JPS6032994B2 - How to connect magnetoelectric conversion elements - Google Patents

How to connect magnetoelectric conversion elements

Info

Publication number
JPS6032994B2
JPS6032994B2 JP52113350A JP11335077A JPS6032994B2 JP S6032994 B2 JPS6032994 B2 JP S6032994B2 JP 52113350 A JP52113350 A JP 52113350A JP 11335077 A JP11335077 A JP 11335077A JP S6032994 B2 JPS6032994 B2 JP S6032994B2
Authority
JP
Japan
Prior art keywords
hall
elements
noise
connect
conversion elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52113350A
Other languages
Japanese (ja)
Other versions
JPS5447588A (en
Inventor
淳二 重田
信雄 宮本
宗保 中島
信夫 小寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP52113350A priority Critical patent/JPS6032994B2/en
Publication of JPS5447588A publication Critical patent/JPS5447588A/en
Publication of JPS6032994B2 publication Critical patent/JPS6032994B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Hall/Mr Elements (AREA)

Description

【発明の詳細な説明】 本発明は、主としてlnSbなどの化合物半導体薄膜に
よって形成される磁電変換素子から発生する雑音を低減
する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of reducing noise generated from a magnetoelectric transducer mainly formed of a compound semiconductor thin film such as lnSb.

従来の磁電変換素子、例えばホール素子は第1図に示す
ような構造をもち、電流端子1および1′間に電流を印
加し、ホール出力端子2および2′間に、EO力ロ磁界
に比例した信号電圧を得ていた。
A conventional magnetoelectric transducer, for example, a Hall element, has a structure as shown in Figure 1, in which a current is applied between current terminals 1 and 1', and an EO force proportional to the magnetic field is applied between Hall output terminals 2 and 2'. I was getting a signal voltage.

しかしこのときホール出力端子間には上記の信号電圧に
加え、半導体薄膜の結晶欠陥などに由来する雑音電圧が
重畳する。このため印加磁界が小さい場合、信号電圧と
雑音電圧の区別が不可能となり、検出可能な最小磁界に
限界があった。このためとくに微小磁界を検出するため
の素子としては、上記雑音電圧を小さくせしめることが
重要課題であった。本発明は複数個のホール素子を第2
図に示すようにコンデンサー7をもつて並列に接続する
ことにより、雑音電圧を低減できることを見出した。
However, at this time, in addition to the above-mentioned signal voltage, a noise voltage originating from crystal defects in the semiconductor thin film is superimposed between the Hall output terminals. For this reason, when the applied magnetic field is small, it becomes impossible to distinguish between the signal voltage and the noise voltage, and there is a limit to the minimum detectable magnetic field. For this reason, it has been an important issue to reduce the noise voltage, especially for elements for detecting minute magnetic fields. In the present invention, a plurality of Hall elements are connected to a second
It has been found that the noise voltage can be reduced by connecting the capacitors 7 in parallel as shown in the figure.

このときのコンデンサーの値は印加磁界の周波数帯城に
よって適時定める。第2図に示すような方法によって雑
音が低減される理由はあきらかでないがおよそ次のよう
に考えられる。第2図において2個のホール素子3およ
び4は等しい感度をもつホール素子であって、印加電流
は可変抵抗5および6によって互に等しく調節されてい
る。この2個のホール素子に磁界が印加された場合、そ
の出力電圧は互いに等しく、またコンデンサーによって
並列に接続されているため、外部には1個のホール素子
のホール電圧と等しい信号電圧がとり出される。一方雑
音電圧に関しては、双方のホール素子の雑音電圧の位相
は相互に無関係であるため、コンデンサーによる並列結
線により部分的に打ち消し合い、1個のホール素子の雑
音電圧よりも小となる。このため使用するホール素子の
個数を増加することにより雑音を低減することができる
。以上述べた雑音低減法を実施例によって具体的に説明
する。
The value of the capacitor at this time is determined as appropriate depending on the frequency band of the applied magnetic field. The reason why noise is reduced by the method shown in FIG. 2 is not clear, but it is thought to be approximately as follows. In FIG. 2, two Hall elements 3 and 4 have equal sensitivity, and the applied currents are adjusted equally by variable resistors 5 and 6. When a magnetic field is applied to these two Hall elements, their output voltages are equal to each other, and since they are connected in parallel by a capacitor, a signal voltage equal to the Hall voltage of one Hall element is extracted to the outside. It will be done. On the other hand, regarding the noise voltage, since the phases of the noise voltages of both Hall elements are unrelated to each other, they are partially canceled out by the parallel connection using the capacitor, and the noise voltage becomes smaller than the noise voltage of one Hall element. Therefore, noise can be reduced by increasing the number of Hall elements used. The above-described noise reduction method will be specifically explained using examples.

実施例 1 マイクロゾーンメルト法により作成した幅200仏m、
厚さ1.4ymのlnSbホール素子を数個用意し、第
2図に示す結線法でホール素子を並列に接続した。
Example 1 Width 200 m, created by micro zone melt method.
Several lnSb Hall elements having a thickness of 1.4 ym were prepared, and the Hall elements were connected in parallel using the wiring method shown in FIG.

コンデンサーの容量は400仏Fとした。このようにし
て各素子に1肌Aの電流を流し、素子の接続個数と雑音
電圧の関係を調べた。このとき雑音電圧は周波数帯城1
00HZ〜10kHZで観測される雑音電圧の実効値で
評価した。第3図はホール素子の接続個数と雑音電圧の
関係を示す図であるが素子を多数使用するほど雑音電圧
が小となる。実施例 2 実施例1と同様マイクロゾーンメルト法により厚さ1.
4山m、幅200仏mのホール素子を作成し、この素子
に複数組のホール出力端子を設け、互いにコンデンサー
により並列に接続した。
The capacitance of the capacitor was 400F. In this way, a current of 1 A was applied to each element, and the relationship between the number of connected elements and the noise voltage was investigated. At this time, the noise voltage is in the frequency band 1
Evaluation was made using the effective value of the noise voltage observed at 00Hz to 10kHz. FIG. 3 is a diagram showing the relationship between the number of connected Hall elements and the noise voltage, and the more elements used, the smaller the noise voltage becomes. Example 2 As in Example 1, the thickness was 1.5 mm using the microzone melt method.
A Hall element with a width of 4 meters and a width of 200 meters was prepared, and a plurality of sets of Hall output terminals were provided on this element and connected in parallel to each other by capacitors.

第4図aおよびbにホール出力端子が2組および3組の
場合の結線例を示す。このようにしてホール端子の接続
個数と雑音電圧の関係を実施例1と同様にして調べたと
ころ、第3図と同様な結果が得られ、雑音低減に効果が
あることがわかった。実施例1においては使用するホー
ル素子の個数を増加するほど消費電力が増加する欠点を
有していたが、実施例2はこの欠点を除去したものであ
る。以上の結線はホール素子について述べたが、磁気抵
抗素子についても同様に雑音を低減できる。
Figures 4a and 4b show examples of connections when there are two and three sets of Hall output terminals. When the relationship between the number of connected Hall terminals and the noise voltage was investigated in the same manner as in Example 1, results similar to those shown in FIG. 3 were obtained, and it was found that noise reduction is effective. Although the first embodiment had a drawback that the power consumption increased as the number of Hall elements used increased, the second embodiment eliminates this drawback. Although the above wiring connection has been described for a Hall element, noise can be similarly reduced for a magnetoresistive element.

第5図は2個の磁気抵抗素子の結線例である。8および
8′は定電流電源、9および9′は同じ感度を有する磁
気抵抗素子である。
FIG. 5 shows an example of the connection of two magnetoresistive elements. 8 and 8' are constant current power supplies, and 9 and 9' are magnetoresistive elements having the same sensitivity.

以上述べたごとく、本発明は滋雷変換素子の雑音を低減
するためにきわめて有効な方法であり、工業上の利益は
大きい。
As described above, the present invention is an extremely effective method for reducing noise in energy conversion elements, and has great industrial benefits.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はホール素子の形状を示す図であり、1および1
′は電流端子、2および2′はホール出力端子を示す。 第2図は本発明によるホール素子の結線例を示す図でホ
ール素子3および4のホール出力端子はコンデンサー7
および7′によって並列に接続される。第3図はホール
素子の接続個数と雑音電圧との関係を示す図である。第
4図は複数組のホール出力端子をもつホール素子におけ
る結線例を示す。第5図は磁気抵抗素子の結線例であっ
て、磁気抵抗素子9および9′はコンデンサー7および
7′によって並列に接続される。努丁隣努之函 第3図 多イ‐図 努タ図
FIG. 1 is a diagram showing the shape of the Hall element, 1 and 1.
' is a current terminal, and 2 and 2' are Hall output terminals. FIG. 2 is a diagram showing an example of the connection of Hall elements according to the present invention, in which the Hall output terminals of Hall elements 3 and 4 are connected to capacitor 7.
and 7' are connected in parallel. FIG. 3 is a diagram showing the relationship between the number of connected Hall elements and the noise voltage. FIG. 4 shows an example of wiring in a Hall element having multiple sets of Hall output terminals. FIG. 5 shows an example of the connection of magnetoresistive elements, in which magnetoresistive elements 9 and 9' are connected in parallel by capacitors 7 and 7'. Tsutomu next to Tsutomu box Figure 3: Tsutomuta map

Claims (1)

【特許請求の範囲】[Claims] 1 複数個の磁電変換素子もしくは複数組の出力端子を
もつ磁電変換素子より引出した複数組の出力端子をコン
デンサーにより互に並列に接続することを特徴とする磁
電変換素子の接続法。
1. A method for connecting magnetoelectric transducers, characterized by connecting a plurality of sets of output terminals drawn out from a plurality of magnetoelectric transducers or a magnetoelectric transducer having a plurality of sets of output terminals in parallel with each other using a capacitor.
JP52113350A 1977-09-22 1977-09-22 How to connect magnetoelectric conversion elements Expired JPS6032994B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52113350A JPS6032994B2 (en) 1977-09-22 1977-09-22 How to connect magnetoelectric conversion elements

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52113350A JPS6032994B2 (en) 1977-09-22 1977-09-22 How to connect magnetoelectric conversion elements

Publications (2)

Publication Number Publication Date
JPS5447588A JPS5447588A (en) 1979-04-14
JPS6032994B2 true JPS6032994B2 (en) 1985-07-31

Family

ID=14610022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52113350A Expired JPS6032994B2 (en) 1977-09-22 1977-09-22 How to connect magnetoelectric conversion elements

Country Status (1)

Country Link
JP (1) JPS6032994B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0666781U (en) * 1993-03-05 1994-09-20 隆光 森▲崎▼ Structure of rocking equipment leg

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0666781U (en) * 1993-03-05 1994-09-20 隆光 森▲崎▼ Structure of rocking equipment leg

Also Published As

Publication number Publication date
JPS5447588A (en) 1979-04-14

Similar Documents

Publication Publication Date Title
US20120025819A1 (en) Magnetoresistive sensor
JPS58106462A (en) Rotation detector
US4994742A (en) Hall effect device and magnetic coil circuits for magnetic field detection
JPH02170061A (en) Electric power detecting device
JPS6032994B2 (en) How to connect magnetoelectric conversion elements
JPH0442629B2 (en)
US2477337A (en) Magnetic detector
JPH0330089B2 (en)
JPH045525A (en) Noncontact type displacement detector
JPS5868615A (en) Output circuit of magnetic type rotary encoder
JPH0261710B2 (en)
JP2003254992A (en) Physical quantity detecting circuit
CN219456209U (en) Capacitive MEMS accelerometer
SU1679421A1 (en) Method of finding of point of reduced resistance of insulation of power network and device to implement it
SU590621A1 (en) Pressure transmitter
SU809311A1 (en) Multiplying device
JP2767281B2 (en) Magnetic sensor
KR970005807Y1 (en) Magnetic resistance device
JPS6192414A (en) Magneto-resistance device
JP2594939B2 (en) Speed signal detection circuit of electromagnetic drive
JPS6135717B2 (en)
SU610257A2 (en) Induction-type shaft angular position sensor
SU100913A1 (en) Full-Wavelength DC Contact Vibrator to AC
KR920010309B1 (en) Distortion detecting apparatus
JPS597269A (en) Current detector