JPS6036719A - Stratified-mixture supplied engine - Google Patents

Stratified-mixture supplied engine

Info

Publication number
JPS6036719A
JPS6036719A JP14527483A JP14527483A JPS6036719A JP S6036719 A JPS6036719 A JP S6036719A JP 14527483 A JP14527483 A JP 14527483A JP 14527483 A JP14527483 A JP 14527483A JP S6036719 A JPS6036719 A JP S6036719A
Authority
JP
Japan
Prior art keywords
fuel
combustion
stratified
intake air
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14527483A
Other languages
Japanese (ja)
Other versions
JPH0512537B2 (en
Inventor
Takashige Tokushima
徳島 孝成
Hiroyuki Oda
博之 小田
Takeshi Matsuoka
松岡 孟
Haruo Okimoto
沖本 晴男
Masakimi Kono
河野 誠公
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP14527483A priority Critical patent/JPS6036719A/en
Publication of JPS6036719A publication Critical patent/JPS6036719A/en
Publication of JPH0512537B2 publication Critical patent/JPH0512537B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B17/00Engines characterised by means for effecting stratification of charge in cylinders
    • F02B17/005Engines characterised by means for effecting stratification of charge in cylinders having direct injection in the combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D33/00Controlling delivery of fuel or combustion-air, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3064Controlling fuel injection according to or using specific or several modes of combustion with special control during transition between modes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3076Controlling fuel injection according to or using specific or several modes of combustion with special conditions for selecting a mode of combustion, e.g. for starting, for diagnosing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3023Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode
    • F02D41/3029Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode further comprising a homogeneous charge spark-ignited mode

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To enable to keep high-output operation of an engine without accompanying generation of smoke, by varying the switching point for switching the mode of combustion from stratified combustion at the time of low-load operation of the engine to homogeneous combustion at the time of high-load operation of the engine or vice versa according to the density of intake air. CONSTITUTION:At the time of low-load operation of an engine that is detected by a load detecting means 17, a control unit 16 consisting of a micro-computor or the like controls the quantity of intake air to keep it constant by fully opening a throttle valve 14 and functions to cause stratified lean combustion by supplying stratifying fuel toward an igniting means 8 from an injection nozzle 9. When the engine load is increased and exceeds a point A, the supply rate of stratifying fuel is decreased and homogenous combustion is started by supplying scattering fuel from an injection nozzle 12 to compensate the decreased quantity of fuel and controlling the opening of the throttle valve 14. By determining the above switching point A according to the output signal of a means 18 for detecting the density of intake air, it is enabled to effect switching between stratified combustion and homogeneous combustion at the optimum timing without causing dorp of the output and generation of smoke when the engine temperature is raised or the atmospheric pressure is lowered.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、層状給気エンジンに関するものである。[Detailed description of the invention] (Industrial application field) BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a stratified air charge engine.

(従来技術) 従来J:す、■ンジンの燃費性、■ミッション性を改善
する目的から、負荷に応じて燃焼室に供給する燃料のう
ち着火に必要な燃r1だけを着火装置の近傍に偏在させ
て、この部分のみの空燃比を濃くして着火性を向上した
層状燃焼を行うようにして、全体として希薄燃焼が実現
できる層状給気エンジンが、例えば特開昭49−628
07号、特開昭49−128109号に見られるように
公知である。
(Prior technology) Conventional J: For the purpose of improving engine fuel efficiency and mission performance, only the fuel r1 necessary for ignition out of the fuel supplied to the combustion chamber according to the load is unevenly distributed near the ignition device. A stratified air charge engine that achieves lean combustion as a whole by enriching the air-fuel ratio only in this part to perform stratified combustion with improved ignitability has been proposed, for example, in Japanese Patent Laid-Open No. 49-628.
No. 07 and Japanese Unexamined Patent Publication No. 49-128109.

上記層状給気エンジンにおいては、着火装置まわりに供
給する着火用燃料は負荷に関係なく一定とし、この着火
用燃料の供給と同時に負荷に応じた量の分散燃料を供給
するようにしているものであり、低負荷時には着火装置
まわりに偏在した燃料の比率が大きく層状燃焼を行う一
方、高負荷時においては分散して供給される燃料の比率
が多くイtって均一燃焼を行うことになる。
In the above-mentioned stratified air supply engine, the ignition fuel supplied around the ignition device is constant regardless of the load, and at the same time the ignition fuel is supplied, distributed fuel is supplied in an amount corresponding to the load. At low loads, the proportion of fuel unevenly distributed around the ignition device is large, resulting in stratified combustion, while at high loads, the proportion of fuel distributed and supplied is large, resulting in uniform combustion.

しかして、上記のように負荷の上昇に応じて層状燃焼か
ら均一燃焼への移行を行う際に、温度上昇、高地移動に
よる大気圧低下、過給による圧力上v7等の原因ににっ
て空気密度が変化した場合には、燃料供給品が同じであ
っても空気過剰率(空燃比)が変動Jる。空気過剰率が
小さいく濃い)状態で層状燃焼を行うこと(よ空気利用
率の低下に伴うス干−りの発生があり、また、空気過剰
率が大ぎい(薄い)状態で均一燃焼を行うことは、着火
性の低Fに伴う出力不足を〈i−起するものであり、上
記層状燃焼から均一燃焼への移行を負荷のみに対応して
設定しているど、上記のJ:うな外気条イ′1等に対応
づることができず、スモーク発生等の不具合を生じる恐
れがある。
However, when transitioning from stratified combustion to uniform combustion in response to an increase in load, as mentioned above, air leakage occurs due to factors such as a rise in temperature, a drop in atmospheric pressure due to movement to high altitudes, and an increase in pressure due to supercharging. If the density changes, the excess air ratio (air-fuel ratio) will vary even if the fuel supply remains the same. Performing stratified combustion when the excess air ratio is small and dense (there is a risk of soot drying due to a decrease in air utilization), and performing uniform combustion when the excess air ratio is large (thin). This causes a lack of output due to low ignitability, and the transition from stratified combustion to uniform combustion is set only according to the load. It is not possible to deal with the problems such as rows A'1, etc., and there is a risk that problems such as smoke generation may occur.

(発明の目的) そこで、本発明は上記事情に鑑み、低負荷時では着火装
置のまわりに燃料を偏在して供給した層状燃焼を行うと
ともに、高負荷域では燃焼室全体に燃料を分散して供給
した均一燃焼を行うJ、うにして、良好な層状燃焼ど均
一燃焼を15ノるとともに、層状燃焼から均一燃焼への
切換えを適止な時期に行うようにlノだ層状給気−rン
ジンをlid但りることを[1的どりるものである。
(Object of the Invention) Therefore, in view of the above circumstances, the present invention performs stratified combustion in which fuel is unevenly distributed and supplied around the ignition device in low load conditions, and in high load regions, fuel is distributed throughout the combustion chamber. The supplied air is supplied in a stratified manner for 15 minutes to achieve uniform combustion, such as good stratified combustion, and to switch from stratified combustion to uniform combustion at an appropriate time. The first thing to do is to turn the engine lid on.

(発明の構成) 本発明の層状給気エンジンは、燃焼?f内の着火装置ま
わりに燃IIを供給り−る燃料供給手段と、吸気密度を
検出ηる吸気密1α検出手段とを備え、少なくとも(I
t *Th荷時に(ユ燃料供給手段から着火H向のまわ
りに偏在して燃料を供給し着火Jることにより層状燃焼
を行う一方、高角荷時に(31燃焼室内に分散して燃r
1を供給し着火することににり均一燃焼を行うようにし
たものであって、吸気密度検出手段の信号を受けた制(
(11手段GEL、吸気密度が低下したときには層状燃
焼から均一燃焼への切換点を低負荷側に移行Jるどと−
bに、吸気密度が上昇したとぎには層状燃焼から均一燃
焼への切換点を高0荷側に移行り−るようにしたことを
特徴どり゛るものである。
(Structure of the Invention) The stratified air charge engine of the present invention is a combustion engine? It is equipped with a fuel supply means for supplying fuel II around the ignition device in f, and an intake air tightness 1α detection means for detecting the intake air density, and at least (I
At the time of t*Th load (U), stratified combustion is performed by supplying fuel unevenly distributed around the ignition H direction from the fuel supply means and igniting, while at high angle loading (31), the fuel is dispersed in the combustion chamber.
1 is supplied and ignited to achieve uniform combustion.
(11 means GEL, when the intake air density decreases, the switching point from stratified combustion to uniform combustion is shifted to the low load side.)
(b) When the intake air density increases, the switching point from stratified combustion to uniform combustion is shifted to the high zero load side.

− υ − (発明の効果) 層状燃焼領域と均一燃焼領域との切換点を吸気密度に応
じて変史覆るようにしたことにより、温度、大気圧等の
外気条件の変動もしくは過給の有無に対応して上記切換
点が最適な時点に変動し、スモークもしくは出力低下の
発生しない時点で層状燃焼と均一燃焼との切換を正確に
行うことができる。
− υ − (Effects of the invention) By changing the switching point between the stratified combustion region and the uniform combustion region according to the intake air density, the switching point between the stratified combustion region and the uniform combustion region is changed according to the intake air density, so that the switching point between the stratified combustion region and the uniform combustion region is changed according to the intake air density. Correspondingly, the switching point is varied to an optimum point, so that the switching between stratified combustion and uniform combustion can be carried out accurately at a point in time when smoke or power reduction does not occur.

よって、切換点以下の低角動域にJ3いては、燃料供給
手段によって燃焼室内の着火装置まわりに偏在して燃料
を供給して層状燃焼を行い、希薄燃焼によって燃費性、
エミッション性を向」二する一方、切換点を越えた高負
荷運転域にd3いては、燃料供給手段によって燃料を分
散供給して均一燃焼を行い、スモークの発生を伴うこと
なく良好な高出力運転を確保することができる。
Therefore, when J3 is in the low angular motion range below the switching point, the fuel supply means supplies fuel unevenly distributed around the ignition device in the combustion chamber to perform stratified combustion, which improves fuel efficiency and lean combustion.
While improving emissions performance, when in the high-load operating range beyond the switching point, the fuel supply means distributes the fuel to achieve uniform combustion, ensuring good high-output operation without smoke generation. can be ensured.

(実施例) 以下、図面により本発明の実施態様を詳細に説明する。(Example) Embodiments of the present invention will be described in detail below with reference to the drawings.

実施例1 4− この実施例は第1図ないし第4図に示し、燃料供給手段
を、成層用の第1燃判供給手段ど分散用の第2燃料供給
手段とにより構成した例を示づ−もので°ある。
Embodiment 1 4- This embodiment is shown in FIGS. 1 to 4, and shows an example in which the fuel supply means is composed of a first fuel supply means for stratification and a second fuel supply means for dispersion. -It's something.

第1図に示づエンジンにおいて、1はピストン2のに方
に形成された燃焼室、3は該燃焼室1に吸入空気を導入
する吸気通路、4は燃焼室1から排気ガスを導出する排
気通路、5は吸気弁、6は排気弁、7は排気通路4に介
装された触媒装置をそれぞれ示している。
In the engine shown in FIG. 1, 1 is a combustion chamber formed on the side of a piston 2, 3 is an intake passage that introduces intake air into the combustion chamber 1, and 4 is an exhaust gas that leads out exhaust gas from the combustion chamber 1. 5 is an intake valve, 6 is an exhaust valve, and 7 is a catalyst device installed in the exhaust passage 4, respectively.

上記燃焼室1には、点火プラグにJこる着火装置8が配
設されるとともに、この着火装置8のまわりに燃F1を
供給環る成層用燃*’:+噴q・lノズル9が配設され
、この成層用撚r1噴射ノズル9には燃料噴射ポンプ1
0が接続されて第1燃判供給手段11が構成されている
In the combustion chamber 1, an ignition device 8 is arranged around the ignition plug, and a stratified fuel nozzle 9 for supplying fuel F1 is arranged around the ignition device 8. A fuel injection pump 1 is installed in this stratification twist r1 injection nozzle 9.
0 is connected to constitute the first fuel test supply means 11.

一方、」−記吸気通路3には、燃焼室1内に燃r1を分
散供給する分散用燃料噴射ノズル12による第2燃判供
給手段13が介装されている。さらに、この分散用燃料
噴ailノズル12の下流には絞り弁14が配設され、
この絞り弁14にはその開閉作動を行うアクチュエータ
15(アクセル操作には連動していない)が設けられて
いる。
On the other hand, the intake passage 3 is provided with a second fuel supply means 13 that includes a dispersion fuel injection nozzle 12 that disperses and supplies the fuel r1 into the combustion chamber 1. Further, a throttle valve 14 is disposed downstream of this dispersion fuel injection ail nozzle 12,
This throttle valve 14 is provided with an actuator 15 (not linked to accelerator operation) that opens and closes the throttle valve.

上記吸気通路3の下流側部分は第2図に示すように、湾
曲形成されて吸入空気を燃焼室1の接線方向から導入し
、燃焼室1内にその周方向に沿ったスワールSを生成す
るスワールポートに形成され、このスワールにより、第
1燃料供給手段11の成層用燃IF!I噴射ノズル9か
ら構成される装置8にて着火された着火燃料を空気と十
分に混合させるとともに、火炎を燃焼室1全体に伝播さ
せて、噴射燃11全体を十分に燃焼させるものである。
As shown in FIG. 2, the downstream portion of the intake passage 3 is curved to introduce the intake air from the tangential direction of the combustion chamber 1 and generate a swirl S along the circumferential direction within the combustion chamber 1. is formed in the swirl port, and this swirl causes the stratification fuel IF of the first fuel supply means 11! The ignited fuel ignited by the device 8 composed of the I injection nozzle 9 is sufficiently mixed with air, and the flame is propagated throughout the combustion chamber 1, so that the entire injected fuel 11 is sufficiently combusted.

上記第1燃判供給手段11の燃わ1噴躬ポンプ10、第
2燃r1供給手段13の分散用燃料噴射ノズル12およ
び絞り弁17Iのアクチュエータ15の作動は、制御手
段16によって制御される。
The operation of the fuel 1 injection pump 10 of the first fuel supply means 11, the dispersion fuel injection nozzle 12 of the second fuel r1 supply means 13, and the actuator 15 of the throttle valve 17I is controlled by the control means 16.

上記制御手段16は、エンジンの要求負荷を例えばアク
セルレンリーーにJkつて検出する負荷検出手段17か
らの0荷信号、および吸気圧力センサ−18aど吸気温
度セン−a−18bとにj:って吸気密度を検出する吸
気密度検出手段18からの検出信号を受けるとともに、
エンジン回転センサー19からのエンジン回転信号、水
温廿ン1ノー20からの水温信号等を受け、成層用燃料
噴射ノズル9からの燃r1噴射ωおよび燃料噴01時期
、分散用燃!′+1噴射ノズル12からの燃料噴射量を
それぞれ制御するとどもに、絞り弁14の閉作動時期を
制御づるものである。
The control means 16 receives a zero-load signal from a load detection means 17 that detects the required load of the engine, for example, by applying an accelerator pedal, and an intake pressure sensor 18a or an intake air temperature sensor 18b. While receiving a detection signal from the intake air density detection means 18 that detects the intake air density,
In response to the engine rotation signal from the engine rotation sensor 19, the water temperature signal from the water temperature control 20, etc., the fuel r1 injection ω from the stratification fuel injection nozzle 9, the fuel injection timing 01, and the dispersion fuel! In addition to controlling the amount of fuel injected from the '+1 injection nozzle 12, the closing timing of the throttle valve 14 is also controlled.

上記制御手段16による燃料供給量制御は、吸気密度検
出手段18の出力信号を受けて層状燃焼と均一燃焼との
切換点を設定するとともに、負荷検出手段17の信号を
受り、切換点以下の低・中負荷域にお番ノる常用運転域
では第2燃r1供給手段13による分散燃料の供給は停
止し、第1燃利供給手段11にJ:る成層燃料を供給し
て層状燃焼を行い、負荷の増加に応じてその供給間を増
加し、切換点を越えると成層燃料の供給量を減少させる
ものである。一方、第2燃F1供給手段13による分散
燃1′!1は、上記切換点以上において供給を開始し、
第1燃わ1供給子段11による成層燃料の減少7− 量を補うとともに、負荷の増加に応じて全供給量が増加
づ−るよう分散用燃料の供給量を増加して層状燃焼から
均一燃焼に移行するものである。その際、各噴射毎の噴
射量、噴射回数はエンジン回転数に対応して設定する。
The control means 16 controls the amount of fuel supplied by setting the switching point between stratified combustion and uniform combustion in response to the output signal of the intake air density detection means 18, and also by setting the switching point between stratified combustion and uniform combustion in response to the output signal of the intake air density detection means 18. In the normal operation range, which covers the low and medium load ranges, the supply of distributed fuel by the second fuel supply means 13 is stopped, and stratified fuel is supplied to the first fuel supply means 11 to perform stratified combustion. The supply interval is increased as the load increases, and when the switching point is exceeded, the supply amount of stratified fuel is decreased. On the other hand, dispersed combustion 1' by the second fuel F1 supply means 13! 1 starts supplying at or above the switching point,
In addition to compensating for the decrease in stratified fuel by the first combustion 1 supply stage 11, the supply amount of dispersion fuel is increased so that the total supply amount increases in accordance with the increase in load, so that the stratified combustion becomes uniform. This transitions to combustion. At this time, the injection amount and number of injections for each injection are set in accordance with the engine rotation speed.

すなわち、エンジンの負荷に対応した第1燃判供給手段
11、第2燃利供給手段13による燃料供給量制御は、
第3図に示すように行う。この第3図は負荷の変動に対
する燃r1供給愼Qの変動を空気過剰率λの変動ととも
に示すものであって、前記絞り弁14は基本的に全開状
態で吸入空気量は一定であり、負荷の増加に対し燃料供
給量Qを増加して空気過剰率λを小さくし、すなわち空
燃比を濃くして出力制御を行うように設けられている。
That is, the fuel supply amount control by the first fuel supply means 11 and the second fuel supply means 13 corresponding to the engine load is as follows.
This is done as shown in FIG. FIG. 3 shows the fluctuation of the fuel r1 supply pressure Q with respect to the fluctuation of the load, together with the fluctuation of the excess air ratio λ.The throttle valve 14 is basically fully open and the intake air amount is constant, In response to an increase in , the fuel supply amount Q is increased to reduce the excess air ratio λ, that is, the air-fuel ratio is enriched to perform output control.

燃料供給fdQにおいて、領域■の燃料を第1燃料供給
手段11から供給し、領域■の燃料を第2燃利供給手段
13から供給するものである。
In the fuel supply fdQ, the fuel in the region (2) is supplied from the first fuel supply means 11, and the fuel in the region (2) is supplied from the second fuel supply means 13.

第11供給手段11による成層燃料の供給は吸気密度検
出手段18の信号に対応して設定した切換点A点の負荷
以下では負荷の増加に応じて増−〇− 大する一方、この切換点A点を越えるど、第1燃料供給
手段11からの燃料供給を減少し、B点を越えた高0荷
時には、成層用燃料噴射ノズル9のカーボンによる目詰
まり防止と加熱防止のために少量l17i用を継続づ゛
る。
The supply of stratified fuel by the eleventh supply means 11 increases in accordance with the increase in load below the load of the switching point A set in response to the signal of the intake air density detection means 18, while at this switching point A Once the point is exceeded, the fuel supply from the first fuel supply means 11 is reduced, and at the time of high zero load exceeding the point B, a small amount of l17i is used to prevent the stratification fuel injection nozzle 9 from clogging with carbon and to prevent heating. I will continue to do so.

一方、上記第2燃利供給手段13による分散燃料の供給
はA点の切換点以」−で供給を開始し、これにり負荷が
増加すると第1燃r1供給手段11による成層燃料の供
給減少を補うどともに、全体として負荷の増加に対応し
て増加した燃料を供給するものである。
On the other hand, the supply of distributed fuel by the second fuel supply means 13 starts at a point after the switching point A, and when the load increases, the supply of stratified fuel by the first fuel supply means 11 decreases. In addition to supplementing this, it also supplies increased fuel in response to the overall increase in load.

上記A点の切換点は、その時点における空気過剰率λが
均一混合気でも着火可能な着火限界の空気過剰率λ以下
となるような値に設定され、また、B点の負荷は、その
時点における空気過剰率λが層状燃焼によっては空気利
用率が低下してスモークが発生し始める空気過剰率λ以
上となるような負荷状態に設定される。
The above switching point at point A is set at a value such that the excess air ratio λ at that point is less than the excess air ratio λ which is the ignition limit at which even a homogeneous mixture can be ignited, and the load at point B is set at that point. The load condition is set such that the excess air ratio λ is equal to or higher than the excess air ratio λ at which the air utilization rate decreases and smoke starts to occur due to stratified combustion.

上記空気過剰率λの曲線は、吸気密度の変動に伴って変
化するものであり、例えば、吸気温度上昼時もしくは吸
気圧力低下時(高地移動時)において吸気密度が4It
下した時には、鎖線で示すように空気過剰率λが低1Z
づるように変化し、上記A点および8点はそれぞれ低0
荷側にA′点およびB一点に移行J−るものであって、
この変化した特性に対応するように、吸気圧ノノセンリ
−−188および吸気温度センサー18bにJ:る吸気
密度検出手段18の信号に基づく吸気密度の検出に伴い
、吸気密度が低下したとぎには、上記のように切換点A
および8点を八一点J3よびF3″点となるように低負
荷側に移行づ−るものであり、過給時で吸気密度が十4
したときには切換点A点J3 J:び[3点を高負荷側
に移行する。
The curve of the excess air ratio λ changes as the intake air density changes. For example, when the intake air temperature is high at noon or when the intake air pressure is low (when moving to high ground), the intake air density is 4 It.
When it is lowered, the excess air ratio λ is low 1Z as shown by the chain line.
The points A and 8 above are each low 0.
There is a transition to one point A' and one point B on the load side,
In order to correspond to this changed characteristic, when the intake air density decreases as the intake air density is detected based on the signal of the intake air density detection means 18 which is sent to the intake pressure sensor 188 and the intake air temperature sensor 18b, Switching point A as above
and 8 points are shifted to the low load side to become 81 points J3 and F3'' points, and the intake air density is 14 during supercharging.
When this happens, the switching point A point J3 J: and [3 points are shifted to the high load side.

よって、上記A点以上においては、燃料は燃焼室1の着
火装置8まわりに偏在して供給される層状燃焼領域であ
り、8点1ス上が燃焼室1全体に燃料が分散して供給さ
れる均一燃焼領域で、A −F3間が層状燃焼領域から
均一燃焼領域への移行領域である。
Therefore, above point A, fuel is supplied unevenly around the ignition device 8 of the combustion chamber 1 in a stratified combustion region, and above point 8 is a stratified combustion region where fuel is distributed and supplied throughout the combustion chamber 1. The region between A and F3 is the transition region from the stratified combustion region to the uniform combustion region.

なお、第2燃判供給手段13による分散燃11の供給開
始時期(ま、第1燃利供給手段11による成層燃料の供
給を減少さ1!る切操点A点ど一致させることなく、こ
のA点近傍の相前後した0荷状態で供給を開始り−るよ
うにすれぼにい。
It should be noted that the supply start timing of the dispersed fuel 11 by the second fuel supply means 13 (well, the supply of stratified fuel by the first fuel supply means 11 is reduced by 1!) without matching the cutting point A; The supply should be started so that the supply is started in the zero load state around point A.

また、第1燃11供給手段1′1による成層燃料供給と
第2燃利供給手段13による分散燃料供給の切換えは、
上記の如く徐々に減少、増大1JるJ=うにするほか、
切換貞A点と[コ点との間ので1荷状態において、Aン
・A)的に切換えるようにしてもよい。
Moreover, switching between stratified fuel supply by the first fuel supply means 1'1 and distributed fuel supply by the second fuel supply means 13 is as follows.
In addition to gradually decreasing and increasing 1J = sea urchin as described above,
It may be possible to switch between A and C points in a single load state.

次に、第4図は負荷変動に対し、第1燃利供給手段11
による成層燃料の噴射時期(噴射開始時期)ど点火時期
を示すものであり、前記A点の切換点以下の成層化を行
う領1或では、噴q・1時期【ま圧縮上死点近傍の点火
時期J:り所定聞早い時期に設定され、噴射燃料が骨太
装置8まわりに有効に偏在した状態で着火を行う。上H
1j A点を越えて[3点の分散化を行う領域に移行づ
るのに従って、噴射時+!IJを進めて〒い時期に噴射
を行い、第1燃料供給手段11から噴射された燃料の偏
在を小さくして燃焼室1仝体に分散さ1!るようにりる
。また、アイドル運転時のJ:うな極低負荷時には燃料
噴01時期および点火時期は若干進めて安定性を向上し
ている。なお、第4図では点火時1111は負荷変動に
対して略一定に設定しているが、これは負荷の増大に応
じて点火時iVlを進めるように変化さゼてもよい。
Next, FIG. 4 shows that the first fuel supply means 11
This indicates the injection timing (injection start timing) and ignition timing of stratified fuel. Ignition timing J: is set at a predetermined early timing, and ignition is performed with the injected fuel effectively unevenly distributed around the main body device 8. Upper H
1j Beyond point A [+ at the time of injection as it moves to the area where three points are dispersed! By advancing the IJ and injecting at the desired timing, the uneven distribution of the fuel injected from the first fuel supply means 11 is reduced and the fuel is dispersed throughout the combustion chamber 1! Riruru. Also, during idling and extremely low load, the fuel injection timing and ignition timing are slightly advanced to improve stability. In FIG. 4, the ignition time 1111 is set to be substantially constant with respect to load fluctuations, but this may be changed so that the ignition time iVl advances as the load increases.

J:た、制御手段16による絞り弁14の開閉制御は、
基本的には絞り弁14を全開状態どしてノンスロットル
運転を行い、エンジン始動時には開度を小さくして吸入
空気間を減少し、空気過剰率を小さくし空燃比をリッチ
にするものであり、その他、水温センサー20により検
出した水温が設定温度より低い冷機時もしくは触媒装置
7の温度が低いときに絞り弁14の開度を小さくして吸
入空気ωを減少し早期に温度上昇を図るものであり、ま
た、燃料供給が停止されている減速時に触媒温度の(I
(下を防止するどともにエンジンブレーキ性能を向上す
るために、それぞれ絞り弁14を閉じるように制御づ−
るものである。
J: The opening/closing control of the throttle valve 14 by the control means 16 is as follows:
Basically, the throttle valve 14 is fully opened for non-throttle operation, and when the engine starts, the opening is reduced to reduce the intake air gap, reduce the excess air ratio, and make the air-fuel ratio rich. In addition, when the water temperature detected by the water temperature sensor 20 is lower than the set temperature or when the temperature of the catalyst device 7 is low, the opening degree of the throttle valve 14 is reduced to reduce the intake air ω and raise the temperature quickly. Also, during deceleration when fuel supply is stopped, the catalyst temperature (I
(In order to prevent the lowering and improve engine braking performance, each throttle valve 14 is controlled to close.
It is something that

12− よって、上記実施例の層状給気エンジンによれば、切換
点A点以下の低・中負荷におtJる常用運転領域では、
層状燃焼を行っでI良好な着火性を得るどどもに、希薄
燃焼を可能どし−C燃費性、エミツシ三1ン牲を向上覆
ると同時に、この成層領域においては、絞り弁14を閉
じることなく吸入空気ωを一定として、第1燃石供給手
段11による燃料供給ωによって出力制御を行うように
したことにより、絞り弁14の絞り作動に伴うボンピン
グロスを大幅に低減Jることができ、燃費性がより一層
向上する。
12- Therefore, according to the stratified air charge engine of the above embodiment, in the normal operation region at low and medium loads below the switching point A,
In order to obtain good ignitability by performing stratified combustion, it is possible to perform lean combustion and improve fuel efficiency and emission efficiency.At the same time, in this stratified region, the throttle valve 14 is closed. By keeping the intake air ω constant and controlling the output based on the fuel supply ω from the first fuel stone supply means 11, it is possible to significantly reduce the pumping loss caused by the throttling operation of the throttle valve 14. Fuel efficiency is further improved.

また、上記切換点A点を越えた高負荷運転域では層状燃
焼から均一燃焼に移行L]で空気利用率を増大してスモ
ークの発生を伴うことなく高出力運転を行うものであり
、全領域にa3いて良好な運転+(1能と、ボンピング
ロスの低減にJ:る燃費性の改善が行える。
In addition, in the high-load operation range beyond the above switching point A, the air utilization rate is increased by shifting from stratified combustion to uniform combustion, and high-output operation is performed without smoke generation. In A3, it is possible to improve fuel efficiency by improving driving performance and reducing pumping loss.

さらに、上記層状燃焼から均一燃焼への切換を吸気密度
検出手段18の出力信号による吸気密度に応じて設定し
、垢1σ−1−冒時、大気圧低下時(高地移動時)等で
吸気密度が低下したときには、切換点は低負荷側に移行
する一方、過給時には反対に高負荷側に移行した時点で
その切換えを行うようにしたことにより、スモーク発生
および出力低下を伴うことなく適正な時期に良好な層状
燃焼と均一燃焼との切換えができる。
Furthermore, the switching from stratified combustion to uniform combustion is set according to the intake air density determined by the output signal of the intake air density detection means 18, and the intake air density When the power level decreases, the switching point shifts to the low load side, while during supercharging, the switching point occurs when the load shifts to the high load side, thereby ensuring proper control without smoke generation or a drop in output. It is possible to switch between good stratified combustion and uniform combustion at the appropriate time.

なお、前記第2燃r1供給手段13は、分散用燃料噴射
ノズル12による燃料噴射方式に代えて、気化器を使用
して吸気通路3に分散燃料を供給するようにしてもよく
、燃焼室1は副室を有する形式のものでもよい。
Note that the second fuel r1 supply means 13 may supply dispersed fuel to the intake passage 3 using a carburetor instead of the fuel injection method using the dispersion fuel injection nozzle 12, may be of the type having a subchamber.

また、上記実施例では第2燃料供給手段13の分散用燃
料噴射ノズル12は吸気通路3の途中に介装するよう)
に(・ているが、この第2燃利供給手段13の分散用燃
料噴射ノズル12を第1燃料供給手段11の成層用燃料
噴Q=Jノズル9と同様に燃焼室1内に開目するように
配設してもよく、その場合、この第2燃F1供給手段1
3により燃焼室1に直接供給する分散燃料の噴射時期は
、上記第1燃料供給手段11による燃料噴射時IIIよ
り早く、吸気行程から圧縮行程初期の間に噴64を完了
するように設定し、第2燃料供給手段13による供給燃
F1が吸入空気との混合によって燃焼室1内に均一分散
するようにして、均一燃焼を得るものである。
Furthermore, in the above embodiment, the dispersing fuel injection nozzle 12 of the second fuel supply means 13 is interposed in the middle of the intake passage 3).
However, the dispersion fuel injection nozzle 12 of the second fuel supply means 13 is opened into the combustion chamber 1 in the same way as the stratification fuel injection nozzle Q=J nozzle 9 of the first fuel supply means 11. In that case, this second fuel F1 supply means 1
3, the injection timing of the dispersed fuel directly supplied to the combustion chamber 1 is set earlier than the fuel injection time III by the first fuel supply means 11, and the injection 64 is completed between the intake stroke and the early stage of the compression stroke, Uniform combustion is achieved by uniformly dispersing the fuel F1 supplied by the second fuel supply means 13 within the combustion chamber 1 by mixing with intake air.

実施例2 この実施例は第5図4にいし第8図に示し、燃料供給手
段を吸気通路に設けた1つの燃料噴射ノズルにて構成し
た例である。
Embodiment 2 This embodiment is shown in FIGS. 5 to 8, and is an example in which the fuel supply means is constituted by one fuel injection nozzle provided in the intake passage.

第5図および第6図に示すエンジンにおいて、22は燃
焼室1の1次吸気ボート23に開口した1次吸気通路、
24は同じく2次吸気ボー1へ25に開口した2次吸気
通路、26は排気ボート27に開口した1)1気通路、
28は1次吸気弁、29は2次吸気弁、30はiJl気
弁、8は点火プラグによる着火装置をそれぞれ示してい
る。
In the engine shown in FIGS. 5 and 6, 22 is a primary intake passage that opens into the primary intake boat 23 of the combustion chamber 1;
24 is a secondary intake passage 25 that opens to the secondary intake boat 1; 26 is a 1) 1 air passage that opens to the exhaust boat 27;
28 is a primary intake valve, 29 is a secondary intake valve, 30 is an iJl air valve, and 8 is an ignition device using a spark plug.

上記1次吸気通路22の下流側部分は燃焼室1にスワー
ルを形成するスワールボートに設けられるとともに、上
流側は2次吸気通路24と合流し、絞り弁14による作
動で吸入空気量が規制され、15− 上記2次吸気通路24にはスワールコン]〜ロールバル
ブ31が介装されている。
The downstream portion of the primary intake passage 22 is provided in a swirl boat that forms a swirl in the combustion chamber 1, and the upstream side merges with the secondary intake passage 24, and the amount of intake air is regulated by the operation of the throttle valve 14. , 15- A swirl valve 31 is installed in the secondary intake passage 24.

また、上記1次吸気通路22には、1次吸気弁28が開
作動したときに、弁隙間から燃焼室1内の着火装置8近
傍に向けて燃料を噴射する燃料噴射ノズル32が配設さ
れて燃料供給手段33が構成されている。
Further, a fuel injection nozzle 32 is disposed in the primary intake passage 22, which injects fuel from the valve gap toward the vicinity of the ignition device 8 in the combustion chamber 1 when the primary intake valve 28 is opened. A fuel supply means 33 is configured.

上記燃料供給手段33おJ:び絞り弁14は、前例と同
様の制御手段(図示せず)によって、燃料噴射ノズル3
2からの燃r1噴射石、噴射時期および絞り弁14のU
樵が制御される。燃料供給手段33は、負荷に応じて燃
料供給量を増加することによって出力制御を行い、その
噴射時期の制御によって層状燃焼と均一燃焼との切換え
を行い、この切換点は前例と同様に吸気密度検出手段1
8により検出している吸気密度に応じて設定し、吸気密
度低下時には低負荷側に移行し、吸気密度上界時には高
負荷側に移行するようにしている。
The fuel supply means 33 and throttle valve 14 are controlled by the same control means (not shown) as in the previous example to control the fuel injection nozzle 3.
Fuel r1 injection stones from 2, injection timing and throttle valve 14 U
The woodcutter is controlled. The fuel supply means 33 performs output control by increasing the fuel supply amount according to the load, and switches between stratified combustion and uniform combustion by controlling the injection timing, and this switching point is determined by the intake air density as in the previous example. Detection means 1
The load is set according to the intake air density detected by 8, and when the intake air density decreases, the load is shifted to the low load side, and when the intake air density is at the upper limit, the load is shifted to the high load side.

すなわち、燃料噴射時期は、第7図に示すように行うも
のであって、Sは噴射開始時期を、Eは16− 噴射路り時期をそれぞれ示している。実施例1の第3図
におけるA点に相当する切換点以下の成層領域における
燃料噴射時期は、吸気行程の終期において1次吸気通路
22が閉じる直前の遅い時期に噴射して燃r1が1次吸
気弁28の開弁隙間から燃焼室1内に流入し、着火装置
8のまわりに偏在するように供給し、圧縮行程において
ピストン2が上昇したときにも、燃料を燃焼室1の上部
に偏在さけて層状燃焼を行うようにするものである。
That is, the fuel injection timing is performed as shown in FIG. 7, where S indicates the injection start timing and E indicates the 16-injection timing. The fuel injection timing in the stratified region below the switching point corresponding to point A in FIG. The fuel flows into the combustion chamber 1 through the opening gap of the intake valve 28 and is supplied unevenly around the ignition device 8, and even when the piston 2 rises during the compression stroke, the fuel is unevenly distributed in the upper part of the combustion chamber 1. This is to avoid stratified combustion.

その際、燃料噴射終りを一定時期とし、噴射始めを早く
し、負荷の増大に応じて噴則昂を増加するJζうにして
いる。
At this time, the end of fuel injection is set at a fixed time, the start of injection is made earlier, and the injection control is increased according to the increase in load.

また、Δ点の切換点を越えると、噴射時期を大ぎく進角
1ノで早く」ノ、B点を越えた高負荷時には噴射路りを
一定にして、噴射始めを進角して負荷の増大に応じて噴
射量を増加するものであって、吸気行程初期からの燃料
供給により、燃焼室1内に流入した燃料は吸入空気の流
れにJ:つて燃焼室1全体に分散し、均一燃焼を行うも
のであり、層状燃焼から均一燃焼への切換点は、前例と
同様に吸気密度検出手段18の検出による吸気密度の大
小に応じて設定−リ−る。
In addition, when the switching point of point Δ is exceeded, the injection timing is greatly advanced by 1 no. The injection amount is increased according to the increase in the amount of fuel, and by supplying fuel from the beginning of the intake stroke, the fuel that has flowed into the combustion chamber 1 is distributed throughout the combustion chamber 1 by the flow of intake air, resulting in uniform combustion. The switching point from stratified combustion to uniform combustion is set depending on the magnitude of the intake air density detected by the intake air density detection means 18, as in the previous example.

なお、2次吸気通路2/Iに介装されているスワールコ
ン1〜ロールバルブ31は、前記切換点へから聞いて2
次吸気通路24からイ)吸入空気を供給し、1次吸気通
路22により供給される吸入空気のスワールの強さが過
大にy、已のを閉止し、燃焼速度の異常」7昇にもどづ
く燃焼騒音、ノッキングの発生を抑制するどともに、吸
気抵抗を軽減して吸気効率を向上するものである。
Note that the swirl con 1 to roll valve 31 installed in the secondary intake passage 2/I are
A) Intake air is supplied from the secondary intake passage 24, and the strength of the swirl of the intake air supplied by the primary intake passage 22 is excessively closed, resulting in an abnormal combustion rate. This not only suppresses combustion noise and knocking, but also reduces intake resistance and improves intake efficiency.

この実施例における絞り弁14の開度の制御は、第8図
に示すように行う。本例では成層領域における燃料の成
層化が、前例のものに比べC着火装置8まわりへの偏在
割合が少なくなって低下するため、絞り弁14 t、、
を吸入空気量を低減づ−るように絞る必要があるが、鎖
線で示す如き従来の気化器方式エンジンのように混合気
充填量で出力制御を行うものに比べて、その絞り開度は
小さく、ボンピングロスの低減が行、えるものである。
The opening degree of the throttle valve 14 in this embodiment is controlled as shown in FIG. In this example, the stratification of the fuel in the stratification region is lowered by the fact that the uneven distribution of fuel around the C ignition device 8 is smaller than in the previous example, so the throttle valves 14 t,...
It is necessary to throttle the engine to reduce the amount of intake air, but the throttle opening is small compared to conventional carburetor engines, which control the output based on the amount of air-fuel mixture, as shown by the chain line. , it is possible to reduce the pumping loss.

また、エンジン冷機時には鎖線で示す如ぎ絞り弁開度と
してf慶$Pil(’4を向」ニする。
Further, when the engine is cold, the throttle valve opening degree is set to f('4) as shown by the chain line.

にって、この実施例において0、低負荷時には層状燃焼
に」、る希薄燃焼を行つ(燃費性、エミッション111
の向上を図る一方、高11前時には均一燃焼にJ:って
スモークの発生を伴うことなく高出力運転を行うことが
できる。
Therefore, in this embodiment, lean combustion is performed (fuel efficiency, emissions 111
At the same time, before the high 11 level, high power operation can be performed without generating smoke due to uniform combustion.

また、層状燃焼と均一燃焼との切換えを吸気密度に応じ
て行うようにしたことににす、外気条イ!1、過給の有
無に対応して良好な層状燃焼と均一燃焼の切換えができ
る。
In addition, we decided to switch between stratified combustion and uniform combustion according to the intake air density. 1. It is possible to switch between good stratified combustion and uniform combustion depending on the presence or absence of supercharging.

なa3、この実施例における噴射時期の制御は、第7図
に示−1如く噴射終りを一定(基準)にして噴q寸始め
を進角して負荷に応じて噴DI Mを増加するのに代え
て、噴射開始時期を一定(基準)にして噴用終りを口前
の変動に応じて進角Jるj;うにしてもJζい。
A3. In this embodiment, the injection timing is controlled by keeping the end of injection constant (reference) and advancing the beginning of the injection q dimension to increase the injection DI M according to the load, as shown in Fig. 7-1. Instead, it is also possible to keep the injection start timing constant (reference) and advance the end of injection according to the fluctuations before the mouth.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図4丁いし第4図は本発明の第1の実施例を示 l
ノ 、 第1図は層状給気エンジンの概略構成図、19− 第2図は燃焼室を模式的に示した平面図、第3図は負荷
に対する燃料供給量の制御を空気過剰率とともに示す特
性図、 第4図は負荷変動に対し第1燃料供給手段による成層燃
料の噴射時期と点火時期を示す特性図、第5図ないし第
8図は本発明の第2の実施例を示し、 第5図は層状吸気エンジンにおけるシリンダヘッドを一
部断面にして示す底面図、 第6図は第5図のVl −Vl線に沿う断面図、第7図
は負荷に対する燃料噴射時期制御を示す特性図、 第8図は負荷に対する絞り弁の開度制御を示す特性図で
ある。 1・・・・・・燃焼室 3・・・・・・吸気通路8・・
・・・・稲火装置 9・・・・・・成層用燃料噴射ノズル 10・・・・・・燃料噴射ポンプ 11・・・・・・第1燃利供給手段 12・・・・・・分散用燃料噴射ノズル−2O= 13・・・・・・第2燃料供給手段 16・・・・・・制御手段 17・・・・・・負荷検出
手段1B・・・・・・吸気密度検出手段 32・・・・・・燃料噴射ノズル 33・・・・・・燃利供給手段 第5図 29 81e屹 特開”、’760−36719(8) 第 7 図 1指 − □ 貢荷−
Figure 1-4 shows a first embodiment of the present invention.
Fig. 1 is a schematic configuration diagram of a stratified air supply engine, Fig. 19-2 is a plan view schematically showing a combustion chamber, and Fig. 3 is a characteristic showing control of fuel supply amount with respect to load along with excess air ratio. 4 is a characteristic diagram showing the injection timing and ignition timing of the stratified fuel by the first fuel supply means with respect to load fluctuations, and FIGS. 5 to 8 show a second embodiment of the present invention. The figure is a bottom view showing a partial cross-section of the cylinder head in a stratified intake engine, FIG. 6 is a cross-sectional view taken along the line Vl-Vl in FIG. 5, and FIG. 7 is a characteristic diagram showing fuel injection timing control with respect to load. FIG. 8 is a characteristic diagram showing throttle valve opening control with respect to load. 1... Combustion chamber 3... Intake passage 8...
...Inari device 9...Stratified fuel injection nozzle 10...Fuel injection pump 11...First fuel supply means 12...Dispersion Fuel injection nozzle-2O = 13... Second fuel supply means 16... Control means 17... Load detection means 1B... Intake air density detection means 32 ...Fuel injection nozzle 33...Fuel supply means Fig. 5 29 81e 屹JP', '760-36719 (8) No. 7 Fig. 1 finger - □ Tribute -

Claims (1)

【特許請求の範囲】[Claims] (1) 燃焼室内へ燃料を供給する燃料供給手段と、燃
焼室内に配設された着火装置と、吸気密度を検出する吸
気密度検出手段とを備え、少なくとも低負荷時には燃料
供給手段から着火装置のまわりに偏在して燃料を供給し
着火することにより層状燃焼を行う一方、高負荷時には
燃焼室内に分散して燃料を供給し着火することにより均
一燃焼を行うようにした層状給気エンジンであって、上
記吸気密度検出手段の信号を受け、吸気密度が低下した
ときには層状燃焼から均一燃焼への切換点を低負荷側に
移行し、吸気密度が上昇したときには層状燃焼から均一
燃焼への切換点を高負荷側に移行する制御手段を設けた
ことを特徴とする層状給気エンジン。
(1) Equipped with a fuel supply means for supplying fuel into the combustion chamber, an ignition device disposed within the combustion chamber, and an intake air density detection means for detecting intake air density, and at least at low load, the ignition device is controlled from the fuel supply means. It is a stratified air supply engine that performs stratified combustion by supplying fuel unevenly distributed around the combustion chamber and igniting it, while at high loads it performs uniform combustion by supplying and igniting fuel dispersed within the combustion chamber. , upon receiving the signal from the intake air density detection means, shifts the switching point from stratified combustion to uniform combustion to the low load side when the intake air density decreases, and shifts the switching point from stratified combustion to uniform combustion when the intake air density increases. A stratified air supply engine characterized by being provided with a control means for shifting to a high load side.
JP14527483A 1983-08-09 1983-08-09 Stratified-mixture supplied engine Granted JPS6036719A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14527483A JPS6036719A (en) 1983-08-09 1983-08-09 Stratified-mixture supplied engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14527483A JPS6036719A (en) 1983-08-09 1983-08-09 Stratified-mixture supplied engine

Publications (2)

Publication Number Publication Date
JPS6036719A true JPS6036719A (en) 1985-02-25
JPH0512537B2 JPH0512537B2 (en) 1993-02-18

Family

ID=15381342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14527483A Granted JPS6036719A (en) 1983-08-09 1983-08-09 Stratified-mixture supplied engine

Country Status (1)

Country Link
JP (1) JPS6036719A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5063886A (en) * 1989-09-18 1991-11-12 Toyota Jidosha Kabushiki Kaisha Two-stroke engine
US5078107A (en) * 1990-03-30 1992-01-07 Fuji Jukogyo Kabushiki Kaisha Fuel injection control system for an internal combustion engine
FR2669377A1 (en) * 1990-11-19 1992-05-22 Peugeot Internal combustion engine fuelled by two different injection modes
EP0849461A2 (en) * 1996-12-19 1998-06-24 Toyota Jidosha Kabushiki Kaisha Combustion controller for internal combustion engines
WO1999000591A1 (en) * 1997-06-27 1999-01-07 Robert Bosch Gmbh System for operating an internal combustion engine with direct injection, specially in a motor vehicle
EP0964143A2 (en) * 1998-06-08 1999-12-15 Ford Global Technologies, Inc. Mode control system for direct injection spark ignition engines
US6101998A (en) * 1996-08-05 2000-08-15 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Control apparatus for an in-cylinder injection spark-ignition internal combustion engine
GB2367384A (en) * 2000-08-29 2002-04-03 Ford Global Tech Inc Engine mode control based on barometric pressure
FR2855848A1 (en) * 2003-06-03 2004-12-10 Siemens Ag Otto engine operating speeds passage controlling method, involves adapting switching thresholds according to quality of combustion of air/fuel mixture and using value of thresholds to control switching process of speeds
EP1536119A1 (en) * 2003-10-28 2005-06-01 Nissan Motor Co., Ltd. Direct fuel injection/spark ignition engine control device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3233039B2 (en) * 1996-08-28 2001-11-26 三菱自動車工業株式会社 Control device for in-cylinder injection spark ignition internal combustion engine

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5063886A (en) * 1989-09-18 1991-11-12 Toyota Jidosha Kabushiki Kaisha Two-stroke engine
US5078107A (en) * 1990-03-30 1992-01-07 Fuji Jukogyo Kabushiki Kaisha Fuel injection control system for an internal combustion engine
FR2669377A1 (en) * 1990-11-19 1992-05-22 Peugeot Internal combustion engine fuelled by two different injection modes
US6101998A (en) * 1996-08-05 2000-08-15 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Control apparatus for an in-cylinder injection spark-ignition internal combustion engine
EP0849461A2 (en) * 1996-12-19 1998-06-24 Toyota Jidosha Kabushiki Kaisha Combustion controller for internal combustion engines
EP0849461A3 (en) * 1996-12-19 1999-11-10 Toyota Jidosha Kabushiki Kaisha Combustion controller for internal combustion engines
US6202624B1 (en) 1997-06-27 2001-03-20 Robert Bosch Gmbh System for operating an internal combustion engine with direct injection, specially in a motor vehicle
WO1999000591A1 (en) * 1997-06-27 1999-01-07 Robert Bosch Gmbh System for operating an internal combustion engine with direct injection, specially in a motor vehicle
EP0964143A2 (en) * 1998-06-08 1999-12-15 Ford Global Technologies, Inc. Mode control system for direct injection spark ignition engines
EP0964143A3 (en) * 1998-06-08 2001-12-12 Ford Global Technologies, Inc. Mode control system for direct injection spark ignition engines
GB2367384A (en) * 2000-08-29 2002-04-03 Ford Global Tech Inc Engine mode control based on barometric pressure
GB2367384B (en) * 2000-08-29 2004-10-06 Ford Global Tech Inc Engine mode control
FR2855848A1 (en) * 2003-06-03 2004-12-10 Siemens Ag Otto engine operating speeds passage controlling method, involves adapting switching thresholds according to quality of combustion of air/fuel mixture and using value of thresholds to control switching process of speeds
EP1536119A1 (en) * 2003-10-28 2005-06-01 Nissan Motor Co., Ltd. Direct fuel injection/spark ignition engine control device
US7024851B2 (en) 2003-10-28 2006-04-11 Nissan Motor Co., Ltd. Direct fuel injection/spark ignition engine control device

Also Published As

Publication number Publication date
JPH0512537B2 (en) 1993-02-18

Similar Documents

Publication Publication Date Title
US4703734A (en) Multi-valve internal combustion engine
JPH0559270B2 (en)
US10408185B2 (en) Control method and control device for internal combustion engine
JPS6036719A (en) Stratified-mixture supplied engine
JPH0658067B2 (en) Stratified charge engine
JPS6030440A (en) Stratified charging engine
JPH0583730B2 (en)
JPH0480207B2 (en)
JPH0559271B2 (en)
JP2896757B2 (en) Stratified charge engine
JPS6030437A (en) Stratified charging engine
JPS6030417A (en) Stratiform charging engine
JP2689100B2 (en) Stratified charge engine
JPS6116248A (en) Fuel injection device for engine
JPS6030438A (en) Strafified charaging engine
JPH0571768B2 (en)
JP2873574B2 (en) Stratified charge engine
JP3397866B2 (en) Engine fuel supply
JPS6030439A (en) Stratified charging engine
JP3430522B2 (en) Engine fuel supply
JPH0639923B2 (en) Stratified charge engine
JP2818934B2 (en) Stratified charge engine
JPH0639924B2 (en) Stratified charge engine
JP2732050B2 (en) Stratified charge engine
KR950002629B1 (en) Internal combustion engine