JPS6032546A - Both axis drive turbine generator - Google Patents

Both axis drive turbine generator

Info

Publication number
JPS6032546A
JPS6032546A JP14057883A JP14057883A JPS6032546A JP S6032546 A JPS6032546 A JP S6032546A JP 14057883 A JP14057883 A JP 14057883A JP 14057883 A JP14057883 A JP 14057883A JP S6032546 A JPS6032546 A JP S6032546A
Authority
JP
Japan
Prior art keywords
shaft
radial hole
rotating shaft
generator
fatigue strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14057883A
Other languages
Japanese (ja)
Inventor
Akinori Nagata
永田 晃則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP14057883A priority Critical patent/JPS6032546A/en
Publication of JPS6032546A publication Critical patent/JPS6032546A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C3/00Shafts; Axles; Cranks; Eccentrics
    • F16C3/02Shafts; Axles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/003Couplings; Details of shafts

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)

Abstract

PURPOSE:To improve static deforming resistance and fatigue strength by employing a material which has excellent static deforming resistance and fatigue strength to the other portion for the portion having a radial hole for a current collector of a rotational shaft. CONSTITUTION:The second shaft portion 52 having a radial hole 14 of a current collector is used with the second low alloy steel which is prepared by quenching an Ni-Cr-Mo-V steel at approx. 850 deg.C and annealing at approx. 500 deg.C. The first and second shaft portions 51, 52 are welded by a welding unit 15, thereby obtaining a rotational shaft 5 of a generator. Thus, since the second low alloy steel has high tensile strength and high fatigue strength, it can endure against the dynamic conditions applied to the periphery of a radial hole 14.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は発電機の回転軸の両端に駆動用タービンを連結
した両軸駆動タービン発電機装置に関するO 〔発明の技術的背景とその問題点〕 従来は、発電機の回転軸の一方端付近に隼雷、装置用ラ
ジアルホールを有し、両端に駆動用タービンを連結した
大容量の両軸駆動タービン発電機装置はなかった。
Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to a double-shaft drive turbine generator device in which a driving turbine is connected to both ends of a rotating shaft of a generator. [Technical Background of the Invention and Problems thereof] Conventionally, there has been no large-capacity double-shaft drive turbine generator device that has a radial hole for the device near one end of the rotating shaft of the generator, and a driving turbine connected to both ends.

従来の一般のタービン発電機装置は、第1図に示す如く
、駆動用蒸気タービンill、発電機(2)、励磁機(
3)をその順に配列し、発電機(2)は励磁機(31(
Illに集電装置(4)全発電機の回転軸(5)に装着
し、発電機の回転軸(5)の両端はタービンの回転軸(
5a)と励磁機の回転軸(5b)にそれぞれカップリン
グ(6)によって連結している。発電機(2)は励磁機
(3)から集1ぽ装置(4)ヲ介して直流の励磁電流を
取り入れて、図示しない界磁巻線を励磁して運転するも
のであって、その集電装置(4)を第2図に示す。図示
しない配線で励磁機(3)に接続されたプラス側ブラシ
(7a)とマイナス側ブラシ(7b)は回転軸(5)の
外周上の絶縁筒(8a)、(8b) K焼ばめしたプラ
ス側コレクタリング(9a)とマイナス側コレクタリン
グ(9b)の回転に対して摺動接触して、励磁機(3)
からの直流電流は回転部へ導かれる。コレクタリング(
9a)、(9b)の電流は通電4用スクツド(10a)
、(10b)を介して、回転軸(5)の中心孔a力内の
プラス側銅帯(lla)とマイナス側銅帯(llb)へ
導かれる。中心孔az内にて銅帯(lla)、(Ilb
)は絶縁物(13a)、(13b)、(13c)によっ
て相互間および大地間を絶縁されている。銅帯(lla
)、(llb)は図示しない回転子内のコイルに接続さ
れ、回転子内に磁界がつくられる。このように銅帯(H
a)、(nb)に接続した通電用スタッド(10a)、
(10b) k通すために、回転軸(5)の半径方向穴
すなわちラジアルホール04)が最小限2個(プラス側
とマイナス側に各1個)設けられている。
A conventional general turbine generator device, as shown in Fig. 1, includes a driving steam turbine ill, a generator (2), and an exciter (
3) are arranged in that order, and the generator (2) is connected to the exciter (31(
The current collector (4) is attached to the rotating shaft (5) of the entire generator, and both ends of the rotating shaft (5) of the generator are attached to the rotating shaft (5) of the turbine.
5a) and the rotating shaft (5b) of the exciter, respectively, by couplings (6). The generator (2) is operated by taking in DC exciting current from the exciter (3) via the collector (4) and exciting a field winding (not shown). The apparatus (4) is shown in FIG. The positive side brush (7a) and negative side brush (7b), which are connected to the exciter (3) by wiring not shown, are shrink-fitted to the insulating tubes (8a) and (8b) on the outer periphery of the rotating shaft (5). The exciter (3) is in sliding contact with the rotation of the positive side collector ring (9a) and the negative side collector ring (9b).
The direct current from is led to the rotating part. Collector ring (
The currents of 9a) and (9b) are connected to the energized 4 board (10a).
, (10b) to the plus side copper band (lla) and the minus side copper band (llb) within the central hole a of the rotating shaft (5). Copper band (lla), (Ilb) inside the center hole az
) are insulated from each other and from the ground by insulators (13a), (13b), and (13c). Copper belt (lla)
), (llb) are connected to a coil (not shown) in the rotor, and a magnetic field is created in the rotor. In this way, the copper band (H
a), a current-carrying stud (10a) connected to (nb),
(10b) A minimum of two holes (one each on the positive side and the negative side) are provided in the radial direction of the rotating shaft (5), that is, the radial hole 04), in order to pass the rotation shaft (5).

第2図のIII −III線に沿う矢視断面を示したの
が第3図である。大容量機になれば銅帯(lla)、(
llb)の断面積も増加するため、ラジアルホールα4
が4個になることもある。ラジアルホール(l(イ)の
直径dは軸径d1によって決定するものである。しかし
、コレクタリング(9a)、(9b)とブラシ(7a)
、(7b)との接触を良好に保つために、コレクタリン
グ(9a)。
FIG. 3 shows a cross section taken along the line III--III in FIG. 2. If it is a large capacity machine, there will be a copper band (lla), (
Since the cross-sectional area of llb) also increases, the radial hole α4
There may be four. The diameter d of the radial hole (l) is determined by the shaft diameter d1. However, the collector rings (9a), (9b) and the brush (7a)
, (7b) to maintain good contact with the collector ring (9a).

(9b)の外径d、に周速上の制限がある。即ち、36
00rpmのコレクタリング(9a)、(9b)ではd
、は約400Inm以下とする必要があるために、軸径
d、を約300mm以上とすることは不可能である。
There is a limit on the circumferential speed of the outer diameter d of (9b). That is, 36
00rpm collector ring (9a), (9b) d
, must be about 400 Inm or less, so it is impossible to make the shaft diameter d, about 300 mm or more.

ラジアルホール(141の応力集中組数は、従来製造さ
れているものは通常1.5〜2.5である。
The number of stress concentration groups of radial holes (141) that are conventionally manufactured is usually 1.5 to 2.5.

従来から一般に採用さnて来たタービン発try、 機
装叶は、第1図に示す如く励磁機(3)の反対側に駆動
用の蒸気タービン(1)’!r備えていることは上記の
通りである。このため、発音機(2)の端子短絡、再開
路失敗時等に、突発的に発生する過大な軸トルりに対し
ても、ラジアルホール04部にかかるトルクは微小で、
回転軸(5)の疲労限度以下のものであった。従って第
1図の:成に対しては、過渡的な過大トルクに対して[
111p応力集中部例えば図示しない油切り溝、キー溝
ンカツプリング部等が強度的に問題になったとしても、
ラジアルホール0a部はなんら問題にならなかった。
As shown in Figure 1, the steam turbine (1) for driving is installed on the opposite side of the exciter (3). r The features described above are provided. Therefore, even if excessive shaft torque suddenly occurs when the terminal of the sound generator (2) is short-circuited or fails to restart, the torque applied to the radial hole 04 is very small.
This was below the fatigue limit of the rotating shaft (5). Therefore, for the : formation in Figure 1, for transient excessive torque [
111p Even if stress concentration parts such as oil drain grooves (not shown), key groove coupling parts, etc. become a strength problem,
The radial hole 0a part did not cause any problem.

しかし、最近のエネルギの高効率化傾向により、第4図
に示す如く、励磁機(31(iIl]からもガスタービ
ン(1a)等の回転軸(5C)を連結することによって
両軸駆動されるシステム構成が取られるようになって来
た。即ち、ガスタービン(1a)の排圧を蒸気タービン
(11へ利用することによって、エネルギの高効率化を
計ろうとするのがコンバインドサイクル形発電機装置で
ある。このため従来蒸気タービン(1)と発電機(2)
の回転軸(5a)との間にだけ発生していた過渡的な過
大トルクが、ガスタービン(1a)の回転軸(1c)か
らも励磁機(3)の回転軸(lb) ?介して発電機(
2)の回転軸(5)に伝わる場合が生ずる。従って、従
来ラジアルホール(14)部の疲労強度は全く問題にし
ていなかったが、このような両軸駆動系にすると、大容
量化しfC場合、ラジアルホール6局部は軸系の内で最
も厳しい使用条件になって来て、静的変形を生じたり、
疲労強度に耐えられないようになって来た。前述の如く
、集電装置部の軸径d、には上限があるため、ガスター
ビン(1a)の容量増大のためには、ラジアルホールI
周辺の形状変更、あるいは発電機(2)の回転軸(5)
の材料等により疲労強度の向上が要求される。しかし、
前者の形状変更による応力集中係数を1.5〜2.5か
ら大幅に低くすることは殆ど不可能である。また後者の
軸材の改良については、発電機(2)の回転軸(5)は
悄造により一体物として製造されていたため、ラジアル
ホール・(14)周辺の強度向上のために回転1111
 (51全体の材質向上を計ることは非常に高価になり
、不経済といえる。
However, due to the recent trend toward higher energy efficiency, as shown in Figure 4, the exciter (31 (iIl)) is also connected to a rotating shaft (5C) such as a gas turbine (1a) to drive both shafts. A system configuration has started to be adopted.In other words, a combined cycle type generator device attempts to improve energy efficiency by utilizing the exhaust pressure of the gas turbine (1a) to the steam turbine (11). Therefore, the conventional steam turbine (1) and generator (2)
The transient excessive torque that was generated only between the rotating shaft (5a) of the gas turbine (1a) and the rotating shaft (1c) of the exciter (3) also extends from the rotating shaft (1c) of the exciter (3) to the rotating shaft (lb) of the exciter (3). generator (via
2) may be transmitted to the rotating shaft (5). Therefore, in the past, the fatigue strength of the radial hole (14) part was not a problem at all, but when using such a double shaft drive system, the capacity increases and in the case of fC, the radial hole 6 local part has the most severe use of the shaft system. conditions, static deformation may occur,
It has become impossible to withstand the fatigue strength. As mentioned above, there is an upper limit to the shaft diameter d of the current collector, so in order to increase the capacity of the gas turbine (1a), the radial hole I
Changing the peripheral shape or rotating shaft (5) of the generator (2)
Improved fatigue strength is required depending on the material used. but,
In the former case, it is almost impossible to significantly lower the stress concentration factor from 1.5 to 2.5 by changing the shape. Regarding the latter improvement of the shaft material, since the rotating shaft (5) of the generator (2) was manufactured as a single piece by Yuzukuri, in order to improve the strength around the radial hole (14), the rotating shaft (5)
(It would be extremely expensive and uneconomical to try to improve the material quality of the entire 51.

〔発明の目的〕[Purpose of the invention]

本発明は発電機回転軸のラジアルホール部周辺を強化し
、静的変形抵抗および疲労強度全向上し、信頼性の高い
大容量両軸駆動タービン発電機装置を安価に提供するこ
とを目的とする。
The purpose of the present invention is to provide a highly reliable large-capacity dual-shaft drive turbine generator device at a low cost by strengthening the radial hole portion of the rotating shaft of the generator to improve static deformation resistance and fatigue strength. .

〔発明の概要〕[Summary of the invention]

本発明においては発電、機の回転軸の集■、装招用ラジ
アルホールを有する部分を、他の部分より静的変形抵抗
と疲労強度のすぐれた材料を用い、両者を一体に結合す
ることにより、ラジアルホールのある側からも大容量タ
ービンで安全に駆動できるようにし、高価な軸材料を使
用しないようにして、安価で高信頼性の両軸駆動タービ
ン発電機装置とするものである。
In the present invention, the parts that have the power generation, the center of the rotary shaft of the machine, and the radial hole for installation are made of a material with better static deformation resistance and fatigue strength than other parts, and these parts are joined together. The purpose of the present invention is to provide an inexpensive and highly reliable double-shaft drive turbine generator device that can be safely driven by a large-capacity turbine even from the side where the radial hole is located, and does not use expensive shaft materials.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例について、第5図f#照して説
明する。尚装置全体の配置図はさきに説明した第4図の
通りであり、集電装置(4)部はさきに示した第2図お
よび第3図の通りであるから、これも参照されたい。
An embodiment of the present invention will be described below with reference to FIG. The layout of the entire device is as shown in FIG. 4 described above, and the current collector (4) section is as shown in FIGS. 2 and 3, so please refer to these as well.

本実施例においては、集電装置(4)のラジアルホール
(14)を有する第2の軸部分(5,)以外の第1の軸
部分(51)は従来と同様なNi −Cr −Mo−V
鋼ヲ850℃i’+il後の焼入;n、、 600℃以
上の焼もどしを行なった安定なソルバイト組織を持つ第
1の低合金鋼を使用する。そして集電装置(4)のラジ
アルホール(14を有する第2の軸部分(5,)は前記
Ni −Cr −Mo−V鋼を850℃前後の焼入を行
ない、焼もどし温度は500℃前後と低くした第2の低
合金鋼を用いる。そして、第1、第2の軸部分(5+ 
) 、(52)を溶接部(liにて溶接結合し、発電機
の回転軸(5)を得る。この回転軸(5)を用いて、両
軸駆動タービン発電機装置σを作る。
In this embodiment, the first shaft portion (51) other than the second shaft portion (5,) having the radial hole (14) of the current collector (4) is made of Ni-Cr-Mo- V
The first low alloy steel having a stable sorbite structure which has been tempered at 600°C or higher is used. The second shaft portion (5,) having the radial hole (14) of the current collector (4) is made of Ni-Cr-Mo-V steel by quenching at around 850°C, and the tempering temperature is around 500°C. A second low-alloy steel with a low
) and (52) are welded together at the welded portion (li) to obtain a rotating shaft (5) of the generator. Using this rotating shaft (5), a double-shaft drive turbine generator device σ is made.

次に作用について説明する。Next, the effect will be explained.

第6図に第1および第2の低合金鋼を作るNl −Cr
−Mo−V 鋼の、850℃前後の焼入れ後の、焼もど
し熱処理条件に対する引張ゆ強さおよび疲労強度の関係
を示す。600℃以上の焼もどしをl〜た第1の低合金
鋼は安定なソルバイト組織を持つ調質釦(であって引張
り強さおよび疲労強度は低くなるが、高じん性を有し、
回転子コイルを納める部分(図示せず)の遠心力によっ
て発生する大きな円周応力に対して、静的破壊力に対し
て十分耐えら′112るものであって、従来から使用さ
れたものと同じである。500℃前後の焼もどし金した
第2の低合金鋼は低じん性にはなるけれども、集電装T
ft+/11のラジアルホール0周辺においては軸径y
l:小さいから、上記のような円周応力による静的破壊
強度711;問題になることはない。そしてこの第2の
低合金り1:へは引張り強さおよび疲労強度が、gl!
1の低合金鋼に比べて約1.5倍と極めて高く、ラジア
ルホール周辺にかかる力学条件に耐えら牡るものであっ
て、静的変形抵抗および疲労強Ifを向上しfc信l性
の高い第2の軸部分となる。尚、接接部(151の溶接
熱影響により、上記の第2の低合金鋼からなる第2の軸
部分(5,)の強度は若干低下することがあるため、こ
の熱影響がラジアルホールαaに及ばない程度に、溶接
部(1つの位置をラジアルボール0りから遠ざけるのが
よい。このようにして発電機の回転軸(5)をあ寸り高
価にせずに信頼性の高いものとし、大容量の両軸駆動タ
ービン発電機装置を安価にイ0ることができる。
Figure 6 shows Nl-Cr making the first and second low alloy steels.
-The relationship between the tensile strength and fatigue strength of Mo-V steel after quenching at around 850°C with respect to the tempering heat treatment conditions is shown. The first low-alloy steel, which has been tempered at 600°C or higher, has a stable sorbite structure and has low tensile strength and fatigue strength, but high toughness.
It has sufficient resistance to static destructive force against the large circumferential stress generated by centrifugal force in the part that houses the rotor coil (not shown), and is different from the one used in the past. It's the same. Although the second low alloy steel tempered at around 500°C has low toughness, the current collector T
Around the radial hole 0 of ft+/11, the shaft diameter y
l: Because it is small, static breaking strength 711 due to the above-mentioned circumferential stress does not pose a problem. The tensile strength and fatigue strength of this second low-alloy resin 1: are gl!
It is extremely high, approximately 1.5 times higher than low alloy steel No. 1, and can withstand the mechanical conditions surrounding the radial hole, improving static deformation resistance and fatigue strength If, and improving fc reliability. This will be the tall second shaft part. Note that the strength of the second shaft portion (5,) made of the second low-alloy steel may decrease slightly due to the welding heat effect of the welding part (151), so this heat effect may cause the radial hole αa to decrease slightly. It is better to move the welded part (one position) away from the radial ball 0 to the extent that it does not reach the same extent as possible.In this way, the rotating shaft (5) of the generator can be made highly reliable without being oversized and expensive. A large-capacity double-shaft drive turbine generator device can be manufactured at low cost.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、発電機の回転1
11+の集電装置I用ラジアルホールをイリする部分を
、(l!!の部分よりj■■的変形抵抗と疲労強度のす
ぐ1,た材料を用い、両者を一体に結合することにより
、回転11711 ′fr:あまり高価にせず、安価で
高信頼性の大容量両軸駆動タービン発電機装へ全提供す
ることができる。
As explained above, according to the present invention, the rotation 1 of the generator
The part that fills the radial hole for the current collector I of 11+ is made of a material that has a higher deformation resistance and fatigue strength than the part (l!!), and by joining them together, rotation 11711'fr: It is possible to fully provide a low-cost, highly reliable large-capacity double-shaft drive turbine generator system without increasing the cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の片軸(バ動タービン発′亀磯装置を示す
配置図、第2図は従来の片軸駆動タービン発電機装置と
本発明の両軸駆動タービン発電機装置の一実施例とに共
通した集電装置部を示す縦断面図、第3図d第2図の■
−11線に沿う矢祈1輔(ili分の断面図、第4図は
本発明の両軸駆j+’..!lタービン発電機装置の一
実施例を示す配置)1部図、第5図は第4図の発布機の
回転Ohの0部を示す417,’太4,i% jj封面
ill、第6191は第5図の第1のφliI Ili
分と第2のl呻剖分の材料の熱処理に対する引張強さと
疲労強度ンー示す曲線図である。 1、1a・・・駆動用タービン 2・・・発j1;梢4
・・・集7装置 5・・・回転軸 51・・・他の部分である第1の’l+lIjNR分5
、・・ラジアルホールを有する部分である′i′A2の
illb部分14・・・ラジアルホール 15・・・溶
接部代理人 弁理士 井 上 − 男 第 3 図 第 4 図 、!5dム、5 ム♂bA 第 5 図
Fig. 1 is a layout diagram showing a conventional single-shaft (va-motor turbine generator) Kameiso device, and Fig. 2 shows an example of a conventional single-shaft drive turbine generator device and a double-shaft drive turbine generator device of the present invention. Vertical sectional view showing the current collector part common to Figure 3d, ■■ in Figure 2
-11 line (cross-sectional view of ili section, Fig. 4 is a layout showing an embodiment of the double-shaft drive j+'..!l turbine generator device of the present invention) 1st partial view, 5th The figure shows the 0 part of the rotation Oh of the issuing machine in Fig. 4.
FIG. 3 is a curve diagram showing the tensile strength and fatigue strength of the material with respect to the heat treatment of the second and second parts. 1, 1a... Drive turbine 2... Generator j1; Treetop 4
...Collection 7 device 5...Rotating shaft 51...First 'l+lIjNR portion which is another part 5
,...Illb part of 'i'A2 which is a part with a radial hole 14... Radial hole 15... Welding department agent Patent attorney Inoue - Male Figure 3 Figure 4,! 5dmu, 5mu♂bA Fig. 5

Claims (2)

【特許請求の範囲】[Claims] (1)発電機の回転軸の一方端付近に集市装貿用ラジア
ルホールを有し、両端に駆動用タービンを連結した両軸
駆動タービン発電機装置において、回転軸のラジアルホ
ール分有する部分を他の部分より静的変形抵抗と疲労強
度のすぐれた材料を用い、両者を一体に結合したことを
特徴とする両軸駆動タービン発電機装置。
(1) In a double-shaft drive turbine generator device that has a radial hole near one end of the rotating shaft of the generator and a driving turbine connected to both ends, the part that has the radial hole of the rotating shaft. A double-shaft drive turbine generator device characterized by using a material with better static deformation resistance and fatigue strength than other parts, and combining both parts into one.
(2)一体結合は溶接結合としたことを特徴とする特許
請求の範囲第1項記載の両軸駆動タービン発電機装置。
(2) The double shaft drive turbine generator device according to claim 1, wherein the integral connection is a welded connection.
JP14057883A 1983-08-02 1983-08-02 Both axis drive turbine generator Pending JPS6032546A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14057883A JPS6032546A (en) 1983-08-02 1983-08-02 Both axis drive turbine generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14057883A JPS6032546A (en) 1983-08-02 1983-08-02 Both axis drive turbine generator

Publications (1)

Publication Number Publication Date
JPS6032546A true JPS6032546A (en) 1985-02-19

Family

ID=15271946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14057883A Pending JPS6032546A (en) 1983-08-02 1983-08-02 Both axis drive turbine generator

Country Status (1)

Country Link
JP (1) JPS6032546A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58125668U (en) * 1982-02-12 1983-08-26 トヨタ自動車株式会社 rotary joint
JP4832618B1 (en) * 2011-02-17 2011-12-07 三菱電機株式会社 Slip ring device and rotating electric machine using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58125668U (en) * 1982-02-12 1983-08-26 トヨタ自動車株式会社 rotary joint
JP4832618B1 (en) * 2011-02-17 2011-12-07 三菱電機株式会社 Slip ring device and rotating electric machine using the same
WO2012111126A1 (en) * 2011-02-17 2012-08-23 三菱電機株式会社 Slip ring device and rotating electric machine using same
CN103081310A (en) * 2011-02-17 2013-05-01 三菱电机株式会社 Slip ring device and rotating electric machine using same
US8525383B2 (en) 2011-02-17 2013-09-03 Mitsubishi Electric Corporation Slip ring device and rotary electric machine using the same

Similar Documents

Publication Publication Date Title
US4286183A (en) Dynamoelectric machine
US4171494A (en) Electric rotary machine having superconducting rotor
US8421296B2 (en) Rotor for electric motor optimized for high power
US4642495A (en) Electric rotary machine having superconducting rotor
JP6352788B2 (en) Rotating electrical machine rotor
JPS6032546A (en) Both axis drive turbine generator
US4237392A (en) Rotor member for a superconducting generator
US5739618A (en) Electric synchronous machine having slip rings arranged outside the machine housing, and a method for producing it
US4329602A (en) Superconducting rotor
US1332966A (en) Shaft and flywheel coupling
US4292554A (en) Radially aerated disc rotor
JPH0928065A (en) Squirrel-cage induction motor and its rotor
JPS61132063A (en) Rotor of induction motor
JPS6051440A (en) Induction machine
JP2002359943A (en) High-speed generator/motor
CN219181379U (en) Motor device
JP2509096Y2 (en) Electric motor
US4814656A (en) Interconnection apparatus for a segmented amortisseur winding
CN110953250B (en) Magnetic suspension bearing rotor structure, motor and air conditioner
JPH07288959A (en) Rotor of high-frequency motor
CN106089776A (en) The supporting construction of servomotor cooling blower
JP2009011067A (en) Rotary electric machine
JPH1052014A (en) Rotor of high-speed squirrel-cage induction motor and its manufacturing method
US1313649A (en) Elastic-fluid turbine
WO2012111126A1 (en) Slip ring device and rotating electric machine using same