JPS6037189B2 - Coated cemented carbide parts - Google Patents

Coated cemented carbide parts

Info

Publication number
JPS6037189B2
JPS6037189B2 JP10605481A JP10605481A JPS6037189B2 JP S6037189 B2 JPS6037189 B2 JP S6037189B2 JP 10605481 A JP10605481 A JP 10605481A JP 10605481 A JP10605481 A JP 10605481A JP S6037189 B2 JPS6037189 B2 JP S6037189B2
Authority
JP
Japan
Prior art keywords
layer
cemented carbide
alumina
coated
tic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10605481A
Other languages
Japanese (ja)
Other versions
JPS586970A (en
Inventor
稔 中野
直治 藤森
陽 士居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP10605481A priority Critical patent/JPS6037189B2/en
Publication of JPS586970A publication Critical patent/JPS586970A/en
Publication of JPS6037189B2 publication Critical patent/JPS6037189B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 超硬合金にアルミナ被覆したいわゆるアルミナコーティ
ング工具は市場の切刷速度の高速化にともない主力工具
として広く使用されている。
DETAILED DESCRIPTION OF THE INVENTION So-called alumina-coated tools, in which cemented carbide is coated with alumina, are widely used as main tools as cutting speeds increase in the market.

アルミナコーティング工具はアルミナの持つ高い耐摩耗
性と母村超硬合金の鰯性を併せ持つ現在まで)、は最も
合理的な考え方の工具と言える。しかし超硬合金に直接
アルミナを被覆した場合種々問題があり、Wa,Va,
のa族元素の炭化物、窒化物で被覆した後、その外層に
アルミナを被覆するという考え方が優れていると言える
(袴公昭53一13201号公報)。工業的にはTiの
炭化物や窒化物を使用することが通常行われる化学蒸着
法(以下CVDと略す)を用いる場合には特に有効と考
えられる。
Alumina-coated tools combine the high wear resistance of alumina with the toughness of Momomura cemented carbide, and can be said to be the most rational tool to date. However, there are various problems when directly coating cemented carbide with alumina.
It can be said that the idea of coating with a carbide or nitride of a group A element and then coating the outer layer with alumina is excellent (Hakama Kosho No. 53-113201). It is considered to be particularly effective when using a chemical vapor deposition method (hereinafter abbreviated as CVD) in which Ti carbide or nitride is usually used industrially.

なぜならTiは供給源としてTIC14という安価で気
化点の物質があるからである。TICを内層として使用
しこれにアルミナを被覆する場合、酸化雰囲気に曝され
るところから、特に被覆初期においてTICが部分的に
侵され、アルミナとTICの界面強度は低下すると考え
られる。
This is because a source of Ti is a material called TIC14, which is inexpensive and has a vaporization point. When TIC is used as an inner layer and coated with alumina, it is thought that the TIC will be partially eroded, especially at the initial stage of coating, due to exposure to an oxidizing atmosphere, and the strength of the interface between alumina and TIC will decrease.

一方TINを被覆した場合にはTINの耐酸化性はTI
Cに比して優れているので界面が強い力汀iNの高温で
の硬度は低いため、アルミナがはがれた部分での摩耗の
進行は著しく汎用工具としての性能は十分とは言えない
。以上のような理由に鑑みてTi(CN)を内層として
被覆した後アルミナを被覆するという提案もある(特関
昭52−96911号公報)。
On the other hand, when TIN is coated, the oxidation resistance of TIN is
Since iN has a strong interface and has a low hardness at high temperatures, wear progresses significantly in areas where the alumina is peeled off, and its performance as a general-purpose tool cannot be said to be sufficient. In view of the above-mentioned reasons, there is also a proposal to coat Ti (CN) as an inner layer and then coat alumina (Special Publication No. 52-96911).

しかしこの提案は所詮上述のTICとTINの中間的な
考え方を示しているに過ぎない。発明者は、アルミナの
持つ高い耐摩耗性を最下限に引き出し得る内層構造につ
いて種々検討し本発明を得るに至った。
However, this proposal merely represents an intermediate concept between the above-mentioned TIC and TIN. The inventor conducted various studies on the inner layer structure that can bring out the high abrasion resistance of alumina to the lowest limit, and arrived at the present invention.

本発明はTICと棚窒化チタン層の2層をアルミナ層の
内層とすることに特徴がある。
The present invention is characterized in that two layers, TIC and a shelf titanium nitride layer, are used as inner layers of the alumina layer.

棚窒化チタン層は、高温硬度が高いため100030付
近の切削工具刃先がさらされる温度においては、AI2
03層直下の領域での微小な塑性変形が少なく、AI2
03層の損傷が極小に抑えることが出来る。
The shelf titanium nitride layer has high hardness at high temperatures, so at temperatures near 100030 to which cutting tool edges are exposed, it has an AI2
There are few minute plastic deformations in the area directly under the 03 layer, and the AI2
Damage to the 03 layer can be minimized.

さらに、棚窒化チタン層は耐酸化性に優れており、アル
ミナ層を被覆する場合には好適な下地物質と云える。さ
らに、しかし、剛窒化チタンを超硬合金に直接被覆した
場合、超硬合金が主として炭化物で構成されているため
に接着力としては十分でない。
Furthermore, the shelf titanium nitride layer has excellent oxidation resistance and can be said to be a suitable base material when covering an alumina layer. Furthermore, however, when rigid titanium nitride is directly coated on a cemented carbide, the adhesive strength is not sufficient because the cemented carbide is mainly composed of carbides.

超硬合金に直接隣接する層としてはTICが最も適して
いる。このように超硬合金にTICを被覆しさらに棚窒
化チタンを被覆すれば、さらに外層にアルミナ被覆した
場合最も強固な接着度で切削性能が優れた組合わせがで
きると言える。しかし本発明の構造においても実際の切
削加工において最適な性能とするにはそれぞれの層厚は
きわめて厳密に決定されなくてはならない。
TIC is most suitable for the layer directly adjacent to the cemented carbide. In this way, if a cemented carbide is coated with TIC and further coated with titanium nitride, and if the outer layer is further coated with alumina, it can be said that a combination with the strongest adhesion and excellent cutting performance can be obtained. However, even in the structure of the present invention, the thickness of each layer must be determined very precisely in order to achieve optimal performance in actual cutting.

TICは超硬合金との接着のために重要であるので0.
5仏あればその効果を表わすが、9山を越えると工具全
体の強度の低下をきたし欠損しやすくなるので0.5ム
〜9仏がよい。山203は0.5り以下では耐摩耗性の
向上は望めず5仏以上では欠損しやすくなり工具として
の汎用性を損う。
TIC is important for adhesion with cemented carbide, so 0.
A value of 5 mm indicates the effect, but if the number exceeds 9, the strength of the tool as a whole decreases and it becomes prone to breakage, so 0.5 mm to 9 mm is preferable. If the number of ridges 203 is less than 0.5, no improvement in wear resistance can be expected, and if it is more than 5, it is likely to break off, impairing its versatility as a tool.

棚窒化チタンは、TINのNを一部をBで置換したもの
で、Tj(B洲,‐x)…と考えられる。
Shelf titanium nitride is TIN in which N is partially replaced with B, and is thought to be Tj(Bzu, -x)...

BはBC13で供給され、B含有量はBC13供給量と
共に増加するがx=0.3を越える組成ではTi(BN
)中に固港せず、即ち、Tj(B幻Nrx),.o膜質
の特徴は、Bの固熔化による高温硬度の向上にあり、T
iB2は高温硬度が優れるも耐酸化性に劣りコーティン
グ膜として好ましくない。腰質の硬度特性を改善するた
めにB量を増すとTiB2とTiBNの混相組織となり
、かような組成、組織の異る膜質上ではその上層のAI
203の核生成、成長が不均一となり、N203膜の密
着性、強度不足をきたす。
B is supplied as BC13, and the B content increases with the amount of BC13 supplied, but in compositions exceeding x = 0.3, Ti(BN
), that is, Tj(B phantom Nrx), . The characteristic of the film quality is the improvement in high-temperature hardness due to the solidification of B, and the
Although iB2 has excellent high-temperature hardness, it has poor oxidation resistance and is not preferred as a coating film. When the amount of B is increased to improve the hardness characteristics of the backbone, a mixed phase structure of TiB2 and TiBN is created, and on a film with such a different composition and structure, the upper layer of AI
Nucleation and growth of 203 becomes non-uniform, resulting in insufficient adhesion and strength of the N203 film.

このため、B含有量はx=0.3が限度であって、又、
B含有量の多い組成で膜厚がIAを越えると、鷹相組織
のため成長速度が異るためこのような棚窒化チタンの表
面性状は極めて不適合であって、釘203下地組織とし
ては不適である。このような理由で、棚窒化チタン中の
B含有量には上限があり、B量は0.3を越えないのが
よいとされてきた。しかし本発明はこのような常識に反
してB量を高めて高温硬度、耐酸化性に優れ、かつ均一
な山203粒核生成、成長しうる棚窒化チタンが下記の
条件下においてのみ生成し得ることを見出したものであ
る。
Therefore, the B content is limited to x=0.3, and
If the film thickness exceeds IA with a composition with a high B content, the growth rate will be different due to the hawk phase structure, and the surface texture of such shelf titanium nitride will be extremely unsuitable, making it unsuitable as a nail 203 base structure. be. For this reason, there is an upper limit to the B content in titanium nitride shelves, and it has been considered that the B content should not exceed 0.3. However, contrary to such common sense, the present invention increases the amount of B to produce shelf titanium nitride that has excellent high-temperature hardness and oxidation resistance, and that can generate and grow uniform mountain grains only under the following conditions. This is what I discovered.

Z8= {BC13/(BC13十TIC14)}ZN
= {N2/(日2十N2)}X2={ZB・ZN/T
IC14(容量%)}×100とおいたとき、5≦×2
≦50の範囲において、Ti(BxN,‐x)zなる化
合物を生成しうろことを見出した。
Z8= {BC13/(BC13 + TIC14)}ZN
= {N2/(day 20N2)}X2={ZB・ZN/T
IC14 (capacity%)}×100, 5≦×2
It has been found that in the range of ≦50, a compound called Ti(BxN,-x)z is likely to be produced.

この生成物は0.1SxSO.8,1.0ミZ三1.7
の組成である。一方、立方晶Ti(BxN,‐x)とは
B含有量及び結晶構造が異る。又、Ti&と比べると、
Nが多量に固落されており、Ti&とTINとの固溶体
と考えられる。このため1〃以上の膜厚となっても組成
が均一であって、しかも耐酸化性がTiB2に比較して
大中に改善されている。z<1.0では従来のTi(B
N)と同様B含有量が制限される。z>1.7では耐酸
化性が悪化してくる。好ましくは1.0SzSI.5で
ある。又B含有量xがx<0.1ではz>1.0の結晶
構造が維持できず、又x>0.8を越えるとTiB2の
性質が強くなる。好ましくは0.3<×<0.7である
。本発明のTi(BxN,【x)zは上記で示された範
囲でしか生成され得ず、この条件外では立方晶のTi(
BN)単独析出あるいは、Ti(BN)とTiB2の同
時析出が発生する。TIN(B洲,‐x)zのコ‐ティ
ング層をN203層の基板とすれば1ムを越える膜厚で
も均一な組成をもつために、微粒のN203層が得られ
ることを見出した。このTi(B洲,‐x)z層上では
AI203層の粒度はx,zに依存し、x<0.1,z
<1.0では粒度の粗いAI203になりやすく、又、
x>0.8 z>1.7のTi(B洲,‐x)z層では
柱状なAI203が成長しやすい。
This product is 0.1SxSO. 8,1.0 mi Z3 1.7
The composition is On the other hand, it differs from cubic Ti (BxN, -x) in B content and crystal structure. Also, compared to Ti&,
A large amount of N was precipitated, and it is thought to be a solid solution of Ti& and TIN. Therefore, even if the film thickness is 1 mm or more, the composition is uniform, and the oxidation resistance is significantly improved compared to TiB2. When z<1.0, conventional Ti(B
Similar to N), the B content is limited. When z>1.7, oxidation resistance deteriorates. Preferably 1.0SzSI. It is 5. Further, when the B content x is x<0.1, the crystal structure of z>1.0 cannot be maintained, and when x>0.8, the properties of TiB2 become stronger. Preferably 0.3<x<0.7. Ti(BxN,[x)z of the present invention can only be produced within the range shown above, and outside this condition, cubic Ti(
BN) alone or simultaneous precipitation of Ti(BN) and TiB2 occurs. It has been found that if the coating layer of TIN(Bzu, -x)z is a substrate of N203 layer, a fine N203 layer can be obtained because it has a uniform composition even if the film thickness exceeds 1 μm. On this Ti(Bzu, -x)z layer, the grain size of the AI203 layer depends on x, z, and x<0.1, z
<1.0 tends to result in coarse grained AI203, and
In the Ti(Bzu, -x)z layer where x>0.8 and z>1.7, columnar AI203 tends to grow.

0.1Sxミ0.& 1.0Sz≦1.7、好ましくは
0.3Sx≦0.7,1.0SzSI.5の組成のTi
(BxN,‐x)z層上で微粒なAI203層を生成さ
せることが出来る。
0.1Sxmi0. & 1.0Sz≦1.7, preferably 0.3Sx≦0.7, 1.0SzSI. Ti of composition 5
A fine-grained AI203 layer can be generated on the (BxN, -x)z layer.

この微粒な山203は、接着強度も良好で、耐摩耗性と
鋤性に磯れている。
These fine-grained peaks 203 have good adhesive strength, and are excellent in abrasion resistance and plowability.

本発明は必ずしもCVD法によらなくてもイオンプレー
テイング、スパッタリング、プラズマCVD等の被覆法
を用いても何ら効果は変りがな〈発明の範囲である。
The present invention does not necessarily require the CVD method, and even if a coating method such as ion plating, sputtering, or plasma CVD is used, the effect will not change at all (within the scope of the invention).

またTIC層中に微量の○またはNを入れることも本発
明の効果は損わない。
Further, the effect of the present invention is not impaired by adding a small amount of O or N into the TIC layer.

同様にTi(BxN,‐x)z層中に徴量のCまたは0
を入れることも本発明の範囲である。
Similarly, the characteristic C or 0 in the Ti(BxN,-x)z layer
It is also within the scope of the present invention to include.

〔実施例 1〕 ISOP,。[Example 1] ISOP,.

超硬合金(SNMG432)チップをCVD*装置内に
入れ、1000qoに加熱し、TIC14,日2,C比
の混合ガス中で2時間TICを被覆を行ったのち、TI
C14,BC13,日2,N2の各々の混合ガス中で棚
窒化チタンを作成した。これをX線回折及びTINオー
ジェ電子分析器で調べた結果を表1に合せて示す。表
1 これを基板としてAI203の核生成テストを行ったと
ころ、船.3,4が均一な核生成がみられ、2は不均一
核生成、6は表面が一部変化していた。
A cemented carbide (SNMG432) chip was placed in a CVD* equipment, heated to 1000 qo, and coated with TIC for 2 hours in a mixed gas with a TIC ratio of 14, 2, and C.
Shelf titanium nitride was produced in each mixed gas of C14, BC13, Ni2, and N2. Table 1 shows the results of examining this using X-ray diffraction and a TIN Auger electron analyzer. table
1 When a nucleation test of AI203 was conducted using this as a substrate, the ship. Samples 3 and 4 showed uniform nucleation, sample 2 showed heterogeneous nucleation, and sample 6 had a partially changed surface.

〔実施例 2〕実施例1と同様の方法にてISOMIO
超硬合金(形状SNG432)にTICを4仏被覆した
後表2に示す組成のTi(B幻N,‐x)z層を1.5
ム被覆し、実施例1と同様に山203を1仏被覆した。
AIC13,日2,C02の混合ガス中、1000℃で
N203を1ム被覆した。
[Example 2] ISOMIO using the same method as Example 1
After coating a cemented carbide (shape SNG432) with four layers of TIC, a Ti(B-gen N, -x)z layer with the composition shown in Table 2 was added to 1.5
Similarly to Example 1, the peak 203 was coated with one layer.
1 ml of N203 was coated at 1000° C. in a mixed gas of AIC13, 2, and CO2.

これを下記の条件で切削試験を行った。テストA
テストB 切削方式 旋 削 旋 削 被削材 SCM3 SCM鎌篭材(第3
図)速 度 160机/肌 100/肌切込
み 2柵 1,5肋送 り 0.36肌
/rev o.2仇凧/rev比較法 30分
切削し、逃げ面、すくい面摩耗 を比較 結果を表2に示す。
A cutting test was conducted on this under the following conditions. Test A
Test B Cutting method Turning Turning Work material SCM3 SCM kamago material (3rd
Figure) Speed 160 machines/skin 100/skin cut 2 fences 1,5 rib feed 0.36 skin/rev o. 2 Kite/rev Comparison Method Table 2 shows the results of comparing flank and rake face wear after cutting for 30 minutes.

表2 ※1:VB・・・フランク摩耗 ※2:KT・・・クレ
−ター摩耗t3’,{4’,【則,(7}のTi(B幻
N,‐x)z層上にコーティングしたN203層粒度は
、平均0.5仏、最大lrであった。
Table 2 *1: VB...flank wear *2: KT...crater wear t3', {4', [Rule, (7}) Coating on Ti (B illusion N, -x) z layer The average grain size of the N203 layer was 0.5 French, and the maximum was 1r.

一方、【2},(5},【8}では平均1〜2仏であり
、{1}では最大山の粒度をもつN203層であつた。
〔実施例 3〕 実施例2と同様にしてISOMI雌超硬合金に表3.に
示す如きTICとTi(氏.6,NO.4),.5とA
I203を被覆して実施例1と同様の切削試験A,Bを
行って比較した。
On the other hand, in [2}, (5}, and [8}, the average was 1 to 2 particles, and in {1}, the N203 layer had the maximum grain size.
[Example 3] Table 3. TIC and Ti (Mr. 6, NO. 4) as shown in . 5 and A
I203 was coated and cutting tests A and B similar to those in Example 1 were conducted and compared.

その結果を表3に示す。表3The results are shown in Table 3. Table 3

Claims (1)

【特許請求の範囲】[Claims] 1 外層をアルミナ、中間層硼窒化チタン、内層が炭化
チタンを被覆した超硬合金において、該硼窒化チタンを
、Ti(BxN_1_−_x)zで表わした場合、0.
1≦x≦0.8,1.0≦z≦1.7であり、該硼窒化
チタンの結晶構造がTiB_2タイプであつて膜厚が1
.0〜3μ、アルミナ層が0.5〜5μ、炭化チタンが
0.5〜9μであることを特徴とする被覆超硬合金部材
1 In a cemented carbide coated with alumina as an outer layer, titanium boronitride as an intermediate layer, and titanium carbide as an inner layer, when the titanium boronitride is expressed as Ti(BxN_1_-_x)z, 0.
1≦x≦0.8, 1.0≦z≦1.7, the crystal structure of the titanium boronitride is TiB_2 type, and the film thickness is 1.
.. A coated cemented carbide member characterized in that the alumina layer has a thickness of 0.5 to 5μ, and the titanium carbide has a thickness of 0.5 to 9μ.
JP10605481A 1981-07-06 1981-07-06 Coated cemented carbide parts Expired JPS6037189B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10605481A JPS6037189B2 (en) 1981-07-06 1981-07-06 Coated cemented carbide parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10605481A JPS6037189B2 (en) 1981-07-06 1981-07-06 Coated cemented carbide parts

Publications (2)

Publication Number Publication Date
JPS586970A JPS586970A (en) 1983-01-14
JPS6037189B2 true JPS6037189B2 (en) 1985-08-24

Family

ID=14423898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10605481A Expired JPS6037189B2 (en) 1981-07-06 1981-07-06 Coated cemented carbide parts

Country Status (1)

Country Link
JP (1) JPS6037189B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT387988B (en) * 1987-08-31 1989-04-10 Plansee Tizit Gmbh METHOD FOR PRODUCING MULTI-LAYER COATED HARD METAL PARTS
JP2793696B2 (en) * 1990-05-17 1998-09-03 神鋼コベルコツール株式会社 Wear resistant coating
DE19543748A1 (en) * 1995-11-24 1997-05-28 Widia Gmbh Cutting tool, method for coating a cutting tool and use of the cutting tool
JP4251990B2 (en) * 2002-01-18 2009-04-08 住友電工ハードメタル株式会社 Surface coated cutting tool

Also Published As

Publication number Publication date
JPS586970A (en) 1983-01-14

Similar Documents

Publication Publication Date Title
JP2008183708A (en) Coated insert for milling and its manufacturing method
JPS6256565A (en) Surface coated hard member having superior wear resistance
JPS6037189B2 (en) Coated cemented carbide parts
JP3278785B2 (en) Manufacturing method of surface coated cutting tool
JP3893804B2 (en) Surface coated cemented carbide cutting tools with excellent chipping resistance
JP3994590B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with high efficiency cutting and hard coating layer
JPS6155591B2 (en)
JP3408267B2 (en) Multi-layer coated sintered alloy with crystal orientation
JPH08118105A (en) Surface-coated cemented carbide alloy cutting tool with tungsten carbide group having hard coating layer excellent in interlayer adhesion
JPH08281502A (en) Crystal orientating coated tool
JP3360565B2 (en) Surface coated cemented carbide cutting tool with a hard coating layer exhibiting excellent wear resistance
JPH10204639A (en) Cutting tool made of surface-coated cemented carbide in which hard coating layer has excellent chipping resistance
JP3266047B2 (en) Surface coated cemented carbide cutting tool with excellent interlayer adhesion with hard coating layer
JPS62270764A (en) Surface-coated hard member
JPH1076406A (en) Cemented carbide cutting tool covered with hard covering layer excellent in anti-chipping property
JPH1076405A (en) Cemented carbide cutting tool covered with hard covering layer excellent in anti-chipping property
JPS5867858A (en) Coated sintered hard alloy member
JP3837959B2 (en) Surface coated tungsten carbide based cemented carbide cutting tool with excellent wear resistance due to hard coating layer
JP3371796B2 (en) Surface coated cemented carbide cutting tool with excellent fracture resistance
JPH07328808A (en) Surface covered tungsten car bidf rdadical cemented carbide cutting tool having hard overlater superior in interlayer a adhesion performance
JP4132106B2 (en) Impact resistant cemented carbide and surface coated cemented carbide
JP3282600B2 (en) Surface-coated cemented carbide cutting tool with a hard coating layer that exhibits excellent fracture resistance
JP3215493B2 (en) Coated sintered alloy with crystal orientation
JP2000117509A (en) Throw away cut tip made of surface covering cemented carbide having excellent wear resistance
JPH0647618A (en) Cutting tip