水素等の特定の物質に対し、2軸方向の静…場ト1oを
印加すると、その原子核はZ軸のまわりを次式で示すよ
うな角速度ωで歳差運ljlする。
When a biaxial static field 1o is applied to a specific substance such as hydrogen, its atomic nucleus precesses around the Z-axis at an angular velocity ω as shown in the following equation.

ω−γHa (ラーモア角速度) 但し、γ:磁気回転比 この状態の系に角速度ωに対応する周波数の電磁波(通
常ラジメ波:RF信号)を印加すると共鳴がおこり、原
子核はスピン量子数によって定まったエネルギー単位の
高い方のエネルギー準位に遷移する。核スピン角運動量
を持つ原子核が数種類)昆在していてb1各原子核によ
って磁気回転比γが異なるため、共鳴する周波数が異な
り、従って特定の原子核の共鳴のみを取り出づ−ことが
可能である。又、その共鳴の強さを測定すれば、原子核
の存在量も知ることができる。又、共鳴後、緩和時間と
呼ばれる時定数で定まる時間の間に、高い単位へ励起さ
れた原子核は低い単位へ戻る。この緩和時間の内、特に
T1と呼ばれるスピン−格子間緩和時間は、各化合物の
結合の仕方に依存している時定数であり、正常組織と悪
性腫瘍とでは、値が大きく異なることが知られている。
ω-γHa (Larmor angular velocity) However, γ: gyromagnetic ratio When an electromagnetic wave (usually a radial wave: RF signal) with a frequency corresponding to the angular velocity ω is applied to a system in this state, resonance occurs, and the atomic nucleus is determined by the spin quantum number. Transition to the higher energy level in energy units. There are several types of atomic nuclei with nuclear spin angular momentum), and each nucleus has a different gyromagnetic ratio γ, so the resonant frequencies are different, so it is possible to extract only the resonance of a specific atomic nucleus. . Furthermore, by measuring the strength of the resonance, it is possible to determine the amount of atomic nuclei present. Also, after resonance, the atomic nucleus excited to a higher unit returns to a lower unit during a time determined by a time constant called relaxation time. Among these relaxation times, the spin-interstitial relaxation time called T1 is a time constant that depends on the way each compound binds, and it is known that the value differs greatly between normal tissues and malignant tumors. ing.

そこで、このNMRを利用し、X線CTと同様な原理で
、被検体の仮想輪切り部分のプロトンを励起し、各プロ
ジェクションの対応するNMR信号を、被検体の数多く
の方向についてめ、被検体の各位置におけるNMR信号
強度を再構成法によってめれば、特定原子核に着目した
被検体の断層像を得ることができる。
Therefore, by using this NMR, and using the same principle as X-ray CT, we excite protons in a virtual cross section of the subject, and the NMR signals corresponding to each projection are observed in many directions of the subject. By measuring the NMR signal intensity at each position using a reconstruction method, it is possible to obtain a tomographic image of the subject focusing on a specific atomic nucleus.

第1図はこのような従来装置における検査手法の一例を
説明するだめの波形図である。被検体に、はじめに第1
図(ロ)に示すようにl勾配置場02+と、(イ)に示
1ように細い周波数スペクトル(f)のRFパルス(9
06パルス)を印加する。この場合、ラーモア角速If
ω−γ(Ho→−△GZ)となる面だけのプロ1−ンが
励起され、磁化Mを第2図くイ)に示すようなθ〕で回
転する回転座標系上に示せば、y′軸方向に90°向ぎ
を変えたものとなる。続いて、第1図(ハ)、(ニ)に
示すようにX勾配磁場Qxとy勾配磁場Gyを加え、こ
れによって2次元勾配磁場を作り、〈ホ)に示づ゛よう
なNMR信号を検出りる。ここで、磁化Mは第2図〈口
)に示すように、磁場の不均一性ににって x I 、
 y1面内で矢印方向に次第に分散していくので、やが
てNMR信号は減少し、第1図(ホ)に示づように1時
間経過して無くなる。このようにして得られたNMR信
号を7−リエ変換すれば、×勾配磁場GX、V勾配磁場
GVにより合成された勾配磁場と直角方向のプロジェク
ションとなる。
FIG. 1 is a waveform diagram illustrating an example of an inspection method in such a conventional device. First, place the first
As shown in Figure (B), the RF pulse (9) has a narrow frequency spectrum (f) as shown in Figure 1.
06 pulse) is applied. In this case, Larmor angular velocity If
If the plane of only the plane where ω-γ (Ho→-△GZ) is excited, and the magnetization M is expressed on a rotating coordinate system rotating at θ] as shown in Figure 2 (a), then y ' The direction is changed by 90 degrees in the axial direction. Next, as shown in Figure 1 (c) and (d), an X gradient magnetic field Qx and a y gradient magnetic field Gy are applied, thereby creating a two-dimensional gradient magnetic field and generating an NMR signal as shown in (e). Detected. Here, as shown in Figure 2, the magnetization M is x I , due to the inhomogeneity of the magnetic field.
As it gradually disperses in the direction of the arrow within the y1 plane, the NMR signal eventually decreases and disappears after one hour as shown in FIG. 1 (e). If the NMR signal obtained in this manner is subjected to 7-lier transformation, it becomes a projection in the direction perpendicular to the gradient magnetic field synthesized by the × gradient magnetic field GX and the V gradient magnetic field GV.

以下、同じようにして、所定の時間τ′だ【プ待って、
次のシーケンスを繰り返す。各シーケンスにおいては、
GX 、 G、Vを少しずつ変える。これによって、各
プロジェクションに対応するNMR信号を被検体の故多
くの方向についでめることができる。
Hereafter, in the same way, the predetermined time τ′ is set.
Repeat the following sequence. In each sequence,
Change GX, G, and V little by little. Thereby, NMR signals corresponding to each projection can be tracked in many directions of the subject.

この場合のli置場コイル部分は、第3図のように構成
されている。即ち、被検体がその中に設置される円筒1
の周囲に、一様な静磁場トto (−1方向)を与える
静磁場用コイル2.z勾配磁場Qz+、Gz−を発生さ
せるtcめの2勾配Iit&場用コイルとX勾配磁場用
コイル及びX勾配磁場用コイルよりなる勾配It場出用
コイル、被検体に細い周波数スペクトルfのRFパルス
を電磁場として与える励磁コイル4、被検体からのNM
R信号を検出するための検出コイル5がそれぞれ設置さ
れている。
The Li storage coil portion in this case is constructed as shown in FIG. That is, a cylinder 1 in which the subject is placed.
A static magnetic field coil 2. which provides a uniform static magnetic field (in the -1 direction) around the . A gradient It field coil consisting of a tc second gradient Iit & field coil, an X gradient magnetic field coil, and an An excitation coil 4 that provides NM as an electromagnetic field, NM from the subject
Detection coils 5 for detecting the R signal are installed respectively.

ところで、このような従来の装置において、静磁場1−
10の均一度ヤ)、勾配磁場等の摂動成分の精度は良い
としても、検出コイル5のRFコイルはいかにも人さ過
ぎるという問題がある。、3〜5M1−1z(800G
〜1.2KGで)に共振づるとしても、約0.7〜1.
0+11φの径でvi回巻どなり、イの線材としても太
い銅の帯又はバイブ状の線材を用いて形成される。およ
そコイルというものはその囲む空間に磁気エネルギーが
入つlごときのエネルギー密度は小となる。従って、ス
ピンどの間のエネルギーのやりとりは、大川法のT1イ
ル稈大まかになり、検出感度が鈍くなる。ただ、大川法
のものではその分Qoを高くとることができるので、実
際には検出感度の低下は小量に抑えることはできる。し
かし、何としても、大寸法の検出コイルは製造するにも
設置するにも大変不便で厄介である。
By the way, in such a conventional device, the static magnetic field 1-
Even if the accuracy of the perturbation components such as the uniformity of 10 and the gradient magnetic field is good, there is a problem that the RF coil of the detection coil 5 is too sensitive. , 3~5M1-1z (800G
Even if it resonates at ~1.2KG), it will resonate at about 0.7~1.
It has a diameter of 0+11φ and is wound vi times, and the wire material A is also formed using a thick copper band or a wire rod shaped like a vibrator. Roughly speaking, the energy density of a coil when magnetic energy enters the space surrounding it is small. Therefore, the exchange of energy between the spins becomes rough in the T1 culm of the Okawa method, and the detection sensitivity becomes low. However, with the Okawa method, the Qo can be increased accordingly, so the decrease in detection sensitivity can actually be suppressed to a small amount. However, large-sized detection coils are very inconvenient and cumbersome to manufacture and install.

本発明は、このような点に鑑みてなされた一bので、そ
の目的は、大寸法の検出コイルを避け、信号捕捉効率が
良く、S/Nの向−ヒも図り得るようなNMRイメージ
ング荻置装おけるRFコイル装置を提供することにある
The present invention has been made in view of these points, and its purpose is to provide an NMR imaging system that avoids large-sized detection coils, has good signal capture efficiency, and can also improve S/N ratio. An object of the present invention is to provide an RF coil device for a device.

この目的を達成づ°る本発明は、被検体の周)すに接近
して多数の検出コイルを配置し、その各々に受信増幅器
を接続し、該受信増幅器の出力を1−ベて一様に又は必
要に応じて一部のみを用いて1つの信号に合成しつつ被
検体の磁気応答を受信するように構成したことを特徴と
するものである。
The present invention achieves this object by arranging a large number of detection coils close to the circumference of the subject, connecting a receiving amplifier to each of them, and uniformly distributing the output of the receiving amplifier. The present invention is characterized in that it is configured to receive the magnetic response of the subject while combining it into a single signal using only a part of the magnetic response as needed.

以下、図面を参照し本発明の詳細な説明する。Hereinafter, the present invention will be described in detail with reference to the drawings.

第4図は本発明の一実施例を示す模式的構成図である。FIG. 4 is a schematic diagram showing an embodiment of the present invention.

図において、]−1oの摂動用コイルは省略しであるが
、被検体のサンプルスライス41(その厚みは選択励起
により決まる)に対し、ト1oを水平方向、RFWl場
Hrfを垂直方向とする。このような状態において、小
形の検出コイル42を図のように多数配置し、その出力
は、それぞれ受信アンプ43を介して取り出され、その
出力はづべて一様に若しくは選択的に利用するようにな
っている。各検出コイル42は、被検体スライス41の
近傍に配置されており、それぞれスライス41の浅い部
位と結合をもつので、各々は特定の励起は大きな励起用
コイル44で行ってもJ、いが、この検出コイル42で
行うようにしでもJ:い。
In the figure, the perturbation coil 1o is omitted, but 1o is horizontal and the RFWl field Hrf is vertical with respect to the sample slice 41 of the subject (the thickness of which is determined by selective excitation). In such a state, a large number of small detection coils 42 are arranged as shown in the figure, and their outputs are taken out through the receiving amplifiers 43, and the outputs are all used uniformly or selectively. It has become. Each detection coil 42 is placed near the subject slice 41 and is coupled to a shallow portion of the slice 41, so each detection coil 42 can be excited even if a large excitation coil 44 is used for specific excitation. It is possible to use this detection coil 42.

第5図は他の実施例図である。この場合t−1oは垂直
方向、HrfはHoの軸を中心とした放射状の向きに被
検体スライス41に印加される。[100信号はHaと
垂直なあらゆる方角から観測できるため、励起はどの方
向から行っても受信可能Cある。但し、90’パルスの
みの励起では死角が生ずるため、90’パルスと180
°パルスを適宜併用するか、若しくは、90°のみでイ
メージングする場合には図の如く直交する2組の励起専
用のコイル51a、51bと528,52bを配置し適
宜に使い分ける。本図の場合も個々の検出二jイル53
は直下のスライス浅部とJ:り強く結合Jるから、ある
特定の部位の精密なイメージングを行うのに適している
。尚、各検出コイル53の出力は受信増幅器54を介し
1=後、リベ(を一様に或いは任意の数個所ずつを選択
的に利用するにうにしてよい。選択的に利用する場合は
、重み付1)係数器55によって各出力に与えられる重
みを可変することにより行われる。すべてを一様に利用
する場合は重み付(プ係数器55の各重みを等しくして
おけばよい。重み付り係数器55の出力はすべて一様に
加算アンプで加算し1本の信号として出力される。
FIG. 5 is a diagram of another embodiment. In this case, t-1o is applied to the subject slice 41 in a vertical direction, and Hrf is applied in a radial direction centered on the axis of Ho. [100 signals can be observed from all directions perpendicular to Ha, so excitation can be received from any direction. However, excitation with only 90' pulse creates a blind spot, so excitation with 90' pulse and 180' pulse
If the ° pulse is used in combination as appropriate, or if imaging is performed only at 90°, two orthogonal sets of excitation-only coils 51a, 51b and 528, 52b are arranged and used as appropriate. In the case of this figure, the individual detection
Because it is strongly coupled to the shallow part of the slice directly below it, it is suitable for performing precise imaging of a specific region. Incidentally, the output of each detection coil 53 may be used uniformly or selectively at any number of points after passing through the receiving amplifier 54. When used selectively, Weighting 1) Weighting is performed by varying the weight given to each output by the coefficient unit 55. When using all of them uniformly, it is sufficient to make each weight of the weighting coefficient unit 55 equal.The outputs of the weighting coefficient unit 55 are all uniformly added together by an adding amplifier and made into one signal. Output.

このように加算することは、適切な位相整合を確保する
必要を生ずる。そして適切な位相整合が確保されれば、
全体としての検出にお(プるノイズフィギュアの向上に
つながる。有感領域の寸法(体積)が従来のものと比べ
て著しく小さく(約1/10以下)なっていること自体
からもS/Nの向上につながっていることが分る。
Adding in this manner creates the need to ensure proper phase matching. And once proper phase matching is ensured,
This leads to an improvement in the noise figure of the overall detection.The fact that the size (volume) of the sensitive area is significantly smaller (approximately 1/10 or less) compared to the conventional one also improves the S/N. It can be seen that this leads to an improvement in

このようにして得たFID信号の利用方法乃至イメージ
ング再構成の方法は従来と同様である。
The method of using the FID signal thus obtained and the method of imaging reconstruction are the same as in the conventional method.

尚、第5図においては各検出コイルは固定配置の場合を
示しているが、第6図に示すように各検出コイルをプロ
ーブコイルとして図示の径方向にエアシリンダー等のプ
ランジ1761を用いて移動自在に構成し、被検体表面
に各検出コイルを押七当てるようにすることもできる。
In addition, although each detection coil is shown in a fixed arrangement in FIG. 5, as shown in FIG. 6, each detection coil can be moved as a probe coil in the radial direction shown using a plunger 1761 such as an air cylinder. It is also possible to freely configure the structure so that each detection coil is pressed against the surface of the subject.

このような構成によれば、被検体の太細、形状の制約を
余り受(Jることなく対表面直下を、よくイメージング
づることができる。又、被検体搭載台62の」−にもプ
ローブコイルを配置するようにしてもよい。
With this configuration, it is possible to image the area just below the opposing surface without being subject to the restrictions of the thickness and shape of the object. In addition, the probe can also be placed on the object mounting table 62. A coil may be arranged.

以上説明したように、本発明によれば、検出コイルを多
数用いることにより、そのコイルの製造や設置が容易で
あることは勿論のこと、信号捕捉効率がJこり、S/N
の向上も図り得るNMRイメージング肢置装RFコイル
装置を突環りることができる。
As explained above, according to the present invention, by using a large number of detection coils, not only the manufacturing and installation of the coils are easy, but also the signal capture efficiency is improved, the S/N is
The NMR imaging limb device RF coil device can also be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のNMR装眉における検査手法の一例を説
明づるための波形図、第2図は第1図の手法による磁化
Mの方向を説明するための図、第3図は従来装置におけ
る磁場用コイル部分の構成図、第4図は本発明の一実施
例を示1構成図、第5図及び第6図は本発明の他の実施
例を示す構成図である。 1・・・円筒 2・・・静磁場用コイル3・・・勾配(
a場用コイル 4・・・励磁コイル 5.42.53・・・検出コイル 特許出願人 横河メディカルシステム株式会社代 理 
人 弁 理 士 小 沢 信 助第3図 第4図 第5図
Fig. 1 is a waveform diagram for explaining an example of an inspection method in conventional NMR eyebrow placement, Fig. 2 is a diagram for explaining the direction of magnetization M by the method of Fig. 1, and Fig. 3 is a diagram for explaining the direction of magnetization M in the method of Fig. FIG. 4 is a block diagram showing one embodiment of the present invention, and FIGS. 5 and 6 are block diagrams showing other embodiments of the present invention. 1...Cylinder 2...Static magnetic field coil 3...Gradient (
A-field coil 4... Excitation coil 5.42.53... Detection coil Patent applicant: Yokogawa Medical Systems Co., Ltd. Agent
Person Patent Attorney Shinsuke Kozawa Figure 3 Figure 4 Figure 5

Claims (2)

【特許請求の範囲】[Claims] (1)被検体の周辺に接近して多数の検出コイルを配置
し、その各々に受信増幅器を接続し、該受信増幅器の出
力をすべて一様に又は必要に応じて一部のみを用いて1
つの信号に合成しつつ被検体の磁気応答を受信するよう
に構成したことを特徴とする核磁気共鳴イメージング装
置におけるR Fコイル装置。
(1) A large number of detection coils are placed close to the periphery of the subject, a reception amplifier is connected to each of them, and the output of the reception amplifier is applied uniformly to all or only a part as necessary.
1. An RF coil device in a nuclear magnetic resonance imaging apparatus, characterized in that the RF coil device is configured to receive a magnetic response of a subject while combining it into two signals.
(2)前記検出コイルは、被検体の励起をも行い得るよ
うにし7jことを特徴とする特許請求の範囲第1項記載
の核磁気共鳴イメージング装置におけるRFコイル装置
。 く3)前記検出コイルは、移動自在に構成され、被検体
表面に当接又は至近距離に移動して配置させることがで
きるように構成したことを特徴とする特許請求の範囲第
1項記載の核磁気共鳴イメージング装置におけるR F
コイル装置。
(2) The RF coil device in the nuclear magnetic resonance imaging apparatus according to claim 1, wherein the detection coil is also capable of excitation of the subject. (3) The detection coil is configured to be movable and can be placed in contact with the surface of the subject or moved at a close distance. RF in nuclear magnetic resonance imaging equipment
coil device.
JP58107444A 1983-06-15 1983-06-15 Rf coil device of nuclear magnetic resonance imaging device Granted JPS60376A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58107444A JPS60376A (en) 1983-06-15 1983-06-15 Rf coil device of nuclear magnetic resonance imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58107444A JPS60376A (en) 1983-06-15 1983-06-15 Rf coil device of nuclear magnetic resonance imaging device

Publications (2)

Publication Number Publication Date
JPS60376A true JPS60376A (en) 1985-01-05
JPH0261252B2 JPH0261252B2 (en) 1990-12-19

Family

ID=14459301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58107444A Granted JPS60376A (en) 1983-06-15 1983-06-15 Rf coil device of nuclear magnetic resonance imaging device

Country Status (1)

Country Link
JP (1) JPS60376A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6192660A (en) * 1984-10-15 1986-05-10 株式会社東芝 Nuclear magnetic resonance imaging apparatus
WO1987006712A1 (en) * 1986-04-21 1987-11-05 The Board Of Trustees Of The Leland Stanford Junio Reduced noise nmr localization system
JPS6321049A (en) * 1986-07-15 1988-01-28 工業技術院長 Brain function measuring apparatus using neclear magnetic resonance phenomenon
JPS63203147A (en) * 1987-02-20 1988-08-23 株式会社東芝 Magnetic resonance imaging apparatus
JPS6417636A (en) * 1987-07-14 1989-01-20 Hitachi Medical Corp Nuclear magnetic resonance imaging apparatus
US4812753A (en) * 1986-11-07 1989-03-14 U.S. Philips Corp. Method and arrangement for determining a corrected MRI surface coil image
WO1989012422A1 (en) * 1988-06-17 1989-12-28 Otsuka Electronics Co., Ltd. Method and apparatus for nmr measurement of living tissue
EP0407579A1 (en) * 1988-02-15 1991-01-16 Yokogawa Medical Systems, Ltd Magnetic resonance imaging device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5397894A (en) * 1977-02-08 1978-08-26 Jeol Ltd High frequency circuit for nuclear magnetism resonance device
JPS56132551A (en) * 1980-02-05 1981-10-16 Thomson Csf Electromagnetic coil system and nmr imaging device using thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5397894A (en) * 1977-02-08 1978-08-26 Jeol Ltd High frequency circuit for nuclear magnetism resonance device
JPS56132551A (en) * 1980-02-05 1981-10-16 Thomson Csf Electromagnetic coil system and nmr imaging device using thereof

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6192660A (en) * 1984-10-15 1986-05-10 株式会社東芝 Nuclear magnetic resonance imaging apparatus
WO1987006712A1 (en) * 1986-04-21 1987-11-05 The Board Of Trustees Of The Leland Stanford Junio Reduced noise nmr localization system
JPH0351414B2 (en) * 1986-04-21 1991-08-06 Riirando Sutanfuoodo Junia Univ
JPS63503118A (en) * 1986-04-21 1988-11-17 ザ ボード オブ トラスティーズ オブ ザ リーランド スタンフォード ジュニア ユニバーシティ Device that separates nuclear magnetic signals from a limited area
JPS6321049A (en) * 1986-07-15 1988-01-28 工業技術院長 Brain function measuring apparatus using neclear magnetic resonance phenomenon
JPH0328932B2 (en) * 1986-07-15 1991-04-22 Kogyo Gijutsuin
US4812753A (en) * 1986-11-07 1989-03-14 U.S. Philips Corp. Method and arrangement for determining a corrected MRI surface coil image
JPS63203147A (en) * 1987-02-20 1988-08-23 株式会社東芝 Magnetic resonance imaging apparatus
JPH0433211B2 (en) * 1987-02-20 1992-06-02 Tokyo Shibaura Electric Co
JPS6417636A (en) * 1987-07-14 1989-01-20 Hitachi Medical Corp Nuclear magnetic resonance imaging apparatus
JPH0376136B2 (en) * 1987-07-14 1991-12-04 Hitachi Medical Corp
EP0407579A1 (en) * 1988-02-15 1991-01-16 Yokogawa Medical Systems, Ltd Magnetic resonance imaging device
EP0407579B1 (en) * 1988-02-15 1996-08-28 Yokogawa Medical Systems, Ltd Magnetic resonance imaging device
WO1989012422A1 (en) * 1988-06-17 1989-12-28 Otsuka Electronics Co., Ltd. Method and apparatus for nmr measurement of living tissue

Also Published As

Publication number Publication date
JPH0261252B2 (en) 1990-12-19

Similar Documents

Publication Publication Date Title
US7759938B2 (en) Apparatus and method for varying magnetic field strength in magnetic resonance measurements
JPS5946546A (en) Inspection method and apparatus by nuclear magnetic resonator
US20090251144A1 (en) Magnetic resonance imaging system and method
EP0130479B1 (en) Method of projection reconstruction imaging with reduced sensitivity to motion-related artifacts
JP2005515051A (en) Coil system for MR apparatus and MR apparatus provided with the coil system
JPS60376A (en) Rf coil device of nuclear magnetic resonance imaging device
US4799015A (en) Method of mapping the nuclear magnetic properties of an object to be examined
US4429277A (en) Nuclear magnetic resonance apparatus utilizing multiple magnetic fields
JPH04332531A (en) Inspecting device using nuclear magnetic resonance
JPH05503867A (en) Magnetic field generation assembly
US4769604A (en) Method of mapping the material properties of an object to be examined
JPS6170445A (en) Nuclear magnetic resonance chemical shift mapping method anddevice
US5068611A (en) Measuring procedure for the elimination of faults from an NMR signal by comparing RF field components spinning in opposite directions
US4743850A (en) Method of mapping the nuclear magnetic properties of an object to be examined
JPH05261081A (en) Inspecting system using nuclear magnetic resonance
Jeong et al. A solenoid-like coil producing transverse RF fields for MR imaging
JPH05253207A (en) Mri device for medical diagnostic image
JPS63311945A (en) Nuclear magnetic resonance tomographic imaging apparatus
JPS60146140A (en) Method and apparatus of inspection using nuclear magnetic resonance
JPS63109847A (en) Nuclear magnetic resonance imaging apparatus
JP3473631B2 (en) Inspection device using nuclear magnetic resonance
Abubakar et al. Development and Optimisation of Surface and Volume Radiofrequency Coils Suitable for Fast-Field-Cycling Magnetic Resonance Imaging (FFC-MRI)
JPS6244231A (en) Diagnostic magnetic resonance imaging apparatus
JPS6249577B2 (en)
JPH04343833A (en) Magnetic resonance imaging device capable of correcting primary item of ununiformity of static magnetic field